Repellent, Lethal Activity, and Synergism of Cannabis sativa Extracts with Terpenes Against a Laboratory Colony of Triatoma infestans
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Biological Material
2.2.1. Plant Material
2.2.2. Ultrasound Assisted Extraction (UAE)
2.2.3. Insects
2.3. Gas Chromatography (GC) Analyses of Terpenes
2.4. High-Performance Liquid Chromatography (HPLC) Analysis of Cannabinoids
2.5. Lethal Activity Against Insects by Direct Topical Application
2.6. Lethal Activity Against Insects by Surface Contact
2.7. Insect Repellent Activity Against Fifth-Instar Nymphs T. infestans
2.8. Combinatorial Treatments and Median-Effect Plot-Based Computational Analysis
2.9. Statistical Analysis
3. Results
3.1. Plant Extracts Composition
3.2. Lethal Activity of C. sativa Extracts and Its Main Volatile Components in Single Treatments Against Late-Stage Nymphs of T. infestans
3.3. Insect Repellent Activity Against Fifth-Instar Nymphs of T. infestans
3.4. Toxicity Against Adult A. mellifera
3.5. Analysis of Synergies in Combination Treatments
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CB | Cannabinoid |
| CBC | Cannabicromeno |
| CBD | Cannabidiol |
| CBDV | Cannabidivarin |
| CBG | Cannabigerol |
| CBN | Cannabinol |
| DEET | N,N-Diethyl-meta-toluamide |
| GC | Gas chromatography |
| LC50 | Lethal concentration 50% |
| LD50 | Lethal dose 50% |
| HPLC | High-performance liquid chromatography |
| nAChRs | Nicotinic acetylcholine receptors |
| THC | Δ9-Tetrahydrocannabinol |
| THCV | Tetrahydrocannabivarin |
| UAE | Ultrasound-assisted extraction |
| UV | Ultraviolet |
References
- Devine, G.J.; Overgaard, H.J.; Paul, R.E. Global Vector Control Guidelines—The Need For Co-Creation. Trends Parasitol. 2019, 35, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Mougabure-Cueto, G.; Picollo, M.I. Insecticide Resistance in Vector Chagas Disease: Evolution, Mechanisms and Management. Acta Trop. 2015, 149, 70–85. [Google Scholar] [CrossRef]
- WHO. Chagas Disease (Also Known as American Trypanosomiasis); WHO: Geneva, Switzerland, 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 1 August 2025).
- Pessoa, G.C.D.; Vinãs, P.A.; Rosa, A.C.L.; Diotaiuti, L. History of Insecticide Resistance of Triatominae Vectors. Rev. Soc. Bras. Med. Trop. 2015, 48, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, G.; Picollo, M.I.; Toloza, A.C. Is Imidacloprid an Effective Alternative for Controlling Pyrethroid-Resistant Populations of Triatoma infestans (Hemiptera: Reduviidae) in the Gran Chaco Ecoregion? Mem. Inst. Oswaldo Cruz 2014, 109, 761–766. [Google Scholar] [CrossRef]
- Alarico, A.G.; Romero, N.; Hernández, L.; Catalá, S.; Gorla, D. Residual Effect of a Micro-Encapsulated Formulation of Organophosphates and Piriproxifen on the Mortality of Deltamethrin Resistant Triatoma infestans Populations in Rural Houses of the Bolivian Chaco Region. Mem. Inst. Oswaldo Cruz 2010, 105, 752–756. [Google Scholar] [CrossRef]
- Dadé, M.M.; Daniele, M.R.; Silvestrini, M.P.; Bozzolo, F.; Francini, F.; Mestorino, N. A Study of the Effects of Imidacloprid under Laboratory and Field Conditions on Nymphs of Triatoma infestans (Hemiptera: Reduviidae). Vet. Parasitol. 2020, 280, 109092. [Google Scholar] [CrossRef]
- Dadé, M.M.; Daniele, M.R.; Machicote, M.; Errecalde, J.O.; Rodriguez-Vivas, R.I. First Report of the Lethal Activity and Synergism between Deltamethrin, Amitraz and Piperonyl Butoxide against Susceptible and Pyrethroid-Resistant Nymphs of Triatoma infestans. Exp. Parasitol. 2020, 218, 107986. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, A.A.; Werdin González, J.O.; Sánchez Chopa, C. Biological Activity of Schinus molle on Triatoma infestans. Fitoterapia 2006, 77, 381–383. [Google Scholar] [CrossRef]
- Dadé, M.; Zeinsteger, P.; Bozzolo, F.; Mestorino, N. Repellent and Lethal Activities of Extracts From Fruits of Chinaberry (Melia azedarach L., Meliaceae) Against Triatoma infestans. Front. Vet. Sci. 2018, 5, 158. [Google Scholar] [CrossRef]
- Mojica, M.; Alzogaray, R.A.; Mengoni, S.L.; Reynoso, M.M.N.; Pinto, C.F.; Niemeyer, H.M.; Echeverría, J. Repellent Activity of the Essential Oil from Laurelia sempervirens (Ruiz & Pav.) Tul. (Monimiaceae) on Triatoma infestans (Klug) (Reduviidae). Bol. Latinoam. Caribe Plantas Med. Aromat. 2020, 19, 387–394. [Google Scholar] [CrossRef]
- Moretti, A.N.; Seccacini, E.A.; Zerba, E.N.; Canale, D.; Alzogaray, R.A. The Botanical Monoterpenes Linalool and Eugenol Flush-Out Nymphs of Triatoma infestans (Hemiptera: Reduviidae). J. Med. Entomol. 2017, 54, 1293–1298. [Google Scholar] [CrossRef]
- Li, H.-L. The Origin and Use of Cannabis in Eastern Asia Linguistic-Cultural Implications. Econ. Bot. 1974, 28, 293–301. [Google Scholar] [CrossRef]
- Flores-Sanchez, I.J.; Verpoorte, R. Secondary Metabolism in Cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- Phytocannabinoids: Unraveling the Complex Chemistry and Pharmacology of Cannabis sativa; Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Eds.; Softcover reprint of the original 1st ed. 2017 edition; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-83316-3. [Google Scholar]
- Russo, E.B. The Pharmacological History of Cannabis. In Handbook of Cannabis; Pertwee, R., Ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2016; ISBN 978-0-19-879260-4. [Google Scholar]
- Groeneveld, G.J.; Martin, J.H. Parasitic Pharmacology: A Plausible Mechanism of Action for Cannabidiol. Br. J. Clin. Pharmacol. 2020, 86, 189–191. [Google Scholar] [CrossRef]
- Liktor-Busa, E.; Keresztes, A.; LaVigne, J.; Streicher, J.M.; Largent-Milnes, T.M. Analgesic Potential of Terpenes Derived from Cannabis sativa. Pharmacol. Rev. 2021, 73, 98–126. [Google Scholar] [CrossRef]
- Abe, H.; Dadji, G.A.F.; Nkondjio, C.A.; Awono-Ambene, P.H.; Tamesse, J.L. Insecticidal Activity of Cannabis sativa L Leaf Essential Oil on the Malaria Vector Anopheles gambiae s.l (Giles). Int. J. Mosq. Res. 2018, 5, 65–74. [Google Scholar]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Santini, G.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; Canale, A.; Maggi, F. The Essential Oil from Industrial Hemp (Cannabis sativa L.) by-Products as an Effective Tool for Insect Pest Management in Organic Crops. Ind. Crops Prod. 2018, 122, 308–315. [Google Scholar] [CrossRef]
- Jalees, S.; Sharma, S.K.; Rahman, S.J.; Verghese, T. Evaluation of Insecticidal Properties of an Indigenous Plant, Cannabis sativa Linn., against Mosquito Larvae under Laboratory Conditions. J. Entomol. Res. 1993, 17, 117–120. [Google Scholar]
- Stefkov, G.; Cvetkovikj Karanfilova, I.; Stoilkovska Gjorgievska, V.; Trajkovska, A.; Geskovski, N.; Karapandzova, M.; Kulevanova, S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products—A Comprehensive Review. Molecules 2022, 27, 975. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Aliferis, K.A.; Bernard-Perron, D. Cannabinomics: Application of Metabolomics in Cannabis (Cannabis sativa L.) Research and Development. Front. Plant Sci. 2020, 11, 554. [Google Scholar] [CrossRef]
- Jadhav, P.D.; Shim, Y.Y.; Paek, O.J.; Jeon, J.-T.; Park, H.-J.; Park, I.; Park, E.-S.; Kim, Y.J.; Reaney, M.J.T. A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics). Int. J. Mol. Sci. 2023, 24, 8202. [Google Scholar] [CrossRef]
- Das, P.C.; Vista, A.R.; Tabil, L.G.; Baik, O.-D. Postharvest Operations of Cannabis and Their Effect on Cannabinoid Content: A Review. Bioengineering 2022, 9, 364. [Google Scholar] [CrossRef]
- WHO. Protocolo de evaluation de efecto insecticida sobre triatominos. Acta Toxicol. Argent. 1994, 2, 29–32. [Google Scholar]
- Suchail, S.; Guez, D.; Belzunces, L.P. Characteristics of Imidacloprid Toxicity in Two Apis mellifera Subspecies. Environ. Toxicol. Chem. 2000, 19, 1901–1905. [Google Scholar] [CrossRef]
- Chou, T.-C.; Talalay, P. Quantitative Analysis of Dose-Effect Relationships: The Combined Effects of Multiple Drugs or Enzyme Inhibitors. Adv. Enzym. Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
- Report of The16th FAO/WHO Joint Meeting on Pesticide Management: Geneva, Switzerland and Online, 6–10 November 2023. Available online: https://www.who.int/publications/i/item/9789240089808 (accessed on 31 January 2025).
- Kumar, S.; Mahapatro, G.K.; Yadav, D.K.; Tripathi, K.; Koli, P.; Kaushik, P.; Sharma, K.; Nebapure, S. Essential Oils as Green Pesticides: An Overview. Indian J. Agric. Sci. 2022, 92, 1298–1305. [Google Scholar] [CrossRef]
- Ona, G.; Balant, M.; Bouso, J.C.; Gras, A.; Vallès, J.; Vitales, D.; Garnatje, T. The Use of Cannabis sativa L. for Pest Control: From the Ethnobotanical Knowledge to a Systematic Review of Experimental Studies. Cannabis Cannabinoid Res. 2022, 7, 365–387. [Google Scholar] [CrossRef] [PubMed]
- Capello, C.; Fischer, U.; Hungerbühler, K. What Is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Biorenewable Solvents. Available online: https://www.sigmaaldrich.com/GB/en/campaigns/biorenewable-solvents (accessed on 30 January 2025).
- Thakur, D.; Devi, B. Biopesticidal Efficacy of Berberis Lycium L. and Cannabis sativa L. against Callosobruchus chinensis L (1758) (Coleoptera: Bruchidae). J. Insect Sci. 2016, 29, 227–232. [Google Scholar]
- Maurya, P.; Mohan, L.; Sharma, P.; Srivastava, C.N. Larval Susceptibility of Aloe barbadensis and Cannabis sativa against Culex quinquefasciatus, the Filariasis Vector. J. Environ. Biol. 2008, 29, 941–943. [Google Scholar] [PubMed]
- Maurya, P.; Mohan, L.; Sharma, P.; Batabyal, L.; Srivastava, C.N. Larvicidal Efficacy of Aloe barbadensis and Cannabis sativa against the Malaria Vector Anopheles stephensi (Diptera: Culicidae). Entomol. Res. 2007, 37, 153–156. [Google Scholar] [CrossRef]
- Busvine, J.R. A Critical Review of the Techniques for Testing Insecticides; Commonwealth Agricultural Bureaux: Wallingford, UK, 1971; ISBN 978-0-85198-030-0.
- Hanuš, L.O.; Hod, Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med. Cannabis Cannabinoids 2020, 3, 25–60. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.X.; Song, B. Pesticidal Activity and Mode of Action of Monoterpenes. J. Agric. Food Chem. 2022, 70, 4556–4571. [Google Scholar] [CrossRef]
- Ogendo, J.O.; Kostyukovsky, M.; Ravid, U.; Matasyoh, J.C.; Deng, A.L.; Omolo, E.O.; Kariuki, S.T.; Shaaya, E. Bioactivity of Ocimum gratissimum L. Oil and Two of Its Constituents against Five Insect Pests Attacking Stored Food Products. J. Stored Prod. Res. 2008, 44, 328–334. [Google Scholar] [CrossRef]
- Maisonnasse, A.; Lenoir, J.-C.; Beslay, D.; Crauser, D.; Le Conte, Y.; Giurfa, M. E-Beta-Ocimene, a Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony (Apis mellifera). PLoS ONE 2010, 5, e13531. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.-J.; Xie, H.-Q.; Mu, Q. Guaiol—A Naturally Occurring Insecticidal Sesquiterpene. Nat. Prod. Commun. 2013, 8, 1934578X1300801001. [Google Scholar] [CrossRef]
- Al-Ghanim, K.A.; Krishnappa, K.; Pandiyan, J.; Nicoletti, M.; Gurunathan, B.; Govindarajan, M.; Al-Ghanim, K.A.; Krishnappa, K.; Pandiyan, J.; Nicoletti, M.; et al. Insecticidal Potential of Matricaria chamomilla’s Essential Oil and Its Components (E)-β-Farnesene, Germacrene D, and α-Bisabolol Oxide A against Agricultural Pests, Malaria, and Zika Virus Vectors. Agriculture 2023, 13, 779. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Drenaggi, E.; Desneux, N.; Maggi, F. Phytol, (E)-Nerolidol and Spathulenol from Stevia Rebaudiana Leaf Essential Oil as Effective and Eco-Friendly Botanical Insecticides against Metopolophium dirhodum. Ind. Crops Prod. 2020, 155, 112844. [Google Scholar] [CrossRef]
- Rants’o, T.A.; Koekemoer, L.L.; van Zyl, R.L. The Insecticidal Activity of Essential Oil Constituents against Pyrethroid-Resistant Anopheles funestus (Diptera: Culicidae). Parasitol. Int. 2023, 95, 102749. [Google Scholar] [CrossRef]
- Bedini, S.; Flamini, G.; Cosci, F.; Ascrizzi, R.; Benelli, G.; Conti, B. Cannabis sativa and Humulus lupulus Essential Oils as Novel Control Tools against the Invasive Mosquito Aedes albopictus and Fresh Water Snail Physella acuta. Ind. Crops Prod. 2016, 85, 318–323. [Google Scholar] [CrossRef]
- Wanas, A.S.; Radwan, M.M.; Chandra, S.; Lata, H.; Mehmedic, Z.; Ali, A.; Baser, K.; Demirci, B.; ElSohly, M.A. Chemical Composition of Volatile Oils of Fresh and Air-Dried Buds of Cannabis chemovars, Their Insecticidal and Repellent Activities. Nat. Prod. Commun. 2020, 15, 1934578X20926729. [Google Scholar] [CrossRef]
- Pacheco-Hernández, Y.; Jonnathan Castro-Juárez, C.; Alberto Ramírez-García, S.; Cruz-Durán, R.; Lozoya-Gloria, E.; Villa-Ruano, N. Volatiles from Marina neglecta: Biocide Effect on Insect Vectors of Tropical Diseases in Southern Mexico. J. Asia-Pac. Entomol. 2021, 24, 243–249. [Google Scholar] [CrossRef]
- Sarma, R.; Adhikari, K.; Mahanta, S.; Khanikor, B. Combinations of Plant Essential Oil Based Terpene Compounds as Larvicidal and Adulticidal Agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 2019, 9, 9471. [Google Scholar] [CrossRef]
- Dambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural Products for Controlling Insects of Importance to Human Health—A Structure-Activity Relationship Study. Psyche J. Entomol. 2016, 2016, 4595823. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Ntoukas, A.; Lagogiannis, I.; Kalyvas, N.; Eliopoulos, P.; Poulas, K. Larvicidal Action of Cannabidiol Oil and Neem Oil against Three Stored Product Insect Pests: Effect on Survival Time and in Progeny. Biology 2020, 9, 321. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.; Di Marzo, V.; De Petrocellis, L.; Mercer, A.; Glass, M. Cannabinoid Receptors Are Absent in Insects. J. Comp. Neurol. 2001, 436, 423–429. [Google Scholar] [CrossRef]
- Breer, H.; Hanke, W.; Benke, D.; Tareilus, E.; Krieger, J. Nicotinic Acetylcholine Receptors in the Nervous System of Insects. In Molecular Biology of Neuroreceptors and Ion Channels; Maelicke, A., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 55–68. [Google Scholar]
- Stack, G.M.; Snyder, S.I.; Toth, J.A.; Quade, M.A.; Crawford, J.L.; McKay, J.K.; Jackowetz, J.N.; Wang, P.; Philippe, G.; Hansen, J.L.; et al. Cannabinoids Function in Defense against Chewing Herbivores in Cannabis sativa L. Hortic. Res. 2023, 10, uhad207. [Google Scholar] [CrossRef]
- Martínez Rodríguez, E.J.; Phelan, P.L.; Canas, L.; Acosta, N.; Rakotondraibe, H.L.; Piermarini, P.M. Larvicidal Activity of Hemp Extracts and Cannabidiol against the Yellow Fever Mosquito Aedes Aegypti. Insects 2024, 15, 517. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Staples, S.K.; Gostin, E.L.; Smith, J.P.; Vigil, J.J.; Seifried, D.; Kinney, C.; Pauli, C.S.; Heuvel, B.D.V. Contrasting Roles of Cannabidiol as an Insecticide and Rescuing Agent for Ethanol–Induced Death in the Tobacco Hornworm Manduca sexta. Sci. Rep. 2019, 9, 10481. [Google Scholar] [CrossRef]




| Compound | Ethanol Extract | Acetone Extract |
|---|---|---|
| α-Pinene | <25 | 36.6 |
| β-Pinene | 105.6 | 149.8 |
| d-Limonene | 55.1 | 178.4 |
| E-Ocimene | 51.2 | 278.5 |
| Linalool | <25 | 60.3 |
| β-Caryophyllene | 139.9 | 418.2 |
| α-Humulene | 50.1 | 141.0 |
| Nerolidol | <25 | 64.6 |
| (-)-Guaiol | <25 | <25 |
| (-)-α-Bisabolol | <25 | 95.5 |
| Compound | Ethanol Extract | Acetone Extract |
|---|---|---|
| Cannabidivarin (CBDV) | - | <1 |
| Cannabigerol (CBG) | - | <1 |
| Cannabidiol (CBD) | 1.8 | 3.8 |
| Tetrahydrocannabivarin (THCV) | - | - |
| Cannabinol (CBN) | - | <1 |
| Δ9-tetrahydrocannabinol (THC) | 2.0 | 5.4 |
| Cannabichromene (CBC) | 0.6 | <1 |
| Treatment | LD 50% (µg/Individual) (CI 95%) | |
|---|---|---|
| 24 h | 48 h | |
| Deltamethrin | 0.09 (0.03–0.15) a | 0.09 (0.03–0.15) a |
| Acetone extract (AE) | 5.1 (3.8–11.2) b | 2.1 (1.4–2.9) b |
| Ethanol extract (EE) | 13.9 (9.2–43.3) bc | 10.9 (7.5–26.2) bc |
| β-caryophyllene | 51.7 (38.7–75.6) c | 31.4 (18.1–59.8) c |
| d-limonene | 68.5 (52.3–93.6) cd | 51.4 (37.9–68.5) cd |
| β-pinene | 92.2 (74.7–115.2) de | 68.3 (52.7–92.1) de |
| E-ocimene | 129.4 (99.3–184.4) e | 96.3 (75.2–126.2) e |
| Treatment | LD 50% (µg/cm2) (CI 95%) | |
|---|---|---|
| 24 h | 48 h | |
| Acetone extract | 1.3 (0.9–1.7) a | 1.3 (0.9–1.7) a |
| Ethanol extract | 212.4 (150.3–332.5) b | 117.1 (45.9–321.8) b |
| Deltamethrin | 998.1 (564.3–1322) c | 803.7 (555–1324.5) c |
| Combination Treatment (Ratio) | LD 50% (µg/Insect) (CI 95%) | |
|---|---|---|
| 24 h | 48 h | |
| AE + β-caryophyllene (1:15) | 6.1 (3.1–24.8) a | 5.2 (3.2–12.3) a |
| AE + d-limonene (1:25) | 18.1 (5.2–44.3) a | 14.1 (4.3–31.5) a |
| EE + β-caryophyllene (1:3) | 12.3 (9.6–17.3) a | 10.6 (6.3–13.3) a |
| EE + d-limonene (1:5) | 19.2 (13.2–28.9) a | 15.9 (7.3–33.9) a |
| AE + E-ocimene (1:48) | 135.3 (74.5–165.4) b | 108.4 (75.2–125.9) b |
| EE + β-pinene (1:7) | 287.2 (111.3–369.3) bc | 240.3 (156.9–301.3) c |
| Combination Treatment | Dose (µg) | % Death | CI | Effect | DRI AE | DRI EE | DRI BC | DRI BP | DRI DL | DRI EO |
|---|---|---|---|---|---|---|---|---|---|---|
| AE + β-caryophyllene (1:15) | 8 | 85 | 0.17 | S | 18.1 | - | 8.4 | - | - | - |
| 16 | 99 | 0.06 | S | 106.4 | - | 17.1 | - | - | - | |
| AE + E-ocimene (1:48) | 17.5 | 23 | 1.10 | + | 1.4 | - | - | 1.8 | - | - |
| 35 | 34 | 1.60 | A | 1.1 | - | - | 1.3 | - | - | |
| 70 | 39 | 2.70 | A | 0.7 | - | - | 0.7 | - | - | |
| 140 | 55 | 3.30 | A | 0.6 | - | - | 0.5 | - | - | |
| 280 | 66 | 4.80 | A | 0.4 | - | - | 0.3 | - | - | |
| AE + d-limonene (1:25) | 13 | 44 | 0.58 | S | 3.3 | - | - | - | 3.1 | - |
| 26 | 91 | 0.22 | S | 11.4 | - | - | - | 7.4 | - | |
| EE + β-caryophyllene (1:3) | 10 | 45 | 0.57 | S | - | 3.6 | 3.1 | - | - | - |
| 20 | 89 | 0.27 | S | - | 12.9 | 5.1 | - | - | - | |
| EE + d-limonene (1:5) | 15 | 44 | 0.57 | S | - | 3.7 | - | - | 3.4 | - |
| 30 | 79 | 0.32 | S | - | 6.7 | - | - | 4.6 | - | |
| 60 | 89 | 0.42 | S | - | 6.4 | - | - | 3.7 | - | |
| EE + β-pinene (1:7) | 112.5 | 26 | 2.80 | A | - | 1.7 | - | - | - | 0.4 |
| 245 | 33 | 4.60 | A | - | 1.1 | - | - | - | 0.2 | |
| 490 | 75 | 3.10 | A | - | 1.7 | - | - | - | 0.3 | |
| 980 | 99 | 0.80 | S | - | 27.5 | - | - | - | 1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadé, M.M.; Daniele, M.R.; Rodriguez, S.; Díaz, P.; Silvestrini, M.P.; Schinella, G.R.; Marin, G.H.; Barrio, D.; Prieto Garcia, J.M. Repellent, Lethal Activity, and Synergism of Cannabis sativa Extracts with Terpenes Against a Laboratory Colony of Triatoma infestans. Plants 2025, 14, 3258. https://doi.org/10.3390/plants14213258
Dadé MM, Daniele MR, Rodriguez S, Díaz P, Silvestrini MP, Schinella GR, Marin GH, Barrio D, Prieto Garcia JM. Repellent, Lethal Activity, and Synergism of Cannabis sativa Extracts with Terpenes Against a Laboratory Colony of Triatoma infestans. Plants. 2025; 14(21):3258. https://doi.org/10.3390/plants14213258
Chicago/Turabian StyleDadé, Martín M., Martín R. Daniele, Sergio Rodriguez, Pilar Díaz, Maria Pía Silvestrini, Guillermo R. Schinella, Gustavo H. Marin, Daniel Barrio, and Jose M. Prieto Garcia. 2025. "Repellent, Lethal Activity, and Synergism of Cannabis sativa Extracts with Terpenes Against a Laboratory Colony of Triatoma infestans" Plants 14, no. 21: 3258. https://doi.org/10.3390/plants14213258
APA StyleDadé, M. M., Daniele, M. R., Rodriguez, S., Díaz, P., Silvestrini, M. P., Schinella, G. R., Marin, G. H., Barrio, D., & Prieto Garcia, J. M. (2025). Repellent, Lethal Activity, and Synergism of Cannabis sativa Extracts with Terpenes Against a Laboratory Colony of Triatoma infestans. Plants, 14(21), 3258. https://doi.org/10.3390/plants14213258

