Unveiling the GA4-Ferulic Acid Regulatory Axis: Redox-Mediated Suberization Governs Adventitious Rooting Recalcitrance in Pinus massoniana
Abstract
1. Introduction
2. Results
2.1. PBZ Treatment Optimizes Rooting Kinetics
2.2. GA4 Dynamics During Rooting
2.3. GA4 Inhibits Root Development
2.4. FA-Mediated ROS Homeostasis and Its Effects on Rooting
2.5. Synergistic Effects of PBZ and FA Combination
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Rooting Agent Treatment
4.2.1. PBZ Treatment
4.2.2. GA4 Treatment
4.2.3. FA Treatment
4.2.4. PBZ + FA Treatment
4.3. Rooting Performance Assessment
4.4. GA Quantification (LC-MS/MS)
4.5. GA3OX Activity Assay
4.6. Anatomical Observation
4.7. Lignin Precursors Profiling
4.8. H2O2 Flux Analysis (NMT)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, R.L.; Wang, Y.; Wang, Y.M. Key factors affecting rooting of Pinus massoniana by tissue culture. Guihaia 2016, 36, 1288–1294. [Google Scholar]
- Saini, S.; Sharma, I.; Kaur, N.; Pati, P.K. Auxin: A master regulator in plant root development. Plant Cell Rep. 2013, 32, 741–757. [Google Scholar] [CrossRef]
- Camara, M.C.; Vandenberghe, L.P.S.; Rodrigues, C.; de Oliveira, J.; Faulds, C.; Bertrand, E.; Soccol, C.R. Current advances in gibberellic acid (GA) production, patented technologies and potential applications. Planta 2018, 248, 1049–1062. [Google Scholar] [CrossRef]
- Mori, I.C.; Schroeder, J.I. Reactive oxygen species activation of plant Ca2+ channels: A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 2024, 135, 702–708. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, R. Increased endogenous gibberellin level inhibits root growth of Pinus massoniana Lamb. plantlets during long-term subculture. Vitr. Cell. Dev. Biol.-Plant 2020, 56, 470–479. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, R.; Xiao, Y. Effects of PBZ/DPC treatment on rooting and GAs metabolism of Pinus massoniana cuttings. Sci. Silvae Sin. 2025, 61, 147–157. [Google Scholar]
- Wang, Y.; Yao, R.L. Rooting Agent Based on GA Content to Improve the Rooting Effect of Pinus massoniana and Its Application. China Patent CN202311486924.2, 9 November 2023. [Google Scholar]
- Wang, Y.; Yao, R.L. Rooting Agent and Rooting Method for Promoting Adventitious Root Formation of Pinus massoniana. China Patent CN202311486724.7, 9 November 2023. [Google Scholar]
- Miryeganeh, M.; Armitage, D.W. Epigenetic responses of trees to environmental stress in the context of climate change. Biol. Rev. Camb. Philos. Soc. 2025, 100, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qu, K.; Wang, H.; El-Kassaby, Y.A.; Li, W. Diurnal dynamics of different circadian transcription modules in Chinese pine needles and roots during dormancy induction. BMC Plant Biol. 2025, 25, 413. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zeng, L.; Lian, H.; Luo, M.; Qin, J.; Qin, R. A Study on the cutting propagation of high gum masson pine. Guangdong For. Sci. Technol. 2004, 1, 16–19. [Google Scholar]
- Kashyap, A.; Jiménez-Jiménez, Á.; Figueras, M.; Serra, O.; Valls, M.; Coll, N.S. The tomato feruloyl transferase FHT promoter is an accurate identifier of early development and stress-induced suberization. Plants 2023, 12, 1890. [Google Scholar] [CrossRef]
- Woolfson, K.N.; Zhurov, V.; Wu, T.; Kaberi, K.M.; Wu, S.; Bernards, M.A. Transcriptomic analysis of wound-healing in Solanum tuberosum (potato) tubers: Evidence for a stepwise induction of suberin-associated genes. Phytochemistry 2023, 206, 113529. [Google Scholar] [CrossRef]
- Cesarino, I. With a little help from MYB friends: Transcriptional network controlling root suberization and lignification. Plant Physiol. 2022, 190, 1077–1079. [Google Scholar] [CrossRef]
- Binenbaum, J.; Wulff, N.; Camut, L.; Kiradjiev, K.; Anfang, M.; Tal, I.; Vasuki, H.; Zhang, Y.; Sakvarelidze-Achard, L.; Davière, J.-M.; et al. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. Nat. Plants 2023, 9, 785–802. [Google Scholar] [CrossRef]
- Liu, L.; Geng, P.; Jin, X.; Wei, X.; Xue, J.; Wei, X.; Zhang, L.; Liu, M.; Zhang, L.; Zong, W.; et al. Wounding induces suberin deposition, relevant gene expressions and changes of endogenous phytohormones in Chinese yam (Dioscorea opposita) tubers. Funct. Plant Biol. 2023, 50, 691–700. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, H.; Feng, T.; Xu, Y.; Tang, X.; Yang, X.; Wang-Pruski, G.; Zhang, Z. Root suberization in the response mechanism of melon to autotoxicity. Plant Physiol. Biochem. 2024, 212, 108787. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Gao, Q.; Han, J.; Guo, X.; Wang, Q.; Altosaar, I.; Barberon, M.; Liu, J.; Gatehouse, A.M.R.; Shu, Q. An ABA-serotonin module regulates root suberization and salinity tolerance. New Phytol. 2022, 236, 958–973. [Google Scholar] [CrossRef]
- Nichol, J.B.; Yeung, L.S.; Bernards, M.A.; Samuel, M.A. Establishing a suberin tool kit for determining suberization within classical and ‘orphan’ tissues. Trends Plant Sci. 2025, 30, 1147–1163. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The antioxidant properties, metabolism, application and mechanism of ferulic acid in medicine, food, cosmetics, livestock and poultry. Antioxidants 2024, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Mackova, V.; Raudenska, M.; Polanska, H.H.; Jakubek, M.; Masarik, M. Navigating the redox landscape: Reactive oxygen species in regulation of cell cycle. Redox Rep. 2024, 29, 2371173. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, X.; Guo, K.; Deng, J.; Xu, J.; Gao, W.; Lindsey, K.; Zhang, X. ROS homeostasis regulates somatic embryogenesis via the regulation of auxin signaling in cotton. Mol. Cell. Proteom. 2016, 15, 2108–2124. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Feng, Y.F.; Tan, J.H.; Huang, Y. Advanced generation breeding strategy of Pinus massoniana in Guangxi. Guangxi For. Sci. 2018, 47, 251–256. [Google Scholar]
- Leal, A.R.; Belo, J.; Beeckman, T.; Barros, P.M.; Oliveira, M.M. The combined effect of heat and osmotic stress on suberization of Arabidopsis roots. Cells 2022, 11, 2341. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, H.; Liang, H.; Huang, B.; Sun, Y.; Yang, W.; Wu, Y.; Cui, Y.; Hai, J.; Dong, Z. Stereoselectivity of paclobutrazol enantiomers to oxidative stress in wheat. Chirality 2024, 36, e23638. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Z.; Zhu, H.; Luo, Y.; Ge, J.; Yu, Z.; Bao, G.; He, H.; Zhang, Z. Effects of IBA on rooting and physiological characteristics in softwood cutting of Tilia amurensis. For. Eng. 2023, 39, 68–77. [Google Scholar]
- Liang, M.; Zhang, X.; Dong, Q.; Li, H.; Guo, S.; Luan, H.; Jia, P.; Yang, M.; Qi, G. Metabolomics and transcriptomics provide insights into lipid biosynthesis in the embryos of walnut (Juglans regia L.). Plants 2023, 12, 538. [Google Scholar] [CrossRef]
- Wang, W.; Chi, M.; Liu, S.; Zhang, Y.; Song, J.; Xia, G.; Liu, S. TaGPAT6 enhances salt tolerance in wheat by synthesizing cutin and suberin monomers to form a diffusion barrier. J. Integr. Plant Biol. 2025, 67, 208–225. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, R.L.; Li, H.J.; Zhang, Y. In vitro sterilized culture of nodal segments based on explants physiological rejuvenation in Pinus massoniana. Plant Physiol. J. 2019, 55, 1375–1384. [Google Scholar]
- Wang, Y.; Yao, R.L. H2O2 and Ca2+ are involved in the embryogenic potential loss of cells during long-term proliferation culture in Pinus massoniana. Plant Cell Tissue Organ Cult. 2023, 154, 657–672. [Google Scholar] [CrossRef]











| NAA Concentration /mg·L−1 | PBZ Concentration /mg·L−1 | Rooting Percentage /% | Rooting Time /d | Root Number Per Plant />2 cm | Nursery Survival Percentage /% |
|---|---|---|---|---|---|
| 200 | 0 | 58.6 ± 3.3 c | 45.2 ± 1.5 a | 1.9 ± 0.4 a | 52.3 ± 3.6 a |
| 200 | 50 | 67.5 ± 1.8 b | 40.2 ± 2.2 b | 2.2 ± 0.3 a | 53.8 ± 3.9 a |
| 200 | 100 | 79.5 ± 2.8 a | 30.5 ± 2.3 c | 2.0 ± 0.5 a | 56.3 ± 4.1 a |
| 200 | 200 | 36.8 ± 4.5 d | 31.5 ± 3.7 c | 1.1 ± 0.7 a | 33.6 ± 5.7 b |
| 0 | 50~200 | 0 | - | - | - |
| NAA Concentration /mg·L−1 | GA4 Concentration /mg·L−1 | Rooting Percentage /% | Rooting Time /d | Root Number Per Plant />2 cm | Nursery Survival Percentage /% |
|---|---|---|---|---|---|
| 200 | 0 | 53.2 ± 3.4 a | 45.9 ± 2.7 a | 2.2 ± 0.4 a | 56.4 ± 3.8 a |
| 200 | 50 | 50.4 ± 2.5 a | 45.1 ± 2.5 a | 2.3 ± 0.4 a | 58.8 ± 3.7 a |
| 200 | 100 | 16.4 ± 2.4 b | 47.2 ± 1.7 a | 1.1 ± 0.2 b | 22.3 ± 2.1 b |
| 200 | 200 | 17.9 ± 3.8 b | 46.5 ± 2.8 a | 1.2 ± 0.2 b | 20.9 ± 1.8 b |
| Treatment | NAA Concentration /mg·L−1 | FA Concentration /mg·L−1 | Rooting Percentage /% | Rooting Time /d | Root Number Per Plant />2 cm | Nursery Survival Percentage /% |
|---|---|---|---|---|---|---|
| CT | 200 | 0 | 54.2 ± 3.1 b | 46.3 ± 2.4 b | 2.4 ± 0.7 c | 51.4 ± 4.4 c |
| F1 | 200 | 200 | 62.8 ± 2.5 a | 39.3 ± 3.5 c | 8.9 ± 1.5 a | 86.4 ± 3.8 a |
| F2 | 200 | 600 | 44.8 ± 5.5 c | 50.5 ± 2.2 a | 4.1 ± 0.2 b | 62.5 ± 2.4 b |
| F3 | 200 | 1000 | 42.5 ± 3.8 c | 52.8 ± 4.3 a | 1.2 ± 0.4 d | 37.9 ± 3.2 d |
| Treatment | NAA Concentration /mg·L−1 | PBZ Concentration /mg·L−1 | FA Concentration /mg·L−1 | Rooting Percentage /% | Rooting Time /d | Root Number Per Plant />2 cm | Nursery Survival Percentage /% | Field Survival Percentage /% |
|---|---|---|---|---|---|---|---|---|
| CT | 200 | 0 | 0 | 52.5 ± 3.6 d | 45.0 ± 1.7 a | 2.0 ± 0.5 c | 55.2 ± 3.7 c | 68.5 ± 4.2 b |
| PBZ | 200 | 100 | 0 | 78.8 ± 2.9 a | 31.6 ± 3.8 c | 1.9 ± 0.8 c | 54.8 ± 3.3 c | 70.2 ± 5.6 b |
| FA | 200 | 0 | 200 | 61.5 ± 2.1 c | 38.2 ± 2.9 b | 8.2 ± 2.6 a | 88.9 ± 2.6 a | 97.3 ± 2.1 a |
| PBZ + FA | 200 | 100 | 200 | 70.6 ± 3.6 b | 36.7 ± 2.8 b | 5.8 ± 1.4 b | 80.2 ± 2.5 b | 95.8 ± 2.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yao, R. Unveiling the GA4-Ferulic Acid Regulatory Axis: Redox-Mediated Suberization Governs Adventitious Rooting Recalcitrance in Pinus massoniana. Plants 2025, 14, 3246. https://doi.org/10.3390/plants14213246
Wang Y, Yao R. Unveiling the GA4-Ferulic Acid Regulatory Axis: Redox-Mediated Suberization Governs Adventitious Rooting Recalcitrance in Pinus massoniana. Plants. 2025; 14(21):3246. https://doi.org/10.3390/plants14213246
Chicago/Turabian StyleWang, Yin, and Ruiling Yao. 2025. "Unveiling the GA4-Ferulic Acid Regulatory Axis: Redox-Mediated Suberization Governs Adventitious Rooting Recalcitrance in Pinus massoniana" Plants 14, no. 21: 3246. https://doi.org/10.3390/plants14213246
APA StyleWang, Y., & Yao, R. (2025). Unveiling the GA4-Ferulic Acid Regulatory Axis: Redox-Mediated Suberization Governs Adventitious Rooting Recalcitrance in Pinus massoniana. Plants, 14(21), 3246. https://doi.org/10.3390/plants14213246

