Duckweed’s Effects on Rice Yield and Quality Varied with Fertilizer Applications
Abstract
1. Introduction
2. Results
2.1. Effect of Duckweed Coverage on Grain Yield Under Different Fertilizer Applications
2.2. Effect of Duckweed Coverage on Grain Quality Under Different Fertilizer Applications
2.2.1. Processing Quality
2.2.2. Appearance Quality
2.3. Cooking and Eating Quality
2.4. Nutritional Quality
3. Discussion
3.1. Fertilizer Application on Rice Yield: Organic Fertilizer vs. Chemical Fertilizer
3.2. Fertilizer Application on Rice Quality: Organic Fertilizer vs. Chemical Fertilizer
3.3. Fertilizer-by-Duckweed Interaction on Rice Yield
3.4. Fertilizer-by-Duckweed Interaction on Rice Quality
3.5. Study Limitations
4. Materials and Methods
4.1. Experimental Site and Design
4.2. Crop Cultivation
4.3. Fertilizer Application
4.4. Sampling and Parameter Measurements
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NF | no fertilizer application |
CF | chemical fertilizer |
COF | two-thirds of the chemical fertilizer and one-third of the organic fertilizer |
OF | organic fertilizer |
References
- Ziegler, P.; Appenroth, K.J.; Sree, K.S. Survival strategies of duckweeds, the world’s smallest angiosperms. Plants 2023, 12, 2215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, H.; Pan, J.; Luo, J.; Liu, J.; Gu, B.; Liu, S.; Zhai, L.; Lindsey, S.; Zhang, Y.; et al. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agric. Ecosyst. Environ. 2018, 265, 8–14. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, X.; Wei, X.; Kai, Z.; Xu, Y. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 2021, 11, 23015. [Google Scholar] [CrossRef]
- Jing, L.Q.; Li, F.; Zhao, Y.H.; Wang, X.K.; Zhao, F.C.; Lai, S.K.; Sun, X.L.; Wang, Y.X.; Yang, L.X. Research progress on the carbon and nitrogen sink of duckweed growing in paddy and its effects on rice yield. Sci. Agric. Sin. 2023, 56, 4717–4728. (In Chinese) [Google Scholar] [CrossRef]
- Sun, H.; Dan, A.; Feng, Y.; Vithanage, M.; Mandal, S.; Shaheen, S.M.; Rinklebe, J.; Shi, W.; Wang, H. Floating duckweed mitigated ammonia volatilization and increased grain yield and nitrogen use efficiency of rice in biochar amended paddy soils. Chemosphere 2019, 237, 124532. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Y.; Ji, H.T.; Liu, H.J.; Feng, Y.F.; Zhang, Y.F.; Chen, L.G.; Guo, Z. Nitrogen fertilizer reduction in combination with Azolla cover for reducing ammonia volatilization and improving nitrogen use efficiency of rice. PeerJ 2021, 9, e11077. [Google Scholar] [CrossRef]
- Liu, W.X.; Xu, J.Z.; Li, Y.W.; Liu, X.Y.; Gao, N.; Ahmed, Z.; Peng, Y.H.; Liang, H.; Jiang, Q.J.; He, Y. Alternating wet and dry irrigation cycles enhance the nitrogen “cache” function of duckweed in a rice-duckweed system. Agric. Ecosyst. Environ. 2024, 369, 109044. [Google Scholar] [CrossRef]
- Li, H.; Liang, X.; Lian, Y.; Xu, L.; Chen, Y. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields. Soil Sci. Soc. Am. J. 2009, 73, 1890–1895. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zhao, M.; Zeng, K.; Yin, B. Duckweed (Spirodela polyrhiza) as green manure for increasing yield and reducing nitrogen loss in rice production. Field Crops Res. 2017, 214, 273–282. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Guo, B.; Liu, C.; Liu, J.; Qiu, G.; Fu, Q.; Li, H. Alleviation of aqueous nitrogen loss from paddy fields by growth and decomposition of duckweed (Lemna minor L.) after fertilization. Chemosphere 2023, 311, 137073. [Google Scholar] [CrossRef]
- Luo, J.; Hu, S.; Li, T.; He, F.; Tian, C.; Han, Y.; Mao, Y.; Jing, L.; Yang, L.; Wang, Y. A preliminary study of the impacts of duckweed coverage during rice growth on grain yield and quality. Plants 2024, 13, 57. [Google Scholar] [CrossRef]
- He, L.; Sun, Z.; Yang, H. Effect of duckweed on rice in paddy field. Chin. Southern Agric. Mach. 2017, 48, 46–51. (In Chinese) [Google Scholar]
- Shin, J.H.; Han, C.M.; Kwon, J.B.; Won, J.G. Effects of Azolla incorporation during paddy cultivation on weed control, nitrogen supply and rice yield. Korean J. Crop Sci. 2021, 66, 271–278. (In Korean) [Google Scholar] [CrossRef]
- Peng, S.B.; Tang, Q.Y.; Zhou, Y.B. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Walia, M.K.; Gupta, R.K.; Singh, R.; Dhaliwal, M.K. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: A review. J. Plant Nutr. 2019, 42, 2873–2900. [Google Scholar] [CrossRef]
- Pan, G.; Zhou, P.; Li, Z.; Li, Z.; Smith, P.; Li, L.; Qiu, D.; Zhang, X.; Xu, X.; Shen, S.; et al. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric. Ecosyst. Environ. 2009, 131, 274–280. [Google Scholar] [CrossRef]
- Fernandez Pulido, C.R.; Femeena, P.V.; Brennan, R.A. Nutrient cycling with duckweed for the fertilization of root, fruit, leaf, and grain crops: Impacts on plant–soil–leachate systems. Agriculture 2024, 14, 188. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Timsina, J. Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef]
- Pang, X.; Letey, J. Organic farming: Challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef]
- Moe, K.; Moh, S.M.; Htwe, A.Z.; Kajihara, Y.; Yamakawa, T. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci. 2019, 26, 309–318. [Google Scholar] [CrossRef]
- Kakar, K.; Xuan, T.D.; Noori, Z.; Aryan, S.; Gulab, G. Effects of organic and inorganic fertilizer application on growth, yield, and grain quality of rice. Agriculture 2020, 10, 544. [Google Scholar] [CrossRef]
- Kakar, K.; Nitta, Y.; Asagi, N.; Komatsuzaki, M.; Shiotau, F.; Kokubo, T.; Xuan, T.D. Morphological analysis on comparison of organic and chemical fertilizers on grain quality of rice at different planting densities. Plant Prod. Sci. 2019, 22, 510–518. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, L.; Wang, W.; Xu, Y.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; Yang, J. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level. J. Sci. Food Agric. 2022, 102, 1832–1841. [Google Scholar] [CrossRef]
- Bergman, C.; Pandhi, M. Organic rice production practices: Effects on grain end-use quality, healthfulness, and safety. Foods. 2023, 12, 73. [Google Scholar] [CrossRef]
- Gu, J.; Chen, J.; Chen, L.; Wang, Z.; Zhang, H.; Yang, J. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop J. 2015, 3, 285–297. [Google Scholar] [CrossRef]
- Cheng, B.; Jiang, Y.; Cao, C.G. Balance rice yield and eating quality by changing the traditional nitrogen management for sustainable production in China. J. Clean. Prod. 2021, 312, 127793. [Google Scholar] [CrossRef]
- Kasem, S.; Waters, D.L.E.; Rice, N.F.; Shapter, F.M.; Henry, R.J. The endosperm morphology of rice and its wild relatives as observed by scanning electron microscopy. Rice 2011, 4, 12–20. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Z.; Deng, S.; Ning, H.; Yang, X.; Lin, Z.; Li, G.; Wang, Q.; Wang, S.; Ding, Y. Occurrence of perfect and imperfect grains of six japonica rice cultivars as affected by nitrogen fertilization. Plant Soil 2011, 349, 191–202. [Google Scholar] [CrossRef]
- Fei, L.; Yang, S.; Ma, A.; Lunzhu, C.; Wang, M.; Wang, G.; Guo, S. Grain chalkiness is reduced by coordinating the biosynthesis of protein and starch in fragrant rice (Oryza sativa L.) grain under nitrogen fertilization. Field Crops Res. 2023, 302, 109098. [Google Scholar] [CrossRef]
- Balindong, J.L.; Ward, R.M.; Liu, L.; Rose, T.J.; Pallas, L.A.; Ovenden, B.W.; Snell, P.J.; Waters, D.L. Rice grain protein composition influences instrumental measures of rice cooking and eating quality. J. Cereal Sci. 2018, 79, 35–42. [Google Scholar] [CrossRef]
- Jing, L.; Wang, X.; Zhao, Y.; Li, F.; Su, Y.; Cai, Y.; Zhao, F.; Dong, G.; Yang, L.; Wang, Y. Impact of duckweed (Lemna minor L.) growing in paddy fields on rice yield and its underlying causes. Agronomy 2024, 14, 726. [Google Scholar] [CrossRef]
- Hong, C.; Wang, Z.; Wang, Y.; Zong, X.; Qiang, X.; Li, Q.; Shaghaleh, H.; Alhaj, H.Y.; Guo, X. Response of duckweed to different irrigation modes under different fertilizer types and rice varieties: Unlocking the potential of duckweed (Lemna minor L.) in rice cultivation as “fertilizer capacitors”. Agric. Water Manag. 2024, 292, 108681. [Google Scholar] [CrossRef]
- Liu, W.; Tang, J.; Zhang, D.; Jiang, X.; Lu, B.; Yang, W. Improvement of straw decomposition and rice growth through co-application of straw-decomposing inoculants and ammonium nitrogen fertilizer. BMC Plant Biol. 2023, 23, 244. [Google Scholar] [CrossRef] [PubMed]
- Amare, E.; Kebede, F.; Berihu, T.; Mulat, W. Field-based investigation on phytoremediation potentials of Lemna minor and Azolla filiculoides in tropical, semiarid regions: Case of Ethiopia. Int. J. Phytoremediat. 2018, 20, 965–972. [Google Scholar] [CrossRef]
- Lahive, E.; O’Callaghan, M.J.A.; Jansen, M.A.K.; O’Halloran, J. Uptake and partitioning of zinc in Lemnaceae. Ecotoxicology 2011, 20, 1992–2002. [Google Scholar] [CrossRef]
- Tatar, S.; Obek, E.; Arslan Topal, E.I.; Topal, M. Uptake of some elements with aquatic plants exposed to the effluent of wastewater treatment plant. Pollution 2019, 5, 377–386. [Google Scholar]
- Stewart, J.J.; Adams, W.W., III; López-Pozo, M.; Doherty Garcia, N.; McNamara, M.; Escobar, C.M.; Demmig-Adams, B. Features of the duckweed Lemna that support rapid growth under extremes of light intensity. Cells 2021, 10, 1481. [Google Scholar] [CrossRef]
- Mi, W.H.; Sun, T.; Ma, Y.Y.; Chen, C.; Ma, Q.X.; Wu, L.H.; Wu, Q.C.; Xu, Q. Higher yield sustainability and soil quality by manure amendment than straw returning under a single-rice cropping system. Field Crops Res. 2023, 292, 108805. [Google Scholar] [CrossRef]
- Zhou, X.D.; Zhou, J.; Wang, Y.X.; Peng, B.; Zhu, J.G.; Yang, L.X.; Wang, Y.L. Elevated tropospheric ozone increased grain protein and amino acids contents of a hybrid rice without manipulation by planting density. J. Sci. Food Agric. 2015, 95, 72–78. [Google Scholar] [CrossRef] [PubMed]
Fertilizer Treatment | Duckweed Treatment | Panicle Number (m−2) | Spikelet Number per Panicle | Filled-Grain Percentage (%) | Individual Grain Weight (mg) | Grain Yield (kg ha−1) |
---|---|---|---|---|---|---|
NF | Control | 116.9 ± 0.0 | 173.6 ± 9.5 | 92.6 ± 2.4 | 26.1 ± 0.1 | 4864 ± 187.1 |
Duckweed | 142.0 ± 0.0 ** | 170.4 ± 6.1 | 93.6 ± 1.4 | 26.8 ± 0.8 | 6033 ± 192.5 * | |
CF | Control | 328.6 ± 2.8 | 182.6 ± 12.9 | 81.2 ± 2.2 | 24.7 ± 0.4 | 11,994 ± 337.7 |
Duckweed | 325.8 ± 0.0 | 175.3 ± 5.7 | 83.8 ± 1.6 | 25.0 ± 0.4 | 11,945 ± 391.3 | |
COF | Control | 298.0 ± 2.8 | 190.3 ± 6.9 | 77.4 ± 4.6 | 25.0 ± 0.2 | 9358 ± 403.1 |
Duckweed | 375.9 ± 0.0 ** | 172.6 ± 8.6 | 77.1 ± 3.1 | 24.5 ± 0.4 | 10,129 ± 399.8 | |
OF | Control | 192.2 ± 0.0 | 189.4 ± 9.8 | 94.8 ± 0.5 | 27.3 ± 0.3 | 10,920 ± 407.9 |
Duckweed | 256.2 ± 2.8 ** | 186.3 ± 17.1 | 83.1 ± 3.0 * | 26.1 ± 0.9 | 12,129 ± 429.2 | |
ANOVA results | ||||||
Fertilizer | <0.001 | 0.502 | <0.001 | 0.002 | <0.001 | |
Duckweed | <0.001 | 0.295 | 0.283 | 0.533 | 0.007 | |
Fertilizer × Duckweed | <0.001 | 0.876 | 0.057 | 0.275 | 0.295 |
Fertilizer Treatment | Duckweed Treatment | Brown Rice Percentage (%) | Milled Rice Percentage (%) | Head Rice Percentage (%) |
---|---|---|---|---|
NF | Control | 82.8 ± 0.2 | 73.1 ± 0.2 | 65.4 ± 0.6 |
Duckweed | 82.8 ± 0.3 | 73.1 ± 0.4 | 69.3 ± 1.0 | |
CF | Control | 83.6 ± 0.5 | 72.7 ± 1.1 | 68.8 ± 0.8 |
Duckweed | 83.0 ± 0.7 | 71.9 ± 1.0 | 68.2 ± 1.6 | |
COF | Control | 83.1 ± 0.3 | 71.5 ± 0.5 | 67.7 ± 0.6 |
Duckweed | 82.6 ± 0.7 | 71.3 ± 1.3 | 67.1 ± 1.3 | |
OF | Control | 83.8 ± 0.1 | 74.1 ± 0.2 | 69.6 ± 0.8 |
Duckweed | 84.0 ± 0.1 | 73.5 ± 0.1 * | 68.7 ± 1.2 | |
ANOVA results | ||||
Fertilizer | 0.132 | 0.039 | 0.465 | |
Duckweed | 0.130 | 0.074 | 0.414 | |
Fertilizer × Duckweed | 0.339 | 0.501 | 0.027 |
Fertilizer Treatment | Duckweed Treatment | Weight Ratio of Immature Grain (%) | Length (mm) | Width (mm) | Length–Width Ratio (L/W) | Ym | White Degree |
---|---|---|---|---|---|---|---|
NF | Control | 6.5 ± 0.5 | 5.26 ± 0.01 | 2.65 ± 0.02 | 1.98 ± 0.02 | 48.2 ± 0.6 | 16.0 ± 0.4 |
Duckweed | 7.2 ± 0.3 | 5.28 ± 0.01 * | 2.62 ± 0.00 | 2.02 ± 0.01 | 48.4 ± 0.6 | 16.1 ± 0.3 | |
CF | Control | 8.1 ± 1.5 | 5.32 ± 0.01 | 2.71 ± 0.02 | 1.97 ± 0.01 | 49.9 ± 0.5 | 15.0 ± 0.2 |
Duckweed | 10.0 ± 1.2 | 5.39 ± 0.02 * | 2.72 ± 0.01 | 1.98 ± 0.00 | 51.0 ± 0.6 | 14.5 ± 0.3 | |
COF | Control | 11.1 ± 0.4 | 5.36 ± 0.03 | 2.72 ± 0.01 | 1.97 ± 0.00 | 51.4 ± 0.6 | 14.0 ± 0.3 |
Duckweed | 10.7 ± 1.4 | 5.45 ± 0.04 | 2.76 ± 0.02 | 1.98 ± 0.01 | 51.3 ± 0.2 | 14.3 ± 0.1 | |
OF | Control | 5.0 ± 0.4 | 5.38 ± 0.02 | 2.72 ± 0.01 | 1.98 ± 0.00 | 48.0 ± 0.1 | 16.3 ± 0.0 |
Duckweed | 8.1 ± 0.4 ** | 5.41 ± 0.01 * | 2.74 ± 0.01 | 1.98 ± 0.00 | 48.5 ± 0.3 | 16.1 ± 0.2 | |
ANOVA results | |||||||
Fertilizer | 0.023 | 0.012 | 0.002 | 0.025 | 0.007 | 0.003 | |
Duckweed | 0.023 | <0.001 | 0.106 | 0.031 | 0.072 | 0.347 | |
Fertilizer × Duckweed | 0.132 | 0.047 | 0.009 | 0.164 | 0.227 | 0.161 |
Fertilizer Treatment | Duckweed Treatment | Length (mm) | Width (mm) | Length–Width Ratio (L/W) | Chalky-Grain Percentage (%) | Chalkiness Degree (%) | Ym | White Degree |
---|---|---|---|---|---|---|---|---|
NF | Control | 4.86 ± 0.02 | 2.59 ± 0.02 | 1.87 ± 0.01 | 67.9 ± 1.2 | 25.1 ± 1.7 | 15.9 ± 0.1 | 39.5 ± 0.1 |
Duckweed | 4.85 ± 0.02 | 2.56 ± 0.01 | 1.90 ± 0.01 | 79.4 ± 1.8 * | 32.6 ± 1.9 | 16.0 ± 0.1 | 40.0 ± 0.3 | |
CF | Control | 4.93 ± 0.01 | 2.63 ± 0.01 | 1.87 ± 0.00 | 44.9 ± 5.8 | 13.8 ± 2.3 | 17.8 ± 0.3 | 37.2 ± 0.4 |
Duckweed | 5.00 ± 0.02 * | 2.67 ± 0.01 ** | 1.87 ± 0.01 | 29.8 ± 7.5 * | 9.2 ± 2.6 * | 19.4 ± 0.9 | 35.5 ± 1.1 | |
COF | Control | 4.95 ± 0.01 | 2.66 ± 0.01 | 1.87 ± 0.01 | 32.7 ± 11.7 | 10.1 ± 3.6 | 18.9 ± 1.1 | 36.0 ± 1.3 |
Duckweed | 5.01 ± 0.03 | 2.67 ± 0.02 | 1.88 ± 0.01 | 24.0 ± 5.5 | 7.9 ± 1.7 | 20.0 ± 0.9 * | 35.0 ± 1.0 | |
OF | Control | 4.98 ± 0.02 | 2.64 ± 0.01 | 1.88 ± 0.00 | 68.8 ± 2.1 | 22.6 ± 0.8 | 16.6 ± 0.2 | 38.8 ± 0.2 |
Duckweed | 5.00 ± 0.02 | 2.66 ± 0.01 | 1.88 ± 0.01 | 63.9 ± 3.4 | 21.6 ± 1.7 | 16.6 ± 0.3 | 38.9 ± 0.3 | |
ANOVA results | ||||||||
Fertilizer | 0.004 | 0.001 | 0.256 | 0.003 | 0.001 | 0.014 | 0.009 | |
Duckweed | 0.018 | 0.041 | 0.244 | 0.071 | 0.925 | 0.006 | 0.023 | |
Fertilizer × Duckweed | 0.152 | 0.011 | 0.179 | 0.010 | 0.007 | 0.042 | 0.022 |
Fertilizer Treatment | Duckweed Treatment | Amylose Content (%) | Peak Viscosity (cP) | Hot Viscosity (cP) | Breakdown (cP) | Final Viscosity (cP) | Setback (cP) | Peak Time (min) | Pasting Temperature (°C) |
---|---|---|---|---|---|---|---|---|---|
NF | Control | 11.6 ± 0.8 | 4675 ± 38 | 2283 ± 32 | 2393 ± 42 | 3306 ± 20 | −1369 ± 18 | 5.78 ± 0.02 | 71.98 ± 0.46 |
Duckweed | 10.5 ± 0.2 | 4813 ± 130 | 2144 ± 138 | 2669 ± 69 | 3038 ± 117 | −1775 ± 98 * | 5.69 ± 0.04 * | 72.03 ± 0.02 | |
CF | Control | 13.4 ± 0.3 | 4347 ± 49 | 1957 ± 27 | 2390 ± 62 | 2876 ± 29 | −1471 ± 48 | 5.71 ± 0.02 | 70.97 ± 0.24 |
Duckweed | 13.2 ± 0.3 | 4250 ± 161 | 2147 ± 131 | 2104 ± 31 * | 3068 ± 121 | −1183 ± 44 ** | 5.89 ± 0.02 * | 71.97 ± 0.43 | |
COF | Control | 13.0 ± 0.4 | 4322 ± 146 | 2072 ± 86 | 2249 ± 62 | 2970 ± 113 | −1352 ± 62 | 5.75 ± 0.02 | 70.93 ± 0.72 |
Duckweed | 13.4 ± 0.4 | 4058 ± 207 | 1827 ± 144 | 2231 ± 63 | 2670 ± 186 | −1388 ± 24 | 5.62 ± 0.05 | 70.18 ± 0.94 | |
OF | Control | 12.1 ± 0.2 | 4482 ± 203 | 2034 ± 122 | 2449 ± 122 | 2963 ± 136 | −1519 ± 130 | 5.71 ± 0.06 | 70.68 ± 0.54 |
Duckweed | 13.2 ± 0.4 | 4544 ± 92 | 2225 ± 103 * | 2320 ± 12 | 3082 ± 106 | −1463 ± 16 | 5.73 ± 0.04 | 71.52 ± 0.51 ** | |
ANOVA results | |||||||||
Fertilizer | 0.014 | 0.019 | 0.043 | 0.017 | 0.032 | 0.061 | 0.015 | 0.322 | |
Duckweed | 0.880 | 0.551 | 0.989 | 0.393 | 0.248 | 0.596 | 0.887 | 0.127 | |
Fertilizer × Duckweed | 0.077 | 0.208 | 0.071 | 0.011 | 0.019 | 0.004 | 0.019 | 0.021 |
Fertilizer Treatment | Duckweed Treatment | Overall Palatability Index | Luster | Hardness | Stickiness | Balance Degree |
---|---|---|---|---|---|---|
NF | Control | 69.3 ± 3.8 | 6.6 ± 0.6 | 6.4 ± 0.4 | 6.4 ± 0.5 | 6.5 ± 0.6 |
Duckweed | 82.0 ± 3.1 * | 8.4 ± 0.4 * | 5.4 ± 0.3 * | 8.2 ± 0.3 * | 8.4 ± 0.4 * | |
CF | Control | 71.0 ± 2.5 | 6.8 ± 0.4 | 6.2 ± 0.2 | 6.5 ± 0.4 | 6.8 ± 0.4 |
Duckweed | 63.0 ± 2.0 ** | 5.5 ± 0.3 ** | 6.9 ± 0.1 * | 5.5 ± 0.5 | 5.5 ± 0.3 ** | |
COF | Control | 61.7 ± 2.6 | 5.4 ± 0.4 | 6.9 ± 0.1 | 5.3 ± 0.5 | 5.3 ± 0.4 |
Duckweed | 70.0 ± 0.6 | 6.7 ± 0.1 | 6.3 ± 0.1 | 6.3 ± 0.2 | 6.6 ± 0.2 | |
OF | Control | 75.3 ± 2.3 | 7.5 ± 0.4 | 5.9 ± 0.2 | 7.2 ± 0.4 | 7.4 ± 0.4 |
Duckweed | 75.0 ± 1.5 | 7.5 ± 0.3 | 5.9 ± 0.2 | 7.2 ± 0.3 | 7.4 ± 0.3 | |
ANOVA results | ||||||
Fertilizer | 0.034 | 0.033 | 0.068 | 0.025 | 0.033 | |
Duckweed | 0.035 | 0.055 | 0.045 | 0.096 | 0.064 | |
Fertilizer × Duckweed | 0.002 | 0.002 | 0.001 | 0.021 | 0.003 |
Fertilizer Treatment | Duckweed Treatment | Essential Amino Acid | Non-Essential Amino Acid | Total Amino Acid |
---|---|---|---|---|
NF | Control | 20.42 ± 1.32 | 38.72 ± 2.56 | 59.14 ± 3.87 |
Duckweed | 18.11 ± 0.92 * | 34.10 ± 1.99 * | 52.21 ± 2.91 * | |
CF | Control | 22.86 ± 0.94 | 41.00 ± 0.94 | 63.86 ± 1.64 |
Duckweed | 23.14 ± 0.64 | 44.29 ± 1.23 | 67.43 ± 1.87 | |
COF | Control | 22.29 ± 1.18 | 41.50 ± 1.87 | 63.78 ± 3.01 |
Duckweed | 21.63 ± 0.11 | 41.74 ± 0.38 | 63.37 ± 0.48 | |
OF | Control | 19.86 ± 0.21 | 37.70 ± 0.33 | 57.56 ± 0.54 |
Duckweed | 21.42 ± 0.86 | 39.20 ± 0.66 | 60.62 ± 1.33 | |
ANOVA results | ||||
Fertilizer | 0.054 | 0.032 | 0.036 | |
Duckweed | 0.597 | 0.902 | 0.891 | |
Fertilizer × Duckweed | 0.123 | 0.040 | 0.060 |
Fertilizer Treatment | Duckweed Treatment | Essential Amino Acid | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Thr | Val | Met | Ile | Leu | Phe | Lys | ||||
NF | Control | 2.15 ± 0.13 | 3.85 ± 0.25 | 1.12 ± 0.07 | 2.55 ± 0.19 | 5.28 ± 0.37 | 3.27 ± 0.20 | 2.20 ± 0.11 | ||
Duckweed | 1.91 ± 0.10 * | 3.39 ± 0.17 * | 0.97 ± 0.03 | 2.26 ± 0.12 | 4.67 ± 0.25 | 2.87 ± 0.19 * | 2.03 ± 0.07 * | |||
CF | Control | 2.28 ± 0.05 | 4.55 ± 0.31 | 1.67 ± 0.26 | 2.93 ± 0.14 | 5.67 ± 0.15 | 3.48 ± 0.16 | 2.27 ± 0.03 | ||
Duckweed | 2.40 ± 0.06 | 4.31 ± 0.09 | 1.15 ± 0.07 | 2.94 ± 0.07 | 6.06 ± 0.13 | 3.85 ± 0.13 | 2.44 ± 0.10 | |||
COF | Control | 2.29 ± 0.09 | 4.33 ± 0.35 | 1.31 ± 0.20 | 2.79 ± 0.15 | 5.69 ± 0.23 | 3.65 ± 0.15 | 2.23 ± 0.06 | ||
Duckweed | 2.21 ± 0.06 | 4.06 ± 0.04 | 1.12 ± 0.03 | 2.73 ± 0.00 | 5.69 ± 0.04 | 3.54 ± 0.03 | 2.28 ± 0.04 | |||
OF | Control | 2.07 ± 0.01 | 3.71 ± 0.05 | 1.05 ± 0.03 | 2.52 ± 0.03 | 5.12 ± 0.05 | 3.30 ± 0.05 | 2.09 ± 0.03 | ||
Duckweed | 2.13 ± 0.03 | 4.15 ± 0.29 | 1.34 ± 0.29 | 2.72 ± 0.14 | 5.45 ± 0.12 * | 3.41 ± 0.06 | 2.23 ± 0.06 | |||
ANOVA results | ||||||||||
Fertilizer | 0.030 | 0.103 | 0.308 | 0.055 | 0.038 | 0.019 | 0.146 | |||
Duckweed | 0.422 | 0.366 | 0.245 | 0.633 | 0.788 | 0.910 | 0.196 | |||
Fertilizer × Duckweed | 0.071 | 0.196 | 0.127 | 0.189 | 0.027 | 0.065 | 0.016 | |||
Fertilizer Treatment | Duckweed Treatment | Non-essential amino acid | ||||||||
Asp | Ser | Glu | Gly | Ala | Tyr | His | Arg | Pro | ||
NF | Control | 6.34 ± 0.35 | 3.08 ± 0.22 | 11.6 ± 0.85 | 2.96 ± 0.16 | 3.69 ± 0.17 | 2.15 ± 0.24 | 1.31 ± 0.10 | 5.34 ± 0.36 | 2.23 ± 0.14 |
Duckweed | 5.70 ± 0.42 * | 2.71 ± 0.13 | 10.1 ± 0.61 * | 2.68 ± 0.12 * | 3.24 ± 0.14 ** | 1.81 ± 0.14 | 1.14 ± 0.07 * | 4.73 ± 0.26 * | 1.99 ± 0.16 * | |
CF | Control | 6.86 ± 0.10 | 3.23 ± 0.10 | 12.1 ± 0.27 | 3.06 ± 0.06 | 3.80 ± 0.05 | 2.42 ± 0.11 | 1.35 ± 0.05 | 5.66 ± 0.17 | 2.50 ± 0.16 |
Duckweed | 7.22 ± 0.11 | 3.49 ± 0.08 | 13.2 ± 0.32 | 3.29 ± 0.08 | 4.09 ± 0.12 | 2.56 ± 0.25 | 1.49 ± 0.04 | 6.15 ± 0.22 | 2.83 ± 0.07 | |
COF | Control | 6.87 ± 0.32 | 3.33 ± 0.14 | 12.4 ± 0.51 | 3.16 ± 0.12 | 3.93 ± 0.13 | 2.31 ± 0.18 | 1.39 ± 0.07 | 5.74 ± 0.27 | 2.34 ± 0.14 |
Duckweed | 7.25 ± 0.41 | 3.01 ± 0.29 | 12.4 ± 0.06 | 3.12 ± 0.01 | 3.91 ± 0.03 | 2.42 ± 0.11 | 1.38 ± 0.02 | 5.81 ± 0.08 | 2.46 ± 0.01 | |
OF | Control | 6.01 ± 0.04 | 3.00 ± 0.03 | 11.2 ± 0.09 | 2.87 ± 0.03 | 3.54 ± 0.02 | 2.25 ± 0.06 | 1.25 ± 0.01 | 5.27 ± 0.06 | 2.37 ± 0.07 |
Duckweed | 6.31 ± 0.11 | 3.14 ± 0.04 | 11.7 ± 0.13 * | 2.99 ± 0.05 | 3.70 ± 0.02 * | 2.22 ± 0.12 | 1.32 ± 0.03 | 5.44 ± 0.10 | 2.43 ± 0.19 | |
ANOVA results | ||||||||||
Fertilizer | 0.048 | 0.060 | 0.044 | 0.044 | 0.028 | 0.040 | 0.060 | 0.037 | 0.035 | |
Duckweed | 0.502 | 0.494 | 0.988 | 0.856 | 0.954 | 0.811 | 0.825 | 0.789 | 0.426 | |
Fertilizer × Duckweed | 0.091 | 0.152 | 0.015 | 0.027 | 0.008 | 0.556 | 0.025 | 0.082 | 0.144 |
Fertilizer Treatment | Duckweed Treatment | Macro-Element Concentration | Micro-Element Concentration | ||||||
---|---|---|---|---|---|---|---|---|---|
Ca (g kg−1) | K (g kg−1) | Mg (g kg−1) | p (g kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Cu (mg kg−1) | Zn (mg kg−1) | ||
NF | Control | 0.10 ± 0.01 | 0.48 ± 0.01 | 0.18 ± 0.00 | 1.06 ± 0.01 | 19.11 ± 2.04 | 6.64 ± 0.17 | 3.61 ± 0.94 | 11.57 ± 0.43 |
Duckweed | 0.09 ± 0.00 | 0.50 ± 0.01 * | 0.18 ± 0.00 | 1.14 ± 0.04 | 20.15 ± 3.68 | 6.40 ± 0.02 | 2.13 ± 0.05 | 9.14 ± 0.16 * | |
CF | Control | 0.09 ± 0.00 | 0.59 ± 0.01 | 0.14 ± 0.00 | 1.10 ± 0.04 | 21.13 ± 1.29 | 7.52 ± 0.35 | 2.57 ± 0.18 | 8.11 ± 0.57 |
Duckweed | 0.09 ± 0.00 | 0.66 ± 0.06 | 0.14 ± 0.02 | 0.95 ± 0.07 | 21.33 ± 3.94 | 7.79 ± 0.62 | 1.99 ± 0.16 * | 6.98 ± 0.33 * | |
COF | Control | 0.09 ± 0.01 | 0.64 ± 0.05 | 0.13 ± 0.01 | 0.80 ± 0.06 | 17.46 ± 1.99 | 7.21 ± 0.33 | 2.85 ± 0.46 | 8.68 ± 0.60 |
Duckweed | 0.09 ± 0.01 | 0.66 ± 0.03 | 0.12 ± 0.01 | 0.84 ± 0.12 | 18.04 ± 3.32 | 6.70 ± 0.54 | 1.99 ± 0.30 * | 7.38 ± 0.68 * | |
OF | Control | 0.08 ± 0.00 | 0.50 ± 0.00 | 0.16 ± 0.00 | 1.01 ± 0.13 | 22.79 ± 5.49 | 6.35 ± 0.08 | 2.20 ± 0.22 | 9.41 ± 0.26 |
Duckweed | 0.09 ± 0.00 | 0.52 ± 0.00 * | 0.15 ± 0.00 * | 0.87 ± 0.10 | 27.39 ± 10.16 | 6.40 ± 0.05 | 1.74 ± 0.17 * | 8.16 ± 0.27 * | |
ANOVA results | |||||||||
Fertilizer | 0.264 | 0.012 | 0.004 | 0.063 | 0.400 | 0.151 | 0.158 | 0.007 | |
Duckweed | 0.894 | 0.054 | 0.205 | 0.190 | 0.505 | 0.463 | 0.014 | <0.001 | |
Fertilizer × Duckweed | 0.325 | 0.552 | 0.757 | 0.039 | 0.898 | 0.293 | 0.451 | 0.039 |
Fertilizer Treatments | Organic Fertilizer | Chemical Fertilizer | Total |
---|---|---|---|
No fertilizer (NF) | 0:0:0 | 0:0:0 | 0:0:0 |
Chemical fertilizer (CF) | 0:0:0 | 29:10:10 | 29:10:10 |
Mix (two-thirds of CF and one-third of organic fertilizer, COF) | 12.2:7.4:10.2 | 19.3:6.8:6.8 | 31.5:14.2:17.0 |
Organic fertilizer (OF) | 36.6:22.2:30.6 | 0:0:0 | 36.6:22.2:30.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Shi, G.; Luo, J.; Zhao, X.; Hu, S.; Hu, T.; Yang, L.; Wang, Y. Duckweed’s Effects on Rice Yield and Quality Varied with Fertilizer Applications. Plants 2025, 14, 2850. https://doi.org/10.3390/plants14182850
Zhao Y, Shi G, Luo J, Zhao X, Hu S, Hu T, Yang L, Wang Y. Duckweed’s Effects on Rice Yield and Quality Varied with Fertilizer Applications. Plants. 2025; 14(18):2850. https://doi.org/10.3390/plants14182850
Chicago/Turabian StyleZhao, Yipeng, Guizhi Shi, Jingsheng Luo, Xinyong Zhao, Shaowu Hu, Tingting Hu, Lianxin Yang, and Yunxia Wang. 2025. "Duckweed’s Effects on Rice Yield and Quality Varied with Fertilizer Applications" Plants 14, no. 18: 2850. https://doi.org/10.3390/plants14182850
APA StyleZhao, Y., Shi, G., Luo, J., Zhao, X., Hu, S., Hu, T., Yang, L., & Wang, Y. (2025). Duckweed’s Effects on Rice Yield and Quality Varied with Fertilizer Applications. Plants, 14(18), 2850. https://doi.org/10.3390/plants14182850