Ku2: A Novel Korean Purple-Green Tea Germplasm (Camellia sinensis) with Enhanced Polyphenols and Antioxidant Activity
Abstract
1. Introduction
2. Results
2.1. Phenotypic Characterization
2.2. Leaf Chlorophyll and Color Indices
2.3. Primary Non-Volatile Metabolites
2.4. Antioxidant Capacity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Growth Characteristics and Leaf Size Measurement
4.3. Determination of Chlorophylls Content and Color Index of Leaves
4.4. Quantitative Analysis of Leaf Components
4.4.1. Sample Preparation
4.4.2. Amino Acids
4.4.3. Total Polyphenols
4.4.4. Total Anthocyanins
4.4.5. Catechins
4.5. Measurement of Antioxidant Capacity
4.5.1. Preparation of 70% Ethanol Extract
4.5.2. Determination of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical-Scavenging Activity
4.5.3. Determination of 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical-Scavenging Activity
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DW | Dry weight |
GAE | Gallic acid equivalents |
EGCG | Epigallocatechin gallate |
EGC | Epigallocatechin |
ECG | Epicatechin gallate |
EC | Epicatechin |
DMSO | Dimethyl sulfoxide |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
References
- Zhang, L.; Ho, C.-T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef]
- Kumarihami, H.M.P.C.; Eun, U.O.; Atsushi, N.; Kwan, J.S. Comparative study on cross-compatibility between Camellia sinensis var. sinensis (China type) and C. sinensis var. assamica (Assam type) tea. Afr. J. Agric. Res. 2016, 11, 1092–1101. [Google Scholar] [CrossRef]
- Mondal, T.K. Micropropagation of tea (Camellia sinensis L.). In Micropropagation of Woody Trees and Fruits; Jain, S.M., Ishii, K., Eds.; Springer: Dordrecht, The Netherlands, 2003; Volume 75, pp. 671–719. [Google Scholar]
- Li, J.; Xiao, Y.; Zhou, X.; Liao, Y.; Wu, S.; Chen, J.; Qian, J.; Yan, Y.; Tang, J.; Zeng, L. Characterizing the cultivar-specific mechanisms underlying the accumulation of quality-related metabolites in specific Chinese tea (Camellia sinensis) germplasms to diversify tea products. Food Res. Int. 2022, 161, 111824. [Google Scholar] [CrossRef]
- Ban, Q.; Wang, X.; Pan, C.; Wang, Y.; Kong, L.; Jiang, H.; Xu, Y.; Wang, W.; Pan, Y.; Li, Y.; et al. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS ONE 2017, 12, e0188514. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, X.; Cui, H.; Zhao, Y. Biochemical and proteome analysis reveal different nutritional compound compositions and chloroplast development situations between purple-red and white-yellow tea plant cultivars. Horticulturae 2022, 8, 685. [Google Scholar] [CrossRef]
- Kilel, E.C.; Faraj, A.K.; Wanyoko, J.K.; Wachira, F.N.; Mwingirwa, V. Green tea from purple leaf coloured tea clones in Kenya—their quality characteristics. Food Chem. 2013, 141, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Yuan, H.; Hua, J.; Deng, Y.; Jiang, Y.; Wang, J. Contribution of addition theanine/sucrose on the formation of chestnut-like aroma of green tea. LWT 2020, 129, 109512. [Google Scholar] [CrossRef]
- Cheng, S.; Fu, X.; Liao, Y.; Xu, X.; Zeng, L.; Tang, J.; Li, J.; Lai, J.; Yang, Z. Differential accumulation of specialized metabolite l-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves. Food Chem. 2019, 15, 93–100. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, P.; Peng, H.; Li, W.; Yue, C.; Li, C. Analysis of quality-related nonvolatile metabolites in tea (Camellia sinensis) resources with different shoot colors. Eur. J. Hortic. Sci. 2022, 87, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Rana, A.; Gulati, A. Studies on quality of orthodox teas made from anthocyanin-rich tea clones growing in Kangra valley, India. Food Chem. 2015, 176, 357–366. [Google Scholar] [CrossRef]
- Wei, K.; Wang, L.; Zhang, Y.; Ruan, L.; Li, H.; Wu, L.; Xu, L.; Zhang, C.; Zhou, X.; Cheng, H.; et al. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. Plant J. 2019, 97, 825–840. [Google Scholar] [CrossRef]
- Yan, M.; Huang, X.; Xie, N.; Zhao, T.; Zhu, M.; Li, J.; Wang, K. Advances in purple tea research: Chemical compositions, anthocyanin synthesis and regulation, processing, and health benefits. Horticulturae 2024, 10, 50. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, P.; Wang, C.; Wu, Z. The research progress of main chemical constituents and functional activity in purple tea. Int. J. Food Sci. Nutr. 2021, 10, 24–32. [Google Scholar] [CrossRef]
- Chen, L.; Apostolides, Z.; Chen, Z.-M. Global Tea Breeding: Achievements, Challenges and Perspectives; Zhejiang University Press: Zhejiang, China; Springer: Berlin/Heidelberg, Germany, 2012; pp. 263–288. [Google Scholar]
- Lee, D.-J.; Kim, J.-H.; Lee, T.-H.; Park, M.-E.; Ahn, B.-O.; Lee, S.-J.; Cho, J.-Y.; Kim, C.-K. Selection of catechin biosynthesis-related genes and functional analysis from chromosome-level genome assembly in C. sinensis L. variety ‘Sangmok’. Int. J. Mol. Sci. 2024, 25, 3634. [Google Scholar] [CrossRef]
- Moon, D.-G.; Kwon, Y.-S.; Lee, S.J.; Kwon, Y.H.; Song, E.Y.; Kim, B.-H. Comparison of amino acid and catechins contents of tea plants germplasm with yellow leaves and green leaves at the first harvest time. Korean Tea Soc. 2023, 29, 72–81. [Google Scholar] [CrossRef]
- Kwon, Y.-S.; Kim, S.J.; Hong, H.R.; Kim, B.-H.; Song, E.Y.; Kim, C.H.; Chen, L.; Moon, D.-G. Morphological and biochemical characteristics of a novel albino tea cultivar (Camellia sinensis ‘Geumda’). Horticulturae 2025, 11, 747. [Google Scholar] [CrossRef]
- Berg, R.v.d.; Haenen, G.R.M.M.; Berg, H.v.d.; Bast, A. Applicability of an improved trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Shim, D.; Jeon, S.H.; Kim, J.C.; Yoon, D.-K. Comparative phylogenetic analysis of ancient korean tea “Hadong Cheon-Nyeon Cha (Camellia sinensis var. sinensis)” using complete chloroplast genome sequences. Curr. Issues Mol. Biol. 2024, 46, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kitagawa, S.; Murai, K. Identification of a gene inducing flower in Camellia sinensis. In Proceedings of the 5th international Conference on O-CHA(Tea) Culture and Science, Shizuoka, Japan, 6–8 November 2013. [Google Scholar]
- Takahashi, T.; Yanase, Y. Studies on flower bud differentiation in the tea plant (Part 3). Chagyo Kenkyu Hokoku (Tea Res. J.) 1960, 1960, 6–12. [Google Scholar] [CrossRef]
- Luo, Q.; Luo, L.; Zhao, J.; Wang, Y.; Luo, H. Biological potential and mechanisms of tea’s bioactive compounds: An updated review. J. Adv. Res. 2024, 65, 345–363. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-H.; Ye, Y.; Yin, J.-F.; Jin, J.; Liang, Y.-R.; Liu, R.-Y.; Tang, P.; Xu, Y.-Q. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci. Technol. 2022, 123, 130–143. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, F.; Qin, L.; Zhang, N.; Cao, Q.; Schwab, W.; Li, D.; Song, C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J. Food Compos. Anal. 2019, 77, 28–38. [Google Scholar] [CrossRef]
- Samanta, T.; Cheeni, V.; Das, S.; Roy, A.B.; Ghosh, B.C.; Mitra, A. Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea. J. Food Sci. Technol. 2015, 52, 2387–2393. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Milacic, V.; Chen, M.S.; Wan, S.B.; Lam, W.H.; Huo, C.; Landis-Piwowar, K.R.; Cui, Q.C.; Wali, A.; Chan, T.H.; et al. Tea polyphenol, their biological effect and potential molecular targets. Histol. Histopathol. 2008, 23, 487–496. [Google Scholar] [CrossRef]
- Wang, C.; Han, J.; Pu, Y.; Wang, X. Tea (Camellia sinensis): A review of nutritional composition, potential applications, and omics research. Appl. Sci. 2022, 12, 5874. [Google Scholar] [CrossRef]
- LIczbiński, P.; Bukowska, B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Ind. Crops Prod. 2022, 175, 114265. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Li, Y.; Ding, Z.; Shen, J.; Wang, Y.; Zhao, L.; Xu, M. The identification and evaluation of two different color variations of tea. J. Sci. Food Agric. 2016, 96, 4951–4961. [Google Scholar] [CrossRef]
- Wei, K.; Zhang, Y.; Wu, L.; Li, H.; Ruan, L.; Bai, P.; Zhang, C.; Zhang, F.; Xu, L.; Wang, L.; et al. Gene expression analysis of bud and leaf color in tea. Plant Physiol. Biochem. 2016, 107, 310–318. [Google Scholar] [CrossRef]
- Wang, L.; Yue, C.; Cao, H.; Zhou, Y.; Zeng, J.; Yang, Y.; Wang, X. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. BMC Plant Biol. 2014, 14, 352. [Google Scholar] [CrossRef] [PubMed]
- Krahe, J.C.; Krahe, M.A.; Roach, P.D. Development of an objective measure of quality and commercial value of Japanese-styled green tea (Camellia L. sinensis): The Quality Index Tool. J. Food Sci. Technol. 2018, 55, 2926–2934. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, C.; Liu, S.; Yang, L. The galloyl catechins contributing to main antioxidant capacity of tea made from Camellia sinensis in China. Sci. World J. 2014, 2014, 863984. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of the antioxidant capacity of food products: Methods, applications and limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Apetrei, I.G.M.C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. and Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Characteristics | Phenotypes | Score | Ku2 | SM | |
---|---|---|---|---|---|
1 (*) 1 QN 2 | Plant: vigor | Weak | 3 | 7 | 5 |
Middle | 5 | ||||
Strong | 7 | ||||
2 (*) PQ 3 | Plant: type | Shrub | 1 | 1 | 1 |
Semi-arbor | 2 | ||||
Arbor | 3 | ||||
3 (*) QN | Plant: growth habit | Upright | 1 | 3 | 3 |
Semi-upright | 3 | ||||
Spreading | 5 | ||||
4 QN | Plant: density of branches | Sparse | 3 | 7 | 3 |
Medium | 5 | ||||
Dense | 7 | ||||
5 QL 4 | Branch: zigzagging | Absent | 1 | 1 | 1 |
Present | 9 | ||||
6 PQ | Young shoot: color of second leaf at ‘two and a bud’ stage | White | 1 | 6 | 4 |
Yellow | 2 | ||||
Yellow-green | 3 | ||||
Light green | 4 | ||||
Middle green | 5 | ||||
Purple-green | 6 | ||||
7 (*) QL | Young shoot: pubescence of a bud | Absent | 1 | 9 | 9 |
Present | 9 | ||||
8 QN | Young shoot: density of pubescence of a bud | Sparse | 3 | 3 | 3 |
Medium | 5 | ||||
Dense | 7 | ||||
9 QL | Young shoot: anthocyanin coloration at base of the petioles | Absent | 1 | 2 | 1 |
Present | 9 | ||||
10 (*) QN | Young shoot: length of ‘three and a bud’ | Short | 3 | 3 | 5 |
Medium | 5 | ||||
Long | 7 | ||||
11 (*) QN | Leaf blade: attitude | Upwards | 1 | 1 | 3 |
Outwards | 3 | ||||
Downwards | 5 | ||||
12 (*) QN | Leaf blade: length | Short | 3 | 7 | 5 |
Medium | 5 | ||||
Long | 7 | ||||
13 (*) QN | Leaf blade: width | Narrow | 3 | 3 | 5 |
Medium | 5 | ||||
Broad | 7 | ||||
14 QN | Leaf blade: shape | Very narrow elliptic | 1 | 3 | 3 |
Narrow elliptic | 2 | ||||
Medium elliptic | 3 | ||||
Wide elliptic | 4 | ||||
15 QN | Leaf blade: intensity of green color | Light | 3 | 3 | 7 |
Medium | 5 | ||||
Dark | 7 | ||||
16 QN | Leaf blade: shape in cross-section | Folded upwards | 1 | 1 | 2 |
Flat | 2 | ||||
Recurved | 3 | ||||
17 QN | Leaf blade: texture of upper surface | Smooth or weakly rugose Moderately rugose Strongly rugose | 3 5 7 | 5 | 3 |
18 PQ | Leaf blade: shape of apex | Obtuse | 1 | 2 | 2 |
Acute | 2 | ||||
Acuminate | 3 | ||||
19 QN | Leaf blade: undulation of margin | Absent or weak | 3 | 3 | 3 |
Medium | 5 | ||||
Strong | 7 | ||||
20 QN | Leaf blade: serrations on the margin | Weak | 3 | 5 | 5 |
Medium | 5 | ||||
Strong | 7 | ||||
21 PQ | Leaf blade: shape of base | Acute | 1 | 1 | 1 |
Obtuse | 2 | ||||
Truncate | 3 | ||||
22 QN | Time of full flowering | Early | 3 | No flowers | 3 (19 September 2022) |
Medium | 5 | ||||
Late | 7 |
Division | Ku2 | SM |
---|---|---|
Length (cm) | 9.16 ± 0.71 *** | 8.22 ± 0.48 |
Width (cm) | 3.98 ± 0.22 *** | 3.41 ± 0.31 |
Thickness (mm) | 0.38 ± 0.04 *** | 0.47 ± 0.06 |
Parameters | Ku2 | SM |
---|---|---|
L* | 38.46 ± 2.38 *** | 42.35 ± 3.02 |
a* | –1.27 ± 4.12 *** | –14.07 ± 3.36 |
b* | 19.48 ± 3.76 *** | 26.43 ± 4.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, Y.-S.; Moon, D.-G.; Hong, H.R.; Kim, B.-H.; Song, E.Y.; Kim, C.H.; Kim, S.J. Ku2: A Novel Korean Purple-Green Tea Germplasm (Camellia sinensis) with Enhanced Polyphenols and Antioxidant Activity. Plants 2025, 14, 2742. https://doi.org/10.3390/plants14172742
Kwon Y-S, Moon D-G, Hong HR, Kim B-H, Song EY, Kim CH, Kim SJ. Ku2: A Novel Korean Purple-Green Tea Germplasm (Camellia sinensis) with Enhanced Polyphenols and Antioxidant Activity. Plants. 2025; 14(17):2742. https://doi.org/10.3390/plants14172742
Chicago/Turabian StyleKwon, Yun-Suk, Doo-Gyung Moon, Ha Rim Hong, Byung-Hyuk Kim, Eun Young Song, Chun Hwan Kim, and Su Jin Kim. 2025. "Ku2: A Novel Korean Purple-Green Tea Germplasm (Camellia sinensis) with Enhanced Polyphenols and Antioxidant Activity" Plants 14, no. 17: 2742. https://doi.org/10.3390/plants14172742
APA StyleKwon, Y.-S., Moon, D.-G., Hong, H. R., Kim, B.-H., Song, E. Y., Kim, C. H., & Kim, S. J. (2025). Ku2: A Novel Korean Purple-Green Tea Germplasm (Camellia sinensis) with Enhanced Polyphenols and Antioxidant Activity. Plants, 14(17), 2742. https://doi.org/10.3390/plants14172742