Bidirectional Regulatory Effects of Warming and Winter Snow Changes on Litter Decomposition in Desert Ecosystems
Abstract
1. Introduction
2. Results
2.1. Effects of Warming and Winter Snow Changes on Soil Physicochemical Properties
2.2. Effects of Warming and Winter Snow Changes on Soil Enzyme Activities and Litter Decomposition
2.3. Underlying Mechanisms of Warming and Winter Snow Changes on Litter Decomposition
3. Discussion
3.1. Potential Mechanistic Drivers of Litter Decomposition Rates Under Winter Snow Changes
3.2. Potential Mechanisms Underlying Warming-Induced Changes in Litter Decomposition
3.3. Comparative Analysis of TBI Parameters Across Different Ecosystems
4. Materials and Methods
4.1. Study Site
4.2. Experimental Design
4.3. Litterbag Placement and Collection
4.4. Soil Sampling and Determination of Soil Physicochemical Properties and Enzyme Activities
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. AR6 Synthesis Report: Climate Change 2023; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 19 March 2023).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. A safe operating space for humanity. Nature 2009, 461, 472–480. [Google Scholar] [CrossRef]
- Fairbridge, R.W.; Moores, E.M.; Fairbridge, R.W. Encyclopedia of European and Asian Regional Geology; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Hu, Z.; Hu, Q.; Zhang, C.; Chen, X.; Li, Q. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia. J. Geophys. Res. Atmos. 2016, 121, 5648–5663. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Guyennon, N.; Chen, Y.N.; Li, Y.P.; Liang, Q.X.; Di, Y.F. Patterns of Snow Drought Under Climate Change: From Dry to Warm Dominance. Geophys. Res. Lett. 2025, 52, e2025GL114641. [Google Scholar] [CrossRef]
- Suseela, V.; Tharayil, N. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry. Glob. Change Biol. 2018, 24, 1428–1451. [Google Scholar] [CrossRef]
- Jiang, H.; Pan, Y.T.; Liang, J.W.; Yang, Y.H.; Chen, Q.; Lv, M.Q.; Pang, L.; He, W.H.; Tian, X.J. UV radiation doubles microbial degradation of standing litter in a subtropical forest. J. Ecol. 2022, 110, 2156–2166. [Google Scholar] [CrossRef]
- Liu, Y.J.; Duarte, G.S.; Sun, Q.; Gilgen, A.K.; Wittwer, R.; van der Heijden, M.G.A.; Buchmann, N.; Klaus, V.H. Severe drought rather than cropping system determines litter decomposition in arable systems. Agric. Ecosyst. Environ. 2022, 338, 108078. [Google Scholar] [CrossRef]
- Liu, X.F.; Chen, S.D.; Li, X.J.; Yang, Z.J.; Xiong, D.C.; Xu, C.; Wanek, W.; Yang, Y.S. Soil warming delays leaf litter decomposition but exerts no effect on litter nutrient release in a subtropical natural forest over 450 days. Geoderma 2022, 427, 116139. [Google Scholar] [CrossRef]
- Mei, L.L.; Zhang, P.; Cui, G.W.; Yang, X.; Zhang, T.; Guo, J.X. Arbuscular mycorrhizal fungi promote litter decomposition and alleviate nutrient limitations of soil microbes under warming and nitrogen application. Appl. Soil Ecol. 2022, 171, 104318. [Google Scholar] [CrossRef]
- Wu, Q.Q.; Yue, K.; Wang, X.C.; Ma, Y.D.; Li, Y. Differential responses of litter decomposition to warming, elevated CO2, and changed precipitation regime. Plant Soil 2020, 455, 155–169. [Google Scholar] [CrossRef]
- Suseela, V.; Tharayil, N.; Xing, B.S.; Dukes, J.S. Warming alters potential enzyme activity but precipitation regulates chemical transformations in grass litter exposed to simulated climatic changes. Soil Biol. Biochem. 2014, 75, 102–112. [Google Scholar] [CrossRef]
- Zheng, H.F.; Liu, Y.; Chen, Y.M.; Zhang, J.; Li, H.J.; Wang, L.F.; Chen, Q.M. Short-term warming shifts microbial nutrient limitation without changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau. Geoderma 2020, 360, 113985. [Google Scholar] [CrossRef]
- Ali, R.S.; Ingwersen, J.; Demyan, M.S.; Funkuin, Y.N.; Wizemann, H.D.; Kandeler, E.; Poll, C. Modelling activities of enzymes as a tool to explain seasonal variation of soil respiration from agro-ecosystems. Soil Biol. Biochem. 2015, 81, 291–303. [Google Scholar] [CrossRef]
- Liu, J.X.; Liu, S.G.; Li, Y.Y.; Liu, S.Z.; Yin, G.C.; Huang, J.; Xu, Y.; Zhou, G.Y. Warming effects on the decomposition of two litter species in model subtropical forests. Plant Soil 2017, 420, 277–287. [Google Scholar] [CrossRef]
- Fanin, N.; Mooshammer, M.; Sauvadet, M.; Meng, C.; Alvarez, G.; Bernard, L.; Bertrand, I.; Blagodatskaya, E.; Bon, L.; Fontaine, S.; et al. Soil enzymes in response to climate warming: Mechanisms and feedbacks. Funct. Ecol. 2022, 36, 1378–1395. [Google Scholar] [CrossRef]
- Shen, Y.; Tian, D.S.; Hou, J.H.; Wang, J.S.; Zhang, R.Y.; Li, Z.L.; Chen, X.L.; Wei, X.H.; Zhang, X.Y.; He, Y.C.; et al. Forest soil acidification consistently reduces litter decomposition irrespective of nutrient availability and litter type. Funct. Ecol. 2021, 35, 2753–2762. [Google Scholar] [CrossRef]
- Liu, X.J.; Lie, Z.Y.; Reich, P.B.; Zhou, G.Y.; Yan, J.H.; Huang, W.J.; Wang, Y.P.; Peñuelas, J.; Tissue, D.T.; Zhao, M.D.; et al. Long-term warming increased carbon sequestration capacity in a humid subtropical forest. Glob. Change Biol. 2024, 30, e17072. [Google Scholar] [CrossRef]
- Xu, S.; Li, P.; Sayer, E.J.; Zhang, B.B.; Wang, J.; Qiao, C.L.; Peng, Z.Y.; Diao, L.W.; Chi, Y.G.; Liu, W.X.; et al. Initial Soil Organic Matter Content Influences the Storage and Turnover of Litter, Root and Soil Carbon in Grasslands. Ecosystems 2018, 21, 1377–1389. [Google Scholar] [CrossRef]
- Yue, K.; Peng, C.H.; Yang, W.Q.; Peng, Y.; Fang, J.M.; Wu, F.Z. Study type and plant litter identity modulating the response of litter decomposition to warming, elevated CO2, and elevated O3: A meta-analysis. J. Geophys. Res. Biogeosciences 2015, 120, 441–451. [Google Scholar] [CrossRef]
- Prieto, I.; Almagro, M.; Bastida, F.; Querejeta, J.I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 2019, 107, 2364–2382. [Google Scholar] [CrossRef]
- Chuckran, P.F.; Reibold, R.; Throop, H.L.; Reed, S.C. Multiple mechanisms determine the effect of warming on plant litter decomposition in a dryland. Soil Biol. Biochem. 2020, 145, 107799. [Google Scholar] [CrossRef]
- Maestre, F.T.; Biancari, L.; Chen, N.; Corrochano-Monsalve, G.M.; Jenerette, D.; Nelson, C.; Shilula, K.N.; Shpilkina, Y. Research needs on the biodiversity-ecosystem functioning relationship in drylands. npj Biodiversity 2024, 3, 12–19. [Google Scholar] [CrossRef]
- Rosbakh, S.; Leingärtner, A.; Hoiss, B.; Krauss, J.; Steffan-Dewenter, I.; Poschlod, P. Contrasting Effects of Extreme Drought and Snowmelt Patterns on Mountain Plants along an Elevation Gradient. Front. Plant Sci. 2017, 8, 1478. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q. Season-dependent effect of snow depth on soil microbial biomass and enzyme activity in a temperate forest in Northeast China. Catena 2020, 195, 104760. [Google Scholar] [CrossRef]
- Schmitt, K.K.; Hirakawa, H. Assembly of Cellulases from Separate Catalytic Domains and a Cellulose-Binding Module for Understanding Cooperative Crystalline Cellulose Degradation. Appl. Sci. 2025, 15, 2214. [Google Scholar] [CrossRef]
- Hoffman, A.S.; van Diepen, L.T.A.; Albeke, S.E.; Williams, D.G. Potential microbial enzyme activity in seasonal snowpack is high and reveals P limitation. Ecosphere 2022, 13, 1–14. [Google Scholar] [CrossRef]
- Zhu, L.K.; Ives, A.R.; Zhang, C.; Guo, Y.Y.; Radeloff, V.C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 2019, 9, 886–893. [Google Scholar] [CrossRef]
- Yin, Q.L.; Wu, J.Q.; Wang, X.; Qiao, C.L.; Wang, J. Deepened snow cover accelerates litter decomposition by stimulating microbial degradation. Soil Biol. Biochem. 2024, 193, 109402. [Google Scholar] [CrossRef]
- Xie, T.T.; Shan, L.S.; Zhao, C.P. Snowfall Change Had Different Effects on Litter Decomposition for Two Typical Desert Species in Different Periods. Forests 2025, 16, 162. [Google Scholar] [CrossRef]
- Hermesdorf, L.; Mortensen, L.H.; Blitz, S.B.; Jepsen, M.S.; Westergaard-Nielsen, A.; Michelsen, A.; Blok, D.; Sigsgaard, C.; Christiansen, C.T.; Hansen, B.U.; et al. Changes in soil and plant carbon pools after 9 years of experimental summer warming and increased snow depth. Sci. Total Environ. 2024, 951, 175648. [Google Scholar] [CrossRef]
- Pei, G.T.; Liu, J.; Peng, B.; Gao, D.C.; Wang, C.; Dai, W.W.; Jiang, P.; Bai, E. Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. For. Ecol. Manag. 2019, 440, 61–69. [Google Scholar] [CrossRef]
- Glassman, S.I.; Weihe, C.; Li, J.H.; Albright, M.B.N.; Looby, C.I.; Martiny, A.C.; Treseder, K.K.; Allison, S.D.; Martiny, J.B.H. Decomposition responses to climate depend on microbial community composition. Proc. Natl. Acad. Sci. USA 2018, 115, 11994–11999. [Google Scholar] [CrossRef] [PubMed]
- Gholz, H.L.; Wedin, D.A.; Smitherman, S.M.; Harmon, M.E.; Parton, W.J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Change Biol. 2000, 6, 751–765. [Google Scholar] [CrossRef]
- Negrete-Yankelevich, S.; Fragoso, C.; Newton, A.C.; Russell, G.; Heal, O.W. Species-specific characteristics of trees can determine the litter macroinvertebrate community and decomposition process below their canopies. Plant Soil 2008, 307, 83–97. [Google Scholar] [CrossRef]
- Pugnaire, F.I.; Aares, K.H.; Alifriqui, M.; Bråthen, K.A.; Kindler, C.; Schöb, C.; Manrique, E. Home-field advantage effects in litter decomposition is largely linked to litter quality. Soil Biol. Biochem. 2023, 184, 109069. [Google Scholar] [CrossRef]
- Keuskamp, J.A.; Dingemans, B.J.J.; Lehtinen, T.; Sarneel, J.M.; Hefting, M.M. Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 2013, 4, 1070–1075. [Google Scholar] [CrossRef]
- Brandt, L.A.; King, J.Y.; Milchunas, D.G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Glob. Change Biol. 2007, 13, 2193–2205. [Google Scholar] [CrossRef]
- Day, T.A.; Guénon, R.; Ruhland, C.T. Photodegradation of plant litter in the Sonoran Desert varies by litter type and age. Soil Biol. Biochem. 2015, 89, 109–122. [Google Scholar] [CrossRef]
- Su, Y.; Le, J.J.; Ma, X.F.; Zhou, X.L.; Zhang, Y.X.; Gong, Y.M.; Han, W.X.; Li, K.H.; Liu, X.J. Soil burial has a greater effect on litter decomposition rate than nitrogen enrichment in alpine grasslands. J. Plant Ecol. 2021, 14, 1047–1059. [Google Scholar] [CrossRef]
- MacDonald, E.; Brummell, M.E.; Bieniada, A.; Elliott, J.; Engering, A.; Gauthier, T.L.; Saraswati, S.; Touchette, S.; Turmel-Courchesne, L.; Strack, M. Using the Tea Bag Index to characterize decomposition rates in restored peatlands. Boreal Environ. Res. 2018, 23, 221–235. [Google Scholar]
- Du, T.; Zhang, L.; Chen, Y.L.; Zhang, Y.; Zhu, H.M.; Xu, Z.F.; Tan, B.; You, C.M.; Liu, Y.; Wang, L.X.; et al. Decreased snow depth inhibits litter decomposition via changes in litter microbial biomass and enzyme activity. Sci. Total Environ. 2024, 921, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Blok, D.; Elberling, B.; Michelsen, A. Initial Stages of Tundra Shrub Litter Decomposition May Be Accelerated by Deeper Winter Snow but Slowed Down by Spring Warming. Ecosystems 2016, 19, 155–169. [Google Scholar] [CrossRef]
- Wu, Q.Q. Short- and Long-Term Effects of Snow-Depth on Korean Pine and Mongolian Oak Litter Decomposition in Northeastern China. Ecosystems 2020, 23, 662–674. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Shah, J.J.F. Ecoenzymatic Stoichiometry and Ecological Theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 313–343. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Y.Q.; Wang, L.L.; Duan, Y.L.; Yao, B.; Chen, Y.; Cao, W.J. Soil extracellular enzyme stoichiometry reflects microbial metabolic limitations in different desert types of northwestern China. Sci. Total Environ. 2023, 874, 162504. [Google Scholar] [CrossRef]
- Yoshitake, S.; Suminokura, N.; Ohtsuka, T.; Koizumi, H. Composite effects of temperature increase and snow cover change on litter decomposition and microbial community in cool-temperate grassland. Grassl. Sci. 2021, 67, 315–327. [Google Scholar] [CrossRef]
- Watanabe, T.; Tateno, R.; Imada, S.; Fukuzawa, K.; Isobe, K.; Urakawa, R.; Oda, T.; Hosokawa, N.; Sasai, T.; Inagaki, Y.; et al. The effect of a freeze-thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest. Biogeochemistry 2019, 142, 319–338. [Google Scholar] [CrossRef]
- Teugjas, H.; Väljamäe, P. Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol. Biofuels 2013, 6, 105. [Google Scholar] [CrossRef]
- Yang, J.Y.; Wang, Z.T.; Chang, Q.; Liu, Z.P.; Jiang, Q.; Fan, X.L.; Meng, D.; Bai, E. Temperature effects on microbial carbon use efficiency and priming effects in soils under vegetation restoration. Catena 2025, 249, 108632. [Google Scholar] [CrossRef]
- Khan, K.S.; Mack, R.; Castillo, X.; Kaiser, M.; Joergensen, R.G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 2016, 271, 115–123. [Google Scholar] [CrossRef]
- Liu, G.D.; Sun, J.F.; Tian, K.; Xiao, D.R.; Yuan, X.Z. Long-term responses of leaf litter decomposition to temperature, litter quality and litter mixing in plateau wetlands. Freshw. Biol. 2017, 62, 178–190. [Google Scholar] [CrossRef]
- Nie, H.Y.; Wang, C.R.; Tian, M.R.; Gao, J.X. Exogenous enzyme addition affects litter decomposition by altering the microbial community and litter nutrient content in planted forest. J. Plant Ecol. 2023, 16, rtad031. [Google Scholar] [CrossRef]
- Christiansen, C.T.; Haugwitz, M.S.; Priemé, A.; Nielsen, C.S.; Elberling, B.; Michelsen, A.; Grogan, P.; Blok, D. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob. Change Biol. 2017, 23, 406–420. [Google Scholar] [CrossRef]
- Bothwell, L.D.; Selmants, P.C.; Giardina, C.P.; Litton, C.M. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests. PeerJ 2014, 2, e685. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Z.X.; Zhang, Y.Z.; He, Q.; Li, B.; Wu, J.H. Leaf litter decomposition and its drivers differ between an invasive and a native plant: Management implications. Ecol. Appl. 2024, 34, e2739. [Google Scholar] [CrossRef]
- Sun, D.; Yang, J. Precipitation characteristics at the hinterland of Grubantunggut Desert and the surrounding areas. Arid Land Geogr. 2010, 33, 769–774. [Google Scholar]
- Vivanco, L.; Austin, A.T. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J. Ecol. 2008, 96, 727–736. [Google Scholar] [CrossRef]
- Chapman, S.K.; Koch, G.W. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil 2007, 299, 153–162. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl. Acad. Sci. USA 2005, 102, 1519–1524. [Google Scholar] [CrossRef]
- Griffiths, H.M.; Ashton, L.A.; Parr, C.L.; Eggleton, P. The impact of invertebrate decomposers on plants and soil. New Phytol. 2021, 231, 2142–2149. [Google Scholar] [CrossRef]
- McCune, B.; Daly, W.J. Consumption and decomposition of lichen litter in a temperate coniferous rainforest. Lichenologist 1994, 26, 67–71. [Google Scholar] [CrossRef]
- Jia, Y.Y.; Zhang, T.; Walder, F.; Sun, Y.; Shi, Z.Y.; Wagg, C.; Tian, C.Y.; Feng, G. Can Mycorrhizal Fungi Alleviate Plant Community Instab. Caused By Increased Precip. Arid Ecosyst? Plant Soil 2022, 478, 559–577. [Google Scholar] [CrossRef]
- Zhang, L. Ephemeral plants in Xinjiang (III): Significance of community and resources. J. Plant 2002, 3, 4–5. [Google Scholar]
- Cui, X.; Yue, P.; Gong, Y.; Li, K.; Tan, D.; Goulding, K.; Liu, X. Impacts of water and nitrogen addition on nitrogen recovery in Haloxylon ammodendron dominated desert ecosystems. Sci. Total Environ. 2017, 601, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Wieder, R.K.; Lang, G.E. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 1982, 63, 1636–1642. [Google Scholar] [CrossRef]
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Zhang, Z.; Li, W.; Liu, W.; Xiao, N.; Liu, H.; Wang, L.; Li, Z.; Ma, J.; et al. Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. iMeta 2023, 2, e106. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, A.X.; Li, X.Y.; Yue, P.; Zhao, S.L.; Lv, P.; Zuo, X.A. Multi-trait functional diversity predicts ecosystem multifunctionality under nitrogen addition in a desert steppe. Plant Soil 2022, 491, 33–44. [Google Scholar] [CrossRef]
- Grace, J.B. Structural Equation Modeling and Natural Systems; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Yang, R.; Duan, W.; Wang, H.; Ji, Z.; Dong, Q.; Qin, W.; Cao, W.; Li, W.; Wu, N. Bidirectional Regulatory Effects of Warming and Winter Snow Changes on Litter Decomposition in Desert Ecosystems. Plants 2025, 14, 2741. https://doi.org/10.3390/plants14172741
Jia Y, Yang R, Duan W, Wang H, Ji Z, Dong Q, Qin W, Cao W, Li W, Wu N. Bidirectional Regulatory Effects of Warming and Winter Snow Changes on Litter Decomposition in Desert Ecosystems. Plants. 2025; 14(17):2741. https://doi.org/10.3390/plants14172741
Chicago/Turabian StyleJia, Yangyang, Rong Yang, Wan Duan, Hui Wang, Zhanquan Ji, Qianqian Dong, Wenhao Qin, Wenli Cao, Wenshuo Li, and Niannian Wu. 2025. "Bidirectional Regulatory Effects of Warming and Winter Snow Changes on Litter Decomposition in Desert Ecosystems" Plants 14, no. 17: 2741. https://doi.org/10.3390/plants14172741
APA StyleJia, Y., Yang, R., Duan, W., Wang, H., Ji, Z., Dong, Q., Qin, W., Cao, W., Li, W., & Wu, N. (2025). Bidirectional Regulatory Effects of Warming and Winter Snow Changes on Litter Decomposition in Desert Ecosystems. Plants, 14(17), 2741. https://doi.org/10.3390/plants14172741