Chemical Composition, Antioxidant and Antimicrobial Activity of Piper carpunya and Simira ecuadorensis: A Comparative Study of Four Extraction Methods
Abstract
1. Introduction
2. Results
2.1. Yield
2.2. Total Phenols Content and Antioxidant Capacity
2.2.1. Total Phenols Content
2.2.2. Antioxidant Capacity: Experimental Results
2.3. Antimicrobial Activity: Experimental Results
2.4. Chemical Composition of Simira ecuadoresis and Piper carpunya Extracts
3. Discussion
3.1. Total Phenols
3.2. Antioxidant Capacity
3.3. Antimicrobial Activity
3.4. Chemical Composition
3.5. Study Limitations and Future Directions
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Extraction Process
4.3.1. Dynamic Maceration Extraction (DME)
4.3.2. Ultrasound-Assisted Extraction (UAE)
4.3.3. Microwave-Assisted Extraction (MAE)
4.3.4. Pressurized Liquid Extraction (PLE)
4.4. Chemical Composition Analysis
4.5. Determination of Total Phenols Content
4.6. Determination of Antioxidant Capacity
4.6.1. DPPH Assay
4.6.2. ABTS Assay
4.6.3. FRAP Assay
4.6.4. Oxygen Radical Absorbance Capacity (ORAC) Assay
4.7. Determination of Antimicrobial Activity
4.7.1. Microbial Strains
4.7.2. Antimicrobial Activity Assay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teshome, E.; Forsido, S.F.; Rupasinghe, H.P.V.; Olika Keyata, E. Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. Sci. World J. 2022, 2022, 9901018. [Google Scholar] [CrossRef]
- Biswas, O.; Kandasamy, P.; Nanda, P.K.; Biswas, S.; Lorenzo, J.M.; Das, A.; Alessandroni, L.; Lamri, M.; Das, A.K.; Gagaoua, M. Phytochemicals as Natural Additives for Quality Preservation and Improvement of Muscle Foods: A Focus on Fish and Fish Products. Food Mater. Res. 2023, 3, 5. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Code of Federal Regulations (CFR) Title 21, Part 182, Section 182.20—Essential Oils, Oleoresins (Solvent-Free), and Natural Extractives (Including Distillates). Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-182/subpart-A/section-182.20 (accessed on 24 June 2025).
- Hugo, C.J.; Hugo, A. Current Trends in Natural Preservatives for Fresh Sausage Products. Trends Food Sci. Technol. 2015, 45, 12–23. [Google Scholar] [CrossRef]
- Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant Antimicrobial Polyphenols as Potential Natural Food Preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.; Steinbach, A.; Putics, Á.; Solti-Hodován, Á.; Palkovics, T. Potential of Essential Oils in the Control of Listeria monocytogenes. Microorganisms 2023, 11, 1364. [Google Scholar] [CrossRef]
- Morshdy, A.E.M.A.; Al-Mogbel, M.S.; Mohamed, M.E.M.; Elabbasy, M.T.; Elshafee, A.K.; Hussein, M.A. Bioactivity of Essential Oils for Mitigation of Listeria monocytogenes Isolated from Fresh Retail Chicken Meat. Foods 2021, 10, 3006. [Google Scholar] [CrossRef]
- Bukvički, D.; Stojković, D.; Soković, M.; Vannini, L.; Montanari, C.; Pejin, B.; Savić, A.; Veljić, M.; Grujić, S.; Marin, P.D. Satureja horvatii Essential Oil: In Vitro Antimicrobial and Antiradical Properties and in Situ Control of Listeria monocytogenes in Pork Meat. Meat Sci. 2014, 96, 1355–1360. [Google Scholar] [CrossRef]
- Dussault, D.; Vu, K.D.; Lacroix, M. In Vitro Evaluation of Antimicrobial Activities of Various Commercial Essential Oils, Oleoresin and Pure Compounds against Food Pathogens and Application in Ham. Meat Sci. 2014, 96, 514–520. [Google Scholar] [CrossRef]
- Da Silveira, S.M.; Luciano, F.B.; Fronza, N.; Cunha, A.; Scheuermann, G.N.; Vieira, C.R.W. Chemical Composition and Antibacterial Activity of Laurus nobilis Essential Oil towards Foodborne Pathogens and Its Application in Fresh Tuscan Sausage Stored at 7 °C. LWT-Food Sci. Technol. 2014, 59, 86–93. [Google Scholar] [CrossRef]
- Espina, L.; Somolinos, M.; Ouazzou, A.A.; Condón, S.; García-Gonzalo, D.; Pagán, R. Inactivation of Escherichia coli O157: H7 in Fruit Juices by Combined Treatments of Citrus Fruit Essential Oils and Heat. Int. J. Food Microbiol. 2012, 159, 9–16. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Rabii, N.S.; Garbaj, A.M.; Abolghait, S.K. Antibacterial Effect of Olive (Olea europaea L.) Leaves Extract in Raw Peeled Undeveined Shrimp (Penaeus semisulcatus). Int. J. Vet. Sci. Med. 2014, 2, 53–56. [Google Scholar] [CrossRef]
- Lee, N.K.; Jung, B.S.; Na, D.S.; Yu, H.H.; Kim, J.S.; Paik, H.D. The Impact of Antimicrobial Effect of Chestnut Inner Shell Extracts against Campylobacter jejuni in Chicken Meat. LWT 2016, 65, 746–750. [Google Scholar] [CrossRef]
- Reyes, J.F.; Diez, A.M.; Melero, B.; Rovira, J.; Jaime, I. Antimicrobial Effect of Simira ecuadorensis Extracts and Their Impact on Improving Shelf Life in Chicken and Fish Products. Foods 2022, 11, 2352. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, P.M.; León-Yánez, S.; Pedroni González, A.; Swift, V.A.; Hediger, N.L. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Luois, MO, USA, 1999; ISBN 0-915279-60-6. [Google Scholar]
- Tene, V.; Malagon, O.; Finzi, P.V.; Vidari, G.; Armijos, C.; Zaragoza, T. An Ethnobotanical Survey of Medicinal Plants Used in Loja and Zamora-Chinchipe, Ecuador. J. Ethnopharmacol. 2007, 111, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Quílez, A.; Berenguer, B.; Gilardoni, G.; Souccar, C.; de Mendonça, S.; Oliveira, L.F.S.; Martín-Calero, M.J.; Vidari, G. Anti-Secretory, Anti-Inflammatory and Anti-Helicobacter Pylori Activities of Several Fractions Isolated from Piper carpunya Ruiz & Pav. J. Ethnopharmacol. 2010, 128, 583–589. [Google Scholar] [CrossRef]
- Rondón, M.E.; Velasco, J.; Cornejo, X.; Fernández, J.; Morocho, V. Chemical Composition and Antibacterial Activity of Piper Lenticellosum C.D.C Essential Oil Collected in Ecuador. J. Appl. Pharm. Sci. 2016, 6, 156–159. [Google Scholar] [CrossRef]
- Ballesteros, J.L.; Tacchini, M.; Spagnoletti, A.; Grandini, A.; Paganetto, G.; Neri, L.M.; Marengo, A.; Angiolella, L.; Guerrini, A.; Sacchetti, G. Rediscovering Medicinal Amazonian Aromatic Plants: Piper carpunya (Piperaceae) Essential Oil as Paradigmatic Study. Evid.-Based Complement. Altern. Med. 2019, 2019, 6194640. [Google Scholar] [CrossRef]
- Ballesteros, J.L.; Bracco, F.; Cerna, M.; Vita Finzi, P.; Vidari, G. Ethnobotanical Research at the Kutukú Scientific Station, Morona-Santiago, Ecuador. Biomed. Res. Int. 2016, 2016, 9105746. [Google Scholar] [CrossRef]
- Jaramillo, C.; Jaramillo, A.; D’ Armas, H.; Troccoli, L.; Rojas, L. Concentraciones de Alcaloides, Glucósidos Cianogénicos, Polifenoles y Saponinas En Plantas Medicinales Seleccionadas En Ecuador y Su Relación Con La Toxicidad Aguda Contra Artemia Salina. Biol. Trop. 2016, 64, 1171–1184. [Google Scholar] [CrossRef]
- Trabadela, C.; Sánchez-Fidalgo, S.; Miño, P.; Berenguer, B.; Quilez, A.; De La Puerta, R.; Martín, M.J. Gastroprotective Effects of Piper carpunya against Diclofenac-Induced Gastric Lesions in Rats. Pharm. Biol. 2008, 46, 829–837. [Google Scholar] [CrossRef]
- Aire, B.G.; María, S.; Matico, L.; Frente, N. Bioactividad de Los Extractos de Las Hojas de Las Especies Piper carpunya R&P (Carpunya), Piper peltatum L. (Santa María) y Piper amalago L. (Matico Negro) Frente a Mycobacterium tuberculosis H37RV, Mediante El Ensayo En Microplacas Con Resazurina. Bachelor’s Thesis, Universidad Privada de Huancayo Franklin Roosevelt, Huancayo, Peru, 2023. Available online: http://repositorio.uroosevelt.edu.pe/handle/20.500.14140/1696 (accessed on 21 April 2025).
- Azuero, A.; Jaramillo-Jaramillo, C.; San Martin, D.; D’Armas, H. Análisis Del Efecto Antimicrobiano de Doce Plantas Medicinales de Uso Ancestral En Ecuador. Rev. Cienc. UNEMI 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Moreira, V.F.; Vieira, I.J.C.; Braz-Filho, R. Chemical Constituents and Biological Activities of Simira Genus: A Contribution to the Chemotaxonomic of Rubiaceae Family. Nat. Prod. J. 2015, 4, 290–298. [Google Scholar] [CrossRef]
- Aguirre Mendoza, Z.; Geada-Lopez, G. Estado de Conservación de Los Bosques Secos de La Provincia de Loja, Ecuador Conservation Status of the Dry Forests of the Province of Loja. Arnaldoa 2017, 24, 207–228. [Google Scholar]
- Aguirre Mendoza, Z. Especies Forestales de Los Bosques Secos del Ecuador. Guía Dendrológica; MAE/FAO-Finlandia: Quito, Ecuador, 2012; Available online: https://biblio.flacsoandes.edu.ec/libros/133397-opac (accessed on 7 March 2025).
- Aguirre, Z.; Kvist, L.; Sánchez, O. Bosques Secos En Ecuador y Su Diversidad. In Botánica Económica de los Andes Centrales; Moraes, M., Øllgaard, B., Kvist, L.P., Borchsenius, F., Balslev, H., Eds.; Universidad Mayor de San Andrés: La Paz, Bolivia, 2006; pp. 162–187. [Google Scholar]
- Rondón, M.; Moncayo, S.; Cornejo, X.; Santos, J.; Villalta, D.; Siguencia, R.; Duche, J. Preliminary Phytochemical Screening, Total Phenolic Content and Antibacterial Activity of Thirteen Native Species from Guayas Province Ecuador. J. King Saud. Univ. Sci. 2018, 30, 500–505. [Google Scholar] [CrossRef]
- Vargas, L.; Velasco-Negueruela, A.; Pérez-Alonso, M.J.; Palá-Paól, J.; Vallejo, M.C. Essential Oil Composition of the Leaves and Spikes of Piper carpunya Ruíz et Pavón (Piperaceae) from Peru. J. Essent. Oil Res. 2011, 16, 122–123. [Google Scholar] [CrossRef]
- Baiano, A.; Del Nobile, M.A. Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Crit. Rev. Food Sci. Nutr. 2016, 56, 2053–2068. [Google Scholar] [CrossRef] [PubMed]
- Selvamuthukumaran, M.; Shi, J. Recent Advances in Extraction of Antioxidants from Plant By-Products Processing Industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Santos, T.R.J.; de Aquino Santana, L.C.L. Conventional and Emerging Techniques for Extraction of Bioactive Compounds from Fruit Waste. Braz. J. Food Technol. 2022, 25, 1–18. [Google Scholar] [CrossRef]
- Gomez, L.; Tiwari, B.; Garcia-Vaquero, M. Emerging Extraction Techniques: Microwave-Assisted Extraction; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128179437. [Google Scholar]
- Višnjevec, A.M.; Barp, L.; Lucci, P.; Moret, S. Pressurized Liquid Extraction for the Determination of Bioactive Compounds in Plants with Emphasis on Phenolics. TrAC Trends Anal. Chem. 2024, 173, 117620. [Google Scholar] [CrossRef]
- Dash, D.R.; Pathak, S.S.; Pradhan, R.C. Improvement in Novel Ultrasound-Assisted Extraction Technology of High Value-Added Components from Fruit and Vegetable Peels. J. Food Process Eng. 2021, 44, e13658. [Google Scholar] [CrossRef]
- Wang, N.; Liu, K.; Hou, Z.; Zhao, Z.; Li, H.; Gao, X. The Comparative Techno-Economic and Life Cycle Assessment for Multi-Product Biorefinery Based on Microwave and Conventional Hydrothermal Biomass Pretreatment. J. Clean. Prod. 2024, 474, 143562. [Google Scholar] [CrossRef]
- Raimundini Aranha, A.C.; de Matos Jorge, L.M.; Nardino, D.A.; Casagrande Sipoli, C.; Suzuki, R.M.; Dusman Tonin, L.T.; Oliveira Defendi, R. Modelling of Bioactive Components Extraction from Corn Seeds. Chem. Eng. Res. Des. 2021, 175, 339–347. [Google Scholar] [CrossRef]
- Lakkana, N.; Wunnakup, T.; Suksaeree, J.; Monton, C. Optimization of Short-Term Dynamic and Static Maceration of Piper Betle L. Leaves to Maximize Extraction Yield and Anti-Candida Albicans Activity. J. Biol. Act. Prod. Nat. 2024, 14, 631–646. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Trentini, C.P.; da Silva, S.B.; Rodrigues, G.M.; dos Santos Garcia, V.A.; Cardozo-Filho, L.; da Silva, C. Pressurized Liquid Extraction of Macauba Pulp Oil. Can. J. Chem. Eng. 2017, 95, 1579–1584. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of Ultrasound Assisted Extraction of Bioactive Components from Brown Seaweed Ascophyllum nodosum Using Response Surface Methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Han, L.; Shi, B. Microwave-Assisted Extraction of Flavonoids from Radix Astragali. Sep. Purif. Technol. 2008, 62, 614–618. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aslam Maan, A.; Khan, M.K.I.; Nadeem, M.; Khalil, A.A.; Din, A.; Aadil, R.M. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-Related Matrices. Food Rev. Int. 2022, 38, 1166–1196. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef]
- Sankaran, R.; Manickam, S.; Yap, Y.J.; Ling, T.C.; Chang, J.S.; Show, P.L. Extraction of Proteins from Microalgae Using Integrated Method of Sugaring-out Assisted Liquid Biphasic Flotation (LBF) and Ultrasound. Ultrason. Sonochem. 2018, 48, 231–239. [Google Scholar] [CrossRef]
- Tamuly, C.; Hazarika, M.; Bora, J.; Bordoloi, M.; Boruah, M.P.; Gajurel, P.R. In Vitro Study on Antioxidant Activity and Phenolic Content of Three Piper Species from North East India. J. Food Sci. Technol. 2015, 52, 117–128. [Google Scholar] [CrossRef]
- Ferraz, C.A.A.; de Oliveira, A.P.; de Lima-Saraiva, S.R.G.; Souza, G.R.; Rolim, L.A.; da Silva Almeida, J.R.G.; Nunes, X.P. High-Performance Liquid Chromatography-Diode-Array Detector (HPLC-DAD) Analysis and Evaluation of Antioxidant and Photoprotective Activities of Extracts from Seeds of Simira Gardneriana M. R. V. Barbosa and Peixoto (Rubiaceae). Afr. J. Biotechnol. 2017, 16, 937–944. [Google Scholar] [CrossRef]
- Echavarria, A.; D’Armas Regnault, H.; Lisbeth, N.; Matute, L.; Jaramillo, C.; Rojas de Astudillo, L.; Benitez, R. Evaluación de La Capacidad Antioxidante y Metabolitos Secundarios de Extractos de Dieciséis Plantas Medicinales/Evaluation of Antioxidant Capacity and Secondary Metabolites of Sixteen Medicinal Plants Extracts. Cienc. Unemi 2016, 9, 29–35. [Google Scholar] [CrossRef]
- Gullian Klanian, M.; Terrats Preciat, M. Optimization of the Ultrasound-Assisted Extraction of Phenolic Compounds from Brosimum Alicastrum Leaves and the Evaluation of Their Radical-Scavenging Activity. Molecules 2017, 22, 1286. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.V.N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 19, ISBN 0123456789. [Google Scholar]
- Saini, A.; Panesar, P.S.; Bera, M. Comparative Study on the Extraction and Quantification of Polyphenols from Citrus Peels Using Maceration and Ultrasonic Technique. Curr. Res. Nutr. Food Sci. 2019, 7, 678–685. [Google Scholar] [CrossRef]
- Caldas, T.; Mazza, K.; Teles, A.; Mattos, G.; Brígida, A.; Conte-Junior, C.; Borguini, R.; Godoy, R.; Cabral, L.; Tonon, R. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non- Conventional Extraction Methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Comparison of Conventional Extraction Technique with Ultrasound Assisted Extraction on Recovery of Phenolic Compounds from Lemon Scented Tea Tree (Leptospermum petersonii) Leaves. Heliyon 2020, 6, e03666. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Pandey, A.; Bhatt, I.D.; Rawal, R.S. Optimized Microwave Assisted Extraction (MAE) of Alkaloids and Polyphenols from Berberis Roots Using Multiple-Component Analysis. Sci. Rep. 2020, 10, 917. [Google Scholar] [CrossRef]
- Alzorqi, I.; Singh, A.; Manickam, S.; Al-Qrimli, H.F. Optimization of Ultrasound Assisted Extraction (UAE) of β- d -Glucan Polysaccharides from Ganoderma lucidum for Prospective Scale-Up. Resour.-Effic. Technol. 2017, 3, 46–54. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.S.; Bourvellec, C.L.; Renard, C.M.G.C.; Chemat, F. Lab and Pilot-Scale Ultrasound-Assisted Water Extraction of Polyphenols from Apple Pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Luna-Fox, S.B.; Rodríguez-Almeida, N.; Dahua-Gualinga, R.D.; Peñafiel-Bonilla, N.J.; Radice, M. Influencia de Las Condiciones de Extracción Sobre Los Compuestos Polifenólicos Totales Del Piper aduncum L. Cienc. Lat. Rev. Científica Multidiscip. 2023, 7, 3872–3891. [Google Scholar] [CrossRef]
- Luca, S.V.; Gawe-Bęben, K.; Strzępek-Gomółka, M.; Czech, K.; Trifan, A.; Gokhan, Z.; Korona-Glowniak, I.; Minceva, M.; Gertsch, J.; Skalicka-Woźniak, K. Insights into the Phytochemical and Multifunctional Biological Profile of Spices from the Genus Piper. Antioxidants 2021, 10, 1642. [Google Scholar] [CrossRef]
- Conde-Hernández, L.A.; Guerrero-Beltrán, J.Á. Total Phenolics and Antioxidant Activity of Piper auritum and Porophyllum ruderale. Food Chem. 2014, 142, 455–460. [Google Scholar] [CrossRef]
- da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Guimarães, E.F.; Andrade, E.H.A.; Maia, J.G.S. Essential Oils of Amazon Piper Species and Their Cytotoxic, Antifungal, Antioxidant and Anti-Cholinesterase Activities. Ind. Crops Prod. 2014, 58, 55–60. [Google Scholar] [CrossRef]
- Lu, M.; Yuan, B.; Zeng, M.; Chen, J. Antioxidant Capacity and Major Phenolic Compounds of Spices Commonly Consumed in China. Food Res. Int. 2011, 44, 530–536. [Google Scholar] [CrossRef]
- Przygodzka, M.; Zielińska, D.; Ciesarová, Z.; Kukurová, K.; Zieliński, H. Comparison of Methods for Evaluation of the Antioxidant Capacity and Phenolic Compounds in Common Spices. LWT 2014, 58, 321–326. [Google Scholar] [CrossRef]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.; Flores, L.; Cotera, L.; Neira, A. Evaluation of the Antioxidant and Anti-Glication Effects of the Hexane Extract from Piper auritum Leaves in Vitro and Beneficial Activity on Oxidative Stress and Advanced Glycation End-Product-Mediated Renal Injury in Streptozotocin-Treated Diabetic Rats. Molecules 2012, 17, 11897–11919. [Google Scholar] [CrossRef]
- Foffe, H.A.; Teboukeu, G.B.; Tonfack, F.D.; Ndomou, C.S.H.; Womeni, M.H. Comparative Study of the Effect of Piper nigrum (White and Black) and Piper guineense on Lipids Quality of Groundnuts Pudding. Asian Food Sci. J. 2020, 15, 8–20. [Google Scholar] [CrossRef]
- Rahman, A.; Al-Reza, S.M.; Sattar, M.A.; Kang, S.C. Potential Roles of Essential Oil and Extracts of Piper Chaba Hunter to Inhibit Listeria monocytogenes. Rec. Nat. Prod. 2011, 5, 228–237. [Google Scholar]
- Valarezo, E.; Rivera, J.X.; Coronel, E.; Barzallo, M.A.; Calva, J.; Cartuche, L.; Meneses, M.A. Study of Volatile Secondary Metabolites Present in Piper carpunya Leaves and in the Traditional Ecuadorian Beverage Guaviduca. Plants 2021, 10, 338. [Google Scholar] [CrossRef]
- Hadidi, M.; Orellana-Palacios, J.C.; Aghababaei, F.; Gonzalez-Serrano, D.J.; Moreno, A.; Lorenzo, J.M. Plant By-Product Antioxidants: Control of Protein-Lipid Oxidation in Meat and Meat Products. LWT 2022, 169, 114003. [Google Scholar] [CrossRef]
- Burbott, A.J.; Loomis, W.D. Effects of Light and Temperature on the Formation. J. Food Sci. 1972, 37, 969–970. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 389103. [Google Scholar] [CrossRef]
- Tamkutė, L.; Vaicekauskaitė, R.; Gil, B.M.; Rovira Carballido, J.; Venskutonis, P.R. Black Chokeberry (Aronia melanocarpa L.) Pomace Extracts Inhibit Food Pathogenic and Spoilage Bacteria and Increase the Microbiological Safety of Pork Products. J. Food Process. Preserv. 2021, 45, e15220. [Google Scholar] [CrossRef]
- Morales, A.; Rojas, J.; Moujir, L.M.; Araujo, L.; Rondón, M. Chemical Composition, Antimicrobial and Cytotoxic Activities of Piper Hispidum SW. Essential Oil Collected in Venezuela. J. Appl. Pharm. Sci. 2013, 3, 16–20. [Google Scholar] [CrossRef]
- Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M.E.; Bruni, R. Bioactivities of Piper aduncum L. and Piper Obliquum Ruiz & Pavon (Piperaceae) Essential Oils from Eastern Ecuador. Environ. Toxicol. Pharmacol. 2009, 27, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Andrade Pinto, J.M.; Souza, E.A.; Oliveira, D.F. Use of Plant Extracts in the Control of Common Bean Anthracnose. Crop Prot. 2010, 29, 838–842. [Google Scholar] [CrossRef]
- Ramos, D.F.; Leitão, G.G.; Costa, F.D.N.; Abreu, L.; Villarreal, J.V.; Leitão, S.G.; Fernández, S.L.S.; Da Silva, P.E.A. Investigation of the Antimycobacterial Activity of 36 Plant Extracts from the Brazilian Atlantic Forest. Rev. Bras. Cienc. Farm./Braz. J. Pharm. Sci. 2008, 44, 669–674. [Google Scholar] [CrossRef]
- Aodah, A.H.; Hashmi, S.; Akhtar, N.; Ullah, Z.; Zafar, A.; Zaki, R.M.; Khan, S.; Ansari, M.J.; Jawaid, T.; Alam, A.; et al. Formulation Development, Optimization by Box-Behnken Design, and In Vitro and Ex Vivo Characterization of Hexatriacontane-Loaded Transethosomal Gel for Antimicrobial Treatment for Skin Infections. Gels 2023, 9, 322. [Google Scholar] [CrossRef]
- Alsultan, W.; Vadamalai, G.; Khairulmazmi, A.; Saud, H.M. Isolation, Identification and Characterization of Endophytic Bacteria Antagonistic to Phytophthora palmivora Causing Black Pod of Cocoa in Malaysia. Eur. J. Plant Pathol. 2019, 155, 1077–1091. [Google Scholar] [CrossRef]
- Rhetso, T.; Shubharani, R.; Roopa, M.S.; Sivaram, V. Chemical Constituents, Antioxidant, and Antimicrobial Activity of Allium Chinense G. Futur. J. Pharm. Sci. 2020, 7, 102. [Google Scholar] [CrossRef]
- Sultana, A.; Das, B.K.; Saha, D. Role of Hentriacontane on Dexamethasone-Induced Insulin Resistance in Rats. Pharmacol. Res.-Nat. Prod. 2024, 4, 100063. [Google Scholar] [CrossRef]
- Arango-De la Pava, D.; Flores-Jiménez, N.; Cuéllar-Ordaz, J.A.; Cruz-Cruz, A.; Higuera-Piedrahita, R.; López-Arellano, R. Exploring Alternative Anthelmintic Compounds: Impact of Peruvin, Hentriacontane/1-Nonacosanol and Their Synergistic Effect on the Health of Meriones Unguiculatus Infected with Haemonchus Contortus. Vet. Parasitol. 2024, 332, 110303. [Google Scholar] [CrossRef]
- Rautela, I.; Joshi, P.; Thapliyal, P.; Pant, M.; Dheer, P.; Bisht, S.; Sinha, V.B.; Sundriyal, S.; Sharma, M.D. Comparative GC-MS Analysis of Euphorbia hirta and Euphorbia Milli for Therapeutic Potencial Utilities. Plant Arch. 2020, 20, 3515–3522. [Google Scholar]
- Ben, A.; Trigui, M.; Ben, R.; Mezghani, R.; Damak, M.; Jaoua, S. Chemical Composition, Cytotoxicity Effect and Antimicrobial Activity of Ceratonia siliqua Essential Oil with Preservative Effects against Listeria Inoculated in Minced Beef Meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef]
- Belakhdar, G.; Benjouad, A.; Abdennebi, E.H. Determination of Some Bioactive Chemical Constituents from Thesium Humile Vahl. J. Mater. Environ. Sci. 2015, 6, 2778–2783. [Google Scholar]
- Park, S.Y.; Seetharaman, R.; Ko, M.; Kim, D.; Kim, T.; Yoon, M.; Kwak, J.; Lee, S.; Bae, Y.; Choi, Y.; et al. Ethyl Linoleate from Garlic Attenuates Lipopolysaccharide-Induced pro-Inflammatory Cytokine Production by Inducing Heme Oxygenase-1 in RAW264.7 Cells. Int. Immunopharmacol. 2014, 19, 253–261. [Google Scholar] [CrossRef]
- Skanda, S.; Vijayakumar, B.S. Antioxidant and Anti-inflammatory Metabolites of a Soil-Derived Fungus Aspergillus Arcoverdensis SSSIHL-01. Curr. Microbiol. 2021, 78, 1317–1323. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, A.; Ahmed, I.; Shill, M.; Yarla, N.; Khan, I.N.; Billah, M.; et al. Phytol: A Review of Biomedical Activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef]
- Seneme, E.F.; Carla, D.; Marcela, E.; Silva, R.; Edwirges, Y.; Franco, M.; Longato, G.B. Pharmacological and Therapeutic Potential of Myristicin: A Literature Review. Molecules 2021, 26, 5914. [Google Scholar] [CrossRef]
- Alarcón, K.R.; Martorell, M.; Laher, I.; Long, H.; Ebtihal, L.; Mohieldin, A.M.; Shari, J.; Butnariu, M. Myristicin: From Its Biological Effects in Traditional Medicine in Plants to Preclinical Studies and Use as Ecological Remedy in Plant Protection. eFood 2023, 4, e90. [Google Scholar] [CrossRef]
- Eltivitasari, A.; Gemantari, B.M.; Romadhonsyah, F. Effect of Light Exposure on Secondary Metabolites Production of an Endophytic Fungus Arthrinium rasikravindrae and Its Antioxidant and Anticancer Activities. Biodiversitas 2021, 22, 3156–3163. [Google Scholar] [CrossRef]
- Brusotti, G.; Cesari, I.; Gilardoni, G.; Tosi, S.; Grisoli, P.; Picco, A.M.; Caccialanza, G. Chemical Composition and Antimicrobial Activity of Phyllanthus muellerianus (Kuntze) Excel Essential Oil. J. Ethnopharmacol. 2012, 142, 657–662. [Google Scholar] [CrossRef]
- Martins, C.D.M.; Nascimento, E.A.; de Morais, S.A.L.; de Oliveira, A.; Chang, R.; Cunha, L.C.S.; Martins, M.M.; Martins, C.H.G.; Moraes, T.S.; Rodrigues, P.V.; et al. Chemical Constituents and Evaluation of Antimicrobial and Cytotoxic Activities of Kielmeyera Coriacea Mart. & Zucc. Essential Oils. Evid.‐Based Complement. Altern. Med. 2015, 2015, 842047. [Google Scholar] [CrossRef]
- Fernando, I.; Sanjeewa, K.; Samarakoon, K.; Lee, W.; Soo, H.; Kim, H.-S.; Jeon, Y.-J. Squalene Isolated from Marine Macroalgae Caulerpa Racemosa and Its Potent Antioxidant and Anti-inflammatory Activities. J. Food Biochem. 2018, 42, e12628. [Google Scholar] [CrossRef]
- Burčová, Z.; Kreps, F.; Greifová, M.; Jablonský, M.; Ház, A.; Schmidt, Š.; Šurina, I. Antibacterial and Antifungal Activity of Phytosterols and Methyl Dehydroabietate of Norway Spruce Bark Extracts. J. Biotechnol. 2018, 282, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Cevallos-Morillo, C.; Cisneros-Pérez, P.; Llive, R.; Ricaurte, M.; Reinoso, C.; Meneses, M.A.; Guamán-Balcázar, M.C.; Palma-Cando, A. Croton lechleri Extracts as Green Corrosion Inhibitors of Admiralty Brass in Hydrochloric Acid. Molecules 2021, 26, 7417. [Google Scholar] [CrossRef] [PubMed]
- van Den Dool, H.; Dec Kratz, P. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. Chromatography 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 5th ed.; Texensis: Gruver, TX, USA, 2017; ISBN 9780998155722. [Google Scholar]
- Swain, T.; Hillis, E. The Phenolic Constituents of Prunus Domestica. J. Agric. Food Chem. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Williams-Brand, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 30, 25–30. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The Hydrophilic and Lipophilic Contribution to Total Antioxidant Activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 76, 70–76. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Szeto, Y.T. Total Antioxidant Capacity of Teas by the Ferric Reducing Antioxidant Power Asay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef] [PubMed]
- García Ruíz, A.; Baenas, N.; Benítez-González, A.; Stinco, C.M.; Meléndez-Martínez, A.J.; Moreno, D.A.; Ruales, J.; Ruales, J. Guayusa (Ilex guayusa L.) New Tea: Phenolic and Carotenoid Composition and Antioxidant Capacity. J. Sci. Food Agric. 2017, 12, 3929–3936. [Google Scholar] [CrossRef] [PubMed]
- Davydova, A.; Fastl, C.; Mughini-Gras, L.; Bai, L.; Kubota, K.; Hoffmann, S.; Rachmawati, T.; Pires, S.M. Source Attribution Studies of Foodborne Pathogens, 2010–2023: A Review and Collection of Estimates. Food Microbiol. 2025, 131, 104812. [Google Scholar] [CrossRef] [PubMed]
- Arjabi, A.; Anarjan, N.; Jafarizadeh-Malmiri, H. Effects of Extracting Solvent Composition on Antioxidant and Antibacterial Activities of Alhagi maurorum Extracts. J. Food Process. Preserv. 2021, 45, e15300. [Google Scholar] [CrossRef]
- Paat, F.J.; Wahyuni, H.; Sapii, N.O.; Tumbelaka, S.; Watung, J.F.; Wantasen, S. Analysis of Biopesticide Active Compounds in Barringtonia Asiatica L. Kurz Using the GC-MS Method. IOP Conf. Ser. Earth Environ. Sci. 2024, 1302, 012009. [Google Scholar] [CrossRef]
- Javed, M.R.; Salman, M.; Tariq, A.; Tawab, A.; Zahoor, M.K.; Naheed, S.; Shahid, M.; Ijaz, A.; Ali, H. The Antibacterial and Larvicidal Potencial of Bis-(2-Ethylhexyl) Phthalate from Lactiplantibacillus plantarum. Molecules 2022, 27, 7220. [Google Scholar] [CrossRef]
- Patil, K.; Singh, D.M. GC-MS Analysis of Fresh Water Cylindrospermum sp. PCC518, Cylindrospermum sp. PCC 567 Ethanol and Hexane Extracts. Int. J. Herb. Med. 2022, 10, 15–25. [Google Scholar]
- Eisa, N.; Ismail, A.; Abubaker, A.; Li, G. Exploring the Bioactive and Thermal Properties of Buckthorn Seed Oil: A Comprehensive Analysis. Inven. Biol. Int. J. Biol. Res. 2024, 4, 15–23. [Google Scholar] [CrossRef]
- Sanches, M.N.G.; Chaves, D.S.A.; Carvalho, M.G.; Araujo, M.F.; Vieira, I.J.C.; Braz-Filho, R. Chemical Compounds Isolated from Simira grazielae. Chem. Nat. Compd. 2017, 53, 543–544. [Google Scholar] [CrossRef]
- De Araújo, M.F.; Vieira, I.J.C.; Braz-Filho, R.; De Carvalho, M.G. Simiranes A and B: Erythroxylanes Diterpenes and Other Compounds from Simira eliezeriana (Rubiaceae). Nat. Prod. Res. 2011, 25, 1713–1719. [Google Scholar] [CrossRef]
- Dognini, J.; Meneghetti, E.K.; Teske, M.N.; Begnini, I.M.; Rebelo, R.A.; Dalmarco, E.M.; Verdi, M.; de Gasper, A.L. Antibacterial Activity of High Safrole Contain Essential Oils from Piper xylosteoides (Kunth) Steudel. J. Essent. Oil Res. 2012, 24, 241–244. [Google Scholar] [CrossRef]
- Ramírez, J.; Cartuche, L.; Morocho, V.; Aguilar, S.; Malagon, O. Antifungal Activity of Raw Extract and Flavanons Isolated from Piper ecuadorense from Ecuador. Rev. Bras. Farmacogn. 2013, 23, 370–373. [Google Scholar] [CrossRef]
- Gamboa, F.; Muñoz, C.C.; Numpaque, G.; Sequeda-Castañeda, L.G.; Gutierrez, S.J.; Tellez, N. Antimicrobial Activity of Piper Marginatum Jacq and Ilex Guayusa Loes on Microorganisms Associated with Periodontal Disease. Int. J. Microbiol. 2018, 2018, 4147383. [Google Scholar] [CrossRef] [PubMed]
Species | Moisture (%) | Yield (%) | |||
---|---|---|---|---|---|
DME | MAE | UAE | PLE | ||
Piper carpunya | 7.47 ± 0.01 a | 9.48 ± 1.44 aB | 17.15 ± 0.65 bC | 17.11 ± 0.21 bC | 6.88 ± 0.54 cA |
Simira ecuadorenses | 5.71 ± 0.00 b | 16.75 ± 0.31 aC | 16.49 ± 0.46 aC | 17.72 ± 1.84 aC | 6.92 ± 0.25 bA |
Species | Extraction Method | TPC mg GAE/100 g dm | DPPH μmol TE/g dm | ABTS μmol TE/g dm) | FRAP μmol TE/g dm | ORAC µmol TE/g dm |
---|---|---|---|---|---|---|
Piper carpunya | DME | 15.76 ± 0.71 B | 336.67 ± 22.50 C | 637.78 ± 10.57 B | 450.84 ± 4.86 A | 207.06 ± 4.18 B |
MAE | 23.65 ± 1.02 A | 549.22 ± 32.47 A | 519.44 ± 1.90 C | 234.31 ± 2.37 B | 245.50 ± 0.04 C | |
UAE | 25.68 ± 0.79 A | 466.36 ± 18.09 B | 704.96 ± 0.94 A | 236.21 ± 3.13 B | 525.22 ± 17.06 A | |
PLE | 25.58 ± 0.61 A | 344.91 ± 19.35 C | 418.57 ± 10.35 D | 242.65 ± 5.06 B | 158.32 ± 0.06 B | |
Simira ecuadorensis | DME | 22.84 ± 0.47 B | 627.35 ± 30.43 B | 697.71 ± 14.83 B | 205.69 ± 10.58 B | 160.49 ± 0.18 D |
MAE | 24.64 ± 1.19 B | 1025.04 ± 56.80 A | 803.99 ± 17.04 A | 212.90 ± 18.93 B | 581.70 ± 58.74 A | |
UAE | 24.39 ± 0.18 B | 1108.68 ± 26.21 A | 745.01 ± 24.13 B | 354.86 ± 29.37 A | 625.03 ± 0.57 B | |
PLE | 29.99 ± 1.48 A | 200.98 ± 11.88 C | 598.27 ± 22.06 C | 212.33 ± 5.26 B | 244.14 ± 13.58 C |
Microorganism | Extraction Technique | Positive Control | ||||
---|---|---|---|---|---|---|
DME | MAE | UAE | PLE | |||
P. carpunya | Gram-positive | |||||
L. monocytogenes | 12.7 ± 2.1 A | 14.0 ± 4.6 A | 12.0 ± 3.5 A | 11.3 ± 0.6 A | 16.3 ± 1.2 A | |
S. aureus | 9.7 ± 1.2 BC | 8.7 ± 0.6 C | 10.7 ± 0.6 B | 10.0 ± 1.7 BC | 17.3 ± 0.6 A | |
S. epidermidis | 8.3 ± 0.6 B | 8.0 ± 0.0 B | 9.0 ± 1.7 B | ni | 19.3 ± 0.6 A | |
Gram-negative | ||||||
S. enterica subsp. enterica | ni | ni | ni | ni | 16.7 ± 1.5 | |
E. coli P. aeuruginosa | ni 10.3 ± 2.1 A | ni 13.3 ± 1.5 A | ni 12.0 ± 2.7 A | ni ni | 18.0 ± 0.0 14.0 ± 2.0 A | |
C. jejuni | ni | ni | ni | ni | 10.0 ± 1.0 | |
K. aerogenes | ni | ni | ni | ni | 19.7 ± 0.6 | |
Fungi | ||||||
A. niger | ni | ni | ni | ni | 31.0 ± 1.7 | |
C. albicans | 8.3 ± 0.6 BC | 9.0 ± 0.0 B | 8.7 ± 0.6 BC | 8.0 ± 0.0 C | 28.3 ± 0.6 A | |
S. ecuadorensis | Gram-positive | |||||
S. epidermidis S. aureus L. monocytogenes | 8.3 ± 0.6 B 8.7 ± 0.6 B 15.0 ± 4.0 A | 8.0 ± 0.0 B 8.3 ± 0.6 B 12.7 ± 2.1 A | 8.0 ± 0.0 B 8.3 ± 0.6 B 12.0 ± 3.6 A | ni 9.3 ± 1.5 B 12.0 ± 1.5 A | 20.7 ± 2.1 A 18.0± 1.0 A 16.7± 1.5 A | |
Gram-negative | ||||||
S. enterica subsp. enterica E. coli | ni ni | ni ni | ni ni | ni ni | 16.7 ± 1.5 18.0 ± 0.0 | |
K. aerogenes | ni | ni | ni | ni | 19.7 ± 0.6 | |
P. aeuruginosa | ni | 12.7 ± 2.1 A | 12.3 ± 1.5 A | ni | 14.7 ± 1.1 A | |
C. jejuni | ni | ni | ni | ni | 10.0 ± 1.0 | |
Fungi | ||||||
A. niger | ni | ni | ni | ni | 31.0 ± 1.7 | |
C. albicans | 8.3 ± 0.6 B | ni | ni | ni | 28.3 ± 0.6 A |
Microorganism | P. carpunya | S. ecuadorensis | ||||||
---|---|---|---|---|---|---|---|---|
DME | MAE | UAE | PLE | DME | MAE | UAE | PLE | |
Staphylococcus epidermidis | 80 | 80 | 80 | _ | 80 | 80 | 80 | _ |
Pseudomona aeruginosa | 40 | 40 | 80 | _ | 80 | 20 | 20 | _ |
Staphylococcus aureus | 80 | 80 | 40 | 80 | 80 | 80 | 80 | 80 |
Listeria monocytogenes | 20 | 20 | 20 | 80 | 80 | 80 | 80 | 80 |
Candida albicans | 80 | 80 | 80 | 80 | 80 | _ | _ | _ |
TR (min) | Peak Name | CAS Number | PLE | MAE | DME | UAE | IC | KIC | KIL | M+ m/z |
---|---|---|---|---|---|---|---|---|---|---|
32.14 | Eicosane | 112-95-8 | 0.18 ± 0.08 A | 0.29 ± 0.02 A | 2.39 ± 0.16 B | - | KI | 2006 | 2000 | |
33.05 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 82304-66-3 | 2.17 ± 0.06 A | 2.65 ± 0.051 BC | 2.66 ± 0.16 BC | 0.99 ± 0.04 D | KI | 1931 | 1938 | |
35.25 | Ethyl palmitate | 628-97-7 | 2.01 ± 0.05 A | 2.39 ± 0.06 A | - | 6.59 ± 0.24 B | MS | 57, 43, 85, 101, 239, 284 | ||
35.93 | Harman | 486-84-0 | - | 1.65 ± 0.16 A | 0.47 ± 0.10 B | 3.32 ± 0.05 C | MS | 182, 154,77, 127, 91 | ||
40.52 | Ethyl Linoleate | 544-35-4 | 1.06 ± 0.02 A | 0.74 ± 0.02 B | - | 5.83 ± 0.33 C | MS | 67, 81, 55, 95, 41, 109 | ||
40.74 | Ethyl linolenate | 1191-41-9 | 2.46 ± 0.04 A | 1.86 ± 0.00 A | 1.02 ± 0.28 A | 17.83 ± 0.74 B | MS | 79, 67, 93, 55, 41, 108, 121, 135 | ||
41.42 | Docosane | 629-97-0 | 3.79 ± 0.11 A | 4.19 ± 0.14 A | 3.59 ± 0.14 A | 4.01 ± 0.14 A | KI | 2206 | 2200 | |
43.40 | N,N-Dimethylpalmitamide | 3886-91-7 | 3.00 ± 0.13 A | 1.33 ± 0.16 BC | 3.01 ± 0.13 A | 1.28 ± 0.08 BC | MS | 87, 72, 100, 45 | ||
44.14 | Octadecane, 3-ethyl-5-(2-ethylbutyl)- | 55282-12-7 | 2.87 ± 0.05 A | 2.51 ± 0.24 A | 0.85 ± 0.26 BC | 0.63 ± 0.17 BC | MS | 57, 71, 43, 85, 99 | ||
46.94 | Tetracosane | 646-31-1 | 4.88 ± 0.50 A | 5.87 ± 0.14 B | 5.08 ± 0.10 A | - | MS | 43, 57, 71, 85, 99 | ||
52.03 | Octacosane | 630-02-4 | 4.69 ± 0.13 A | 6.08 ± 0.12 B | 4.20 ± 0.22 A | 3.45 ± 0.08 C | MS | 57, 71, 43, 85, 99, 113, 127, 141 | ||
56.13 | Phthalic acid, 5-methylhex-2-yl nonyl ester | - | 2.39 ± 0.04 A | 3.95 ± 0.08 BC | 2.42 ± 2.42 BC | 1.61 ± 0.47 A | MS | 149, 57, 71, 43, 97, 167, 293 | ||
56.91 | Squalene | 111-02-4 | - | 3.19 ± 0.08 | - | - | MS | 69, 81, 95, 121, 137, 149, 207, 293 | ||
57.90 | Phthalic acid, 4-methylpent-2-yl nonyl ester | - | 0.50 ± 0.00 A | 0.32 ± 0.10 A | - | 4.04 ± 0.19 B | MS | 149, 57, 71, 85, 97, 167, 127, 207, 293 | ||
58.98 | Octadecane, 3-ethyl-5-(2-ethylbutyl)- | 55282-12-7 | 1.65 ± 0.14 A | 1.83 ± 0.01 A | 2.10 ± 0.72 A | - | MS | 57, 43, 69,97, 81, 111 | ||
61.13 | Tetratriacontane | 14167-59-0 | 8.67 ± 0.10 A | 11.36 ± 0.76 B | 4.32 ± 0.16 CD | 4.78 ± 0.04 CD | MS | 57, 71, 85, 43, 97, 111, 127, 141 | ||
62.31 | 2,4,6-Tris(1-phenylethyl)phenol | 18254-13-2 | 1.56 ± 0.03 A | 1.24 ± 0.13 B | 2.89 ± 0.09 C | 1.57 ± 0.14 A | MS | 57, 69, 47, 391, 43, 83, 406, 313 | ||
69.63 | γ-Sitosterol | 83-47-6 | 0.74 ± 0.12 A | - | 2.04 ± 1.43 A | - | MS | 57, 69, 97, 43, 81, 111, 207, 281, 414, 329 | ||
71.62 | Hexatriacontane | 630-06-8 | 2.62 ± 0.08 A | 3.51 ± 0.24 B | 8.02 ± 0.11 C | - | MS | 57, 71, 43, 85, 97 | ||
79.06 | Methyl 3,5-dicyclohexyl-4-hydroxybenzoate | 55125-23-0 | - | 2.68 ± 0.17 A | 1.63 ± 0.05 B | 0.94 ± 0.07 C | MS | 57, 69, 317, 207, 191, 43 | ||
Total identified (%) | 75.09 | 78.95 | 74.97 | 78.79 | ||||||
Alkanes (%) | 35.18 | 39.68 | 34.92 | 18.29 | ||||||
Esters (%) | 16.63 | 19.45 | 14.53 | 41.8 | ||||||
Siloxanes (%) | 15.72 | 3.66 | 5.31 | 5.75 |
Ret. Time | Peak Name | CAS Number | DME | MAE | UAE | PLE | IC | KIC | IKL | M+ m/z |
---|---|---|---|---|---|---|---|---|---|---|
22.13 | Diethyl Phthalate | 84-66-2 | 0.89 ± 0.28 A | 1.92 ± 0.27 B | 0.66 ± 0.02 A | 2.70 ± 0.18 C | KI | 1614 | 1603 | |
24.30 | Isoelemicin | 5273-85-8 | 2.87± 1.49 A | 4.49 ± 0.05 A | 3.46 ± 0.26 A | 13.34 ± 1.89 B | MS | 193, 208, 133, 105, 165,79 | ||
28.73 | Nonadecane | 629-92-5 | 1.25 ± 0.47 A | 3.36 ± 0.05 B | 1.39 ± 0.11 A | 0.72 | MS | 57, 43, 71, 85, 91 | ||
34.30 | Dibutyl phthalate | 84-74-2 | 1.30 ± 0.40 A | 1.62 ± 0.38 A | 0.23 ± 0.02 B | - | KI | 1971 | 1967 | |
35.06 | Eicosane | 112-95-8 | 4.23 ± 0.68 A | 7.45 ± 0.03 B | 4.32 ± 0.09 A | - | MS | 57, 43, 71, 85, 91, 99, 163 | ||
40.75 | (Z,Z,Z)-9,12,15-Octadecatrienoic acid, ethyl ester | 1191-41-9 | 2.59 ± 1.70 A | - | 1.30 ± 0.02 A | 5.68 ± 0.48 C | MS | 79, 67, 95 | ||
41.05 | Heneicosane | 629-94-7 | - | 7.95 ± 0.25 | - | - | MS | 57, 71, 43, 85 | ||
41.41 | Docosane | 629-97-0 | 5.11 ± 1.30 A | - | 5.68 ± 0.11 A | 6.06 ± 0.59 A | MS | 57, 71, 43, 85 | ||
41.76 | Acetic acid n-octadecyl ester | 822-23-1 | 0.92 ± 0.00 A | 1.90 ± 0.02 B | 0.89 ± 0.04 A | 2.12 ± 0.08 C | KI | 2218 | 2211 | |
43.25 | N,N-Dimethylpalmitamide | 3886-91-7 | 1.83 ± 0.16 A | 2.80 ± 0.24 BC | 1.45 ± 0.19 A | 3.30 ± 0.25 BC | MS | 87, 55, 43, 72 | ||
46.89 | Tetracosane | 646-31-1 | 6.61 ± 1.00 A | 8.53 ± 0.21 BCD | 7.23 ± 0.61 ADE | 8.74 ± 1.03 BCE | MS | 57, 71, 43, 85, 97, 113, 127, 210 | ||
52.03 | Hentriacontane | 630-04-6 | 7.04 ± 1.75 A | 8.33 ± 0.38 A | 7.46 ± 0.32 A | 8.39 ± 0.48 A | MS | 57, 43, 71, 85, 97, 111, 125, 207 | ||
54.43 | Nonacosane | 630-03-5 | - | 1.90 ± 0.97 A | 1.30 ± 0.11 A | 2.59 ± 0.32 A | MS | 57, 71, 43, 85, 97 | ||
55.85 | 1,3-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | 137-89-3 | 1.40 ± 0.26 A | 3.36 ± 0.27 BC | 1.55 ± 0.11 A | 2.94 ± 0.47 BC | MS | 149, 167, 57, 71 | ||
60.85 | Hexatriacontane | 630-06-8 | 7.99 ± 1.61 A | 7.92 ± 0.00 A | 8.53 ± 0.06 A | - | MS | 43, 57, 71, 85, 97, 113, 127, 141, 155, 207, 281 | ||
65.54 | Tetratriacontane | 14167-59-0 | 6.47 ± 2.45 A | 5.58 ± 0.76 A | 7.18 ± 0.63 A | 0.69 ± 0.36 A | MS | 57, 71, 43, 81, 97, 111, 127, 141, 253 | ||
71.18 | Tetratetracontane | 7098-22-8 | 4.51 | 2.05 ± 2.63 A | - | - | MS | 57, 71, 85, 43, 97, 111, 207, 125 | ||
71.65 | Hexatriacontane | 630-06-8 | 6.03 | 2.72 ± 0.00 A | 5.27 ± 0.48 B | 5.53 ± 0.55 B | MS | 57, 71, 43, 85, 97, 11, 207, 281 | ||
74.10 | Sesquiterpene lactone (epoxidized) * | - | 1.93 ± 0.63 A | 0.91 ± 0.86 A | 2.05 ± 0.22 A | 3.44 ± 1.02 B | MS | Tentatively identified based on MS fragmentation 385, 69, 83, 97 | ||
Total identified (%) | 73.26 | 85.81 | 71.89 | 83.07 | ||||||
Alkanes (%) | 52.32 | 59.45 | 50.64 | 35.76 | ||||||
Esters (%) | 12.7 | 13.73 | 8.06 | 20.66 | ||||||
Phenols (%) | 4.8 | 6.31 | 6.6 | 16.78 |
Microorganism | Strain | Gram * | Incubation Temperature (°C) | Broth | Test Agar |
---|---|---|---|---|---|
Salmonella enterica subsp. enterica | VT000312-10EA derived ATCC 14028 | - | 37 | TSB | Muller Hinton |
Escherichia coli | ATCC 11775 | - | 37 | BHI | Muller Hinton |
Klebsiella aerogenes | ATCC 13048 | - | 37 | BHI | Muller Hinton |
Staphyloccoccus epidermidis | ATCC 12228 | + | 37 | BHI | Muller Hinton |
Pseudomona aeuruginosa | ATCC 10145 | - | 37 | TSB | Muller Hinton |
Campylobacter jejuni | ATCC 33560 | - | 42 | BHI | Nutrient + 5% blood |
Staphyloccoccus aureus | ATCC 25923 | + | 37 | BHI | Muller Hinton |
Listeria monocytogenes | ATCC 19115 | + | 37 | BHI | Muller Hinton |
Aspergillus niger | ATCC 6275 | 25 | CYM | Muller Hinton | |
Candida albicans | ATCC 24433 | 25 | CYM | Muller Hinton |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guamán-Balcázar, M.d.C.; Hualpa, D.; Infante, G.; Luzuriaga, L.; Riofrío, J.L.; Jarro, A.; Lopez, E.; Salas-Gomez, V.; Salazar, R.; Reyes, J.F.; et al. Chemical Composition, Antioxidant and Antimicrobial Activity of Piper carpunya and Simira ecuadorensis: A Comparative Study of Four Extraction Methods. Plants 2025, 14, 2526. https://doi.org/10.3390/plants14162526
Guamán-Balcázar MdC, Hualpa D, Infante G, Luzuriaga L, Riofrío JL, Jarro A, Lopez E, Salas-Gomez V, Salazar R, Reyes JF, et al. Chemical Composition, Antioxidant and Antimicrobial Activity of Piper carpunya and Simira ecuadorensis: A Comparative Study of Four Extraction Methods. Plants. 2025; 14(16):2526. https://doi.org/10.3390/plants14162526
Chicago/Turabian StyleGuamán-Balcázar, María del Cisne, Diana Hualpa, Garlet Infante, Luis Luzuriaga, José Luis Riofrío, Anderli Jarro, Estefany Lopez, Verónica Salas-Gomez, Rómulo Salazar, Jorge F. Reyes, and et al. 2025. "Chemical Composition, Antioxidant and Antimicrobial Activity of Piper carpunya and Simira ecuadorensis: A Comparative Study of Four Extraction Methods" Plants 14, no. 16: 2526. https://doi.org/10.3390/plants14162526
APA StyleGuamán-Balcázar, M. d. C., Hualpa, D., Infante, G., Luzuriaga, L., Riofrío, J. L., Jarro, A., Lopez, E., Salas-Gomez, V., Salazar, R., Reyes, J. F., & Meneses, M. A. (2025). Chemical Composition, Antioxidant and Antimicrobial Activity of Piper carpunya and Simira ecuadorensis: A Comparative Study of Four Extraction Methods. Plants, 14(16), 2526. https://doi.org/10.3390/plants14162526