Transcriptomic Responses of Wheat Anthers to Drought Stress and Antitranspirants
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site, Design, and Treatments
2.2. Planting, Agronomic Practices, and Management
2.3. Measurements and Sampling
2.3.1. Air Temperature, Relative Humidity, and Soil Moisture
2.3.2. Collection of Anthers at Leptotene-Zygotene of Meiosis I
2.3.3. Pollen Viability
2.3.4. Yield and Yield Components
2.3.5. RNA Extraction from Anthers
2.4. Transcriptomic Data Analysis
2.4.1. Pre-Processing of Raw Data Files
2.4.2. Differential Expression Analysis
2.4.3. GO Enrichment Analysis
2.4.4. Invertase Genes, Starch, and Sucrose Synthesis Genes
2.4.5. Drought Tolerance or Response Genes
2.5. Statistical Analysis
3. Results
3.1. Soil Moisture Decreased Substantially in Droughted Plots
3.2. Major Transcriptomic Responses from Antitranspirant Treatment Under Drought Stress
3.3. GO-Enriched Terms Linked to DEGs
Hormonal Responses, Pollen/Anther, Carbohydrate-, or Sugar-Related GO Terms
3.4. Downregulation of Invertase, Starch, and Sucrose Synthesis Genes with Antitranspirants
3.5. Differential Responses of Some Drought Tolerance and Response Genes
3.6. Pollen Viability and Yield
4. Discussion
4.1. Antitranspirants Application Induces Major Transcriptomic Changes
4.2. Variations in Hormonal Responses for GO Enriched Terms
4.3. Antitranspirants Affect Carbohydrate- or Sugar-Related Processes with Downregulation of Invertase, Starch, and Sucrose Synthesis Genes
4.4. Antitranspirants Induce Variations in Expression Pattern of DEGs Involved in Drought Tolerance or Stress Response
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Rötter, R.P.; Semerádová, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; et al. Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Sci. Adv. 2019, 5, eaau2406. [Google Scholar] [CrossRef]
- Dodd, I.C.; Whalley, W.R.; Ober, E.S.; Parry, M.A.J. Genetic and management approaches to boost UK wheat yields by ameliorating water deficits. J. Exp. Bot. 2011, 62, 5241–5248. [Google Scholar] [CrossRef] [PubMed]
- Khadka, K.; Earl, H.J.; Raizada, M.N.; Navabi, A. A physio-morphological trait-based approach for breeding drought tolerant wheat. Front. Plant Sci. 2020, 11, 715. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.-J.; Zörb, C.; Geilfus, C.-M. Drought and crop yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.P.; Sharma, R.; Neelkanthe, S.S. Climate change: Combating drought with antitranspirants and super absorbent. Plant Arch. 2017, 17, 1146–1156. Available online: http://plantarchives.org/17-2/1146-1156__3861_.pdf (accessed on 1 January 2023).
- Sow, S.; Ranjan, S. Antitranspirants: A novel tool for combating water stress under climate change scenario. Food Sci. Rep. 2021, 2, 29–31. Available online: https://foodandscientificreports.com/assets/uploads/issues/1610813551antitranspirants_a_novel_tool_for_combating_with_water_stress_under_climate_change_scenario_1_compressed.pdf (accessed on 1 January 2023).
- Kettlewell, P.S.; Heath, W.L.; Haigh, I.M. Yield enhancement of droughted wheat by film antitranspirant application: Rationale and evidence. Agric. Sci. 2010, 1, 143–147. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Aziz, M.M.; Siddique, K.H.M.; Flower, K.C. Film antitranspirants increase yield in drought stressed wheat plants by maintaining high grain number. Agric. Water Manag. 2015, 159, 11–18. [Google Scholar] [CrossRef]
- Mphande, W.; Farrell, A.D.; Grove, I.G.; Vickers, L.H.; Kettlewell, P.S. Metabolic and film antitranspirants both reduce drought damage to wheat yield despite having contrasting effects on leaf ABA. J. Agron. Crop Sci. 2021, 208, 143–157. [Google Scholar] [CrossRef]
- Mphande, W.; Farrell, A.D.; Grove, I.G.; Vickers, L.H.; Kettlewell, P.S. Yield improvement by antitranspirant application in droughted wheat is associated with reduced endogenous abscisic acid concentration. Agric. Water Manag. 2021, 244, 106528. [Google Scholar] [CrossRef]
- Weerasinghe, M.M.; Kettlewell, P.S.; Grove, I.G.; Hare, M.C. Evidence for improved pollen viability as the mechanism for film antitranspirant mitigation of drought damage to wheat yield. Crop Pasture Sci. 2016, 67, 137. [Google Scholar] [CrossRef]
- Mphande, W.; Kettlewell, P.S.; Grove, I.G.; Farrell, A.D. The potential of antitranspirants in drought management of arable crops: A review. Agric. Water Manag. 2020, 236, 106143. [Google Scholar] [CrossRef]
- Reddy, S.K.; Liu, S.; Rudd, J.C.; Xue, Q.; Payton, P.; Finlayson, S.A.; Mahan, J.; Akhunova, A.; Holalu, S.V.; Lu, N. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. J. Plant Physiol. 2014, 171, 1289–1298. [Google Scholar] [CrossRef]
- Ma, J.; Li, R.; Wang, H.; Li, D.; Wang, X.; Zhang, Y.; Zhen, W.; Duan, H.; Yan, G.; Li, Y. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Front. Plant Sci. 2017, 8, 592. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jiang, M.; Guo, C. Crop pollen development under drought: From the phenotype to the mechanism. Int. J. Mol. Sci. 2019, 20, 1550. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Shiran, B.; Wan, J.; Lewis, D.C.; Jenkins, C.L.D.; Condon, A.G.; Richards, R.A.; Dolferus, R. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ. 2010, 33, 926–942. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, H.; Wei, Z.; Ma, H.; Ge, X. Rice male development under drought stress: Phenotypic changes and stage-dependent transcriptomic reprogramming. Mol. Plant. 2013, 6, 1630–1645. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Wu, S.; Wan, X. The essential roles of sugar metabolism for pollen development and male fertility in plants. Crop J. 2021, 9, 1223–1226. [Google Scholar] [CrossRef]
- Koonjul, P.K.; Minhas, J.S.; Nunes, C.; Sheoran, I.S.; Saini, H.S. Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J. Exp. Bot. 2005, 56, 179–190. [Google Scholar] [CrossRef]
- Weerasinghe, M.M. Film Antitranspirants to Increase Yield of Droughted Wheat. Ph.D. Thesis, Harper Adams University, Newport, UK, 2013. Available online: https://hau.repository.guildhe.ac.uk/id/eprint/17315/1/Minuka%20Weerasinghe.pdf (accessed on 1 January 2023).
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- AHDB. Nutrient Management Guide (RB209)|AHDB. Ahdb.org.uk. Available online: https://ahdb.org.uk/nutrient-management-guide-rb209 (accessed on 5 May 2022).
- Janes, B.E. The effect of molecular size, concentration in nutrient solution, and exposure time on the amount and distribution of polyethylene glycol in pepper plants. Plant Physiol. 1974, 54, 226–230. [Google Scholar] [CrossRef]
- Sylvester-Bradley, R.; Grills, J.P.; Roebuck, J.F. Methods for measuring cereal crops. In Aspects of Applied Biology: Field Trials Methods and Data Handling; Churchill College, Association of Applied Biologists: Cambridge, UK, 1985; Volume 10, pp. 213–239. [Google Scholar]
- Blánquez, M.M. RNA Extraction from Wheat Stigmas Stored in DNA/RNA Shield Protocol v1.protocols.io. Available online: https://www.protocols.io/view/rna-extraction-from-wheat-stigmas-stored-in-dna-rn-36wgq7kj3vk5/v1 (accessed on 14 November 2022).
- International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-González, R.H.; Borrill, P.; Lang, D.; Harrington, S.A.; Brinton, J.; Venturini, L.; Davey, M.; Jacobs, J.; van Ex, F.; Pasha, A.; et al. The transcriptional landscape of polyploid wheat. Science 2018, 361, eaar6089. [Google Scholar] [CrossRef] [PubMed]
- Borrill, P.; Harrington, S.A.; Simmonds, J.; Uauy, C. Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. Plant Physiol. 2019, 180, 1740–1755. [Google Scholar] [CrossRef]
- Wang, C.; Wang, G.; Wen, X.; Qu, X.; Zhang, Y.; Zhang, X.; Deng, P.; Chen, C.; Ji, W.; Zhang, H. Characteristics and expression analysis of invertase gene family in common wheat (Triticum aestivum L.). Genes 2022, 14, 41. [Google Scholar] [CrossRef]
- Ye, J.; Bu, Y.; He, M.; Wu, Y.; Yang, X.; Zhang, L.; Song, X. Genome-wide analysis of invertase gene family in wheat (Triticum aestivum L.) indicates involvement of TaCWINVs in pollen development. Plant Growth Regul. 2022, 98, 77–89. [Google Scholar] [CrossRef]
- Howe, K.L.; Contreras-Moreira, B.; De Silva, N.; Maslen, G.; Akanni, W.; Allen, J.; Alvarez-Jarreta, J.; Barba, M.; Bolser, D.M.; Cambell, L.; et al. Ensembl Genomes 2020—Enabling non-vertebrate genomic research. Nucleic Acids Res. 2020, 48, D689–D695. [Google Scholar] [CrossRef]
- Chen, J.; Watson-Lazowski, A.; Nitin Uttam Kamble; Vickers, M.; Seung, D. Gene expression profile of the developing endosperm in durum wheat provides insight into starch biosynthesis. BMC Plant Biol. 2023, 23, 363. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Zhang, Z.; Wu, W.; Lin, X.; Gao, M.; Yang, Y.; Zhao, P.; Xu, S.; Yang, C.; et al. Deciphering the transcriptional regulatory network governing starch and storage protein biosynthesis in wheat for breeding improvement. Adv. Sci. 2024, 11, 2401383. [Google Scholar] [CrossRef]
- Wang, N.; Xing, C.; Qu, G.; Zhuo, J.; Wang, X.; Li, Y.; Yan, Y.; Li, X. New insight into the sucrose biosynthesis pathway from genome-wide identification, gene expression analysis, and subcellular localization in hexaploid wheat (Triticum aestivum L.). J. Plant Physiol. 2022, 276, 153770. [Google Scholar] [CrossRef]
- Bhanbhro, N.; Wang, H.-J.; Yang, H.; Xu, X.-J.; Jakhar, A.M.; Shalmani, A.; Zhang, R.-X.; Bakhsh, Q.; Akbar, G.; Jakhro, M.I.; et al. Revisiting the molecular mechanisms and adaptive strategies associated with drought stress tolerance in common wheat (Triticum aestivum L.). Plant Stress 2024, 11, 100298. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, Y.; Ma, F.; Lv, Q.; Zhu, X.; Guo, G.; Li, M.; Yang, W.; Que, B.; Zhang, Y.; et al. Integrating high-throughput phenotyping and genome-wide association studies for enhanced drought resistance and yield prediction in wheat. New Phytol. 2024, 243, 1758–1775. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yuan, S.; Cao, H.; Lam, S.M.; Shui, G.; Hong, Y.; Wang, X. Phosphatidylinositol-hydrolyzing phospholipase C4 modulates rice response to salt and drought. Plant Cell Environ. 2018, 42, 536–548. [Google Scholar] [CrossRef]
- Mao, H.; Jian, C.; Cheng, X.; Chen, B.; Mei, F.; Li, F.; Zhang, Y.; Li, S.; Du, L.; Li, T.; et al. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnol. J. 2021, 20, 846–861. [Google Scholar] [CrossRef]
- Wang, D.; Zuo, J.; Liu, S.; Wang, W.; Lu, Q.; Hao, X.; Fang, Z.; Liang, T.; Sun, Y.; Guo, C.; et al. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat (Triticum aestivum L.). Front. Plant Sci. 2023, 14, 1219856. [Google Scholar] [CrossRef]
- Ye, H.; Qiao, L.; Guo, H.; Guo, L.; Ren, F.; Bai, J.; Wang, Y. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances. Front. Plant Sci. 2021, 12, 663118. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Guan, P.; Wang, Y.; Wang, X.; Wang, Z.; Qin, Z.; Ma, S.; Xin, M.; Hu, Z.; et al. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. Mol. Plant 2023, 16, 393–414. [Google Scholar] [CrossRef]
- Lamin-Samu, A.T.; Farghal, M.; Ali, M.; Lu, G. Morpho-physiological and transcriptome changes in tomato anthers of different developmental stages under drought stress. Cells 2021, 10, 1809. [Google Scholar] [CrossRef]
- Kocięcka, J.; Liberacki, D.; Stróżecki, M. The role of antitranspirants in mitigating drought stress in plants of the grass family (Poaceae)—A review. Sustainability 2023, 15, 9165. [Google Scholar] [CrossRef]
- Kaufmann, M.R.; Eckard, A.N. Evaluation of water stress control with polyethylene glycols by analysis of guttation. Plant Physiol. 1971, 47, 453–456. [Google Scholar] [CrossRef]
- Lawlor, D.W. Absorption of polyethylene glycols by plants and their effects on plant growth. New Phytol. 1970, 69, 501–513. [Google Scholar] [CrossRef]
- Ji, X.; Dong, B.; Shiran, B.; Talbot, M.J.; Edlington, J.E.; Hughes, T.; White, R.G.; Gubler, F.; Dolferus, R. Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol. 2011, 156, 647–662. [Google Scholar] [CrossRef]
- Aya, K.; Ueguchi-Tanaka, M.; Kondo, M.; Hamada, K.; Yano, K.; Nishimura, M.; Matsuoka, M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 2009, 21, 1453–1472. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Seomun, S.; Yoon, Y.; Jang, G. Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid. Agronomy 2021, 11, 1886. [Google Scholar] [CrossRef]
- Kinoshita-Tsujimura, K.; Kakimoto, T. Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana. Plant Signal. Behav. 2011, 6, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Herrera-Estrella, L.; Tran, L.-S.P. The yin–yang of cytokinin homeostasis and drought acclimation/adaptation. Trends Plant Sci. 2016, 21, 548–550. [Google Scholar] [CrossRef]
- Sheoran, I.S.; Saini, H.S. Drought-induced male sterility in rice: Changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex. Plant Reprod. 1996, 9, 161–169. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, S.; Zhang, G.; Liu, H.; Ba, Q.; Li, Z.; Song, Y.; Zhang, P.; Niu, N.; Wang, J. Carbohydrate metabolism and gene regulation during anther development disturbed by chemical hybridizing agent in wheat. Crop Sci. 2015, 55, 868–876. [Google Scholar] [CrossRef]
- Abdallah, M.M.S.; El-Bassiouny, H.M.S.; AbouSeeda, M.A. Potential role of kaolin or potassium sulfate as anti-transpirant on improving physiological, biochemical aspects and yield of wheat plants under different watering regimes. Bull. Natl. Res. Cent. 2019, 43, 134. [Google Scholar] [CrossRef]
- Mphande, W.; Farrell, A.D.; Vickers, L.H.; Grove, I.G.; Kettlewell, P.S. Yield improvement with antitranspirant application in droughted wheat associated with both reduced transpiration and reduced abscisic acid. J. Agric. Sci. 2024, 162, 33–45. [Google Scholar] [CrossRef]
- Roitsch, T.; González, M.-C. Function and regulation of plant invertases: Sweet sensations. Trends Plant Sci. 2004, 9, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.-L.; Jin, Y.; Yang, Y.-J.; Li, G.-J.; Boyer, J.S. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Mol. Plant. 2010, 3, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Dorion, S.; Lalonde, S.; Saini, H.S. Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol. 1996, 111, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.; Chamusco, K.C.; Chourey, P.S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol. 2002, 130, 1645–1656. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, Y.; Zhou, L.; Asad, M.A.U.; Zhao, Q.; Pan, G.; Cheng, F. Disruptions of sugar utilization and carbohydrate metabolism in rice developing anthers aggravated heat stress-induced pollen abortion. Plant Physiol. Biochem. 2023, 202, 107991. [Google Scholar] [CrossRef]
- Lü, B.; Guo, Z.; Liang, J. Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms. Sci. China C Life Sci. 2008, 51, 863–871. [Google Scholar] [CrossRef]
- Pfister, B.; Zeeman, S.C. Formation of starch in plant cells. Cell. Mol. Life Sci. 2016, 73, 2781–2807. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, J.-Y. Understanding wheat starch metabolism in properties, environmental stress condition, and molecular approaches for value-added utilization. Plants 2021, 10, 2282. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, X.; Wang, X.; Li, Q.; Guo, J.; Ma, T.; Zhao, C.; Tang, Y.; Qiao, L.; Wang, J.; et al. The sweetpotato β-amylase gene IbBAM1.1 enhances drought and salt stress resistance by regulating ROS homeostasis and osmotic balance. Plant Physiol. Biochem. 2021, 168, 167–176. [Google Scholar] [CrossRef]
- Yang, T.; Li, H.; Li, L.; Wei, W.; Huang, Y.; Xiong, F.; Wei, M. Genome-wide characterization and expression analysis of α-amylase and β-amylase genes underlying drought tolerance in cassava. BMC Genom. 2023, 24, 190. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Zhang, D.; Zou, D.; Wang, J.; Zheng, H.; Jia, Y.; Qu, Z.; Sun, B.; Zhao, H. Photosynthetic carbon fixation and sucrose metabolism supplemented by weighted gene co-expression network analysis in response to water stress in rice with overlapping growth stages. Front. Plant Sci. 2022, 13, 864605. [Google Scholar] [CrossRef]
- Li, H.; Tiwari, M.; Tang, Y.; Wang, L.; Yang, S.; Long, H.; Guo, J.; Wang, Y.; Wang, H.; Yang, Q.; et al. Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress. Ecotoxicol. Environ. Saf. 2022, 246, 114191. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef]
- Singh, D.; Laxmi, A. Transcriptional regulation of drought response: A tortuous network of transcriptional factors. Front. Plant Sci. 2015, 6, 895. [Google Scholar] [CrossRef]
- Gahlaut, V.; Jaiswal, V.; Kumar, A.; Gupta, P.K. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theor. Appl. Genet. 2016, 129, 2019–2042. [Google Scholar] [CrossRef]
- Pandey, A.; Khobra, R.; Mamrutha, H.M.; Wadhwa, Z.; Krishnappa, G.; Singh, G.; Singh, G.P. Elucidating the drought responsiveness in wheat genotypes. Sustainability 2022, 14, 3957. [Google Scholar] [CrossRef]
Sample No. | Sample Name | Replicate No. | Date Range, Wheat Stems with 3–4 Leaves Were Collected and Placed in Water or PEG | Days’ Range, Stems with Leaves Were Stored in Water or PEG | Anthers Collection Date |
---|---|---|---|---|---|
1 | WW1 | 1 | 2 August | 1 day | 3 August |
2 | WW2 | 2 | 2–3 August | 1–2 days | 4 August |
3 | WW4 | 3 | 2–7 August | 1–6 days | 8 August |
4 | US1 | 1 | 15 August | 0 day | 15 August |
5 | US3 | 2 | 15–16 August | 1–2 days | 17 August |
6 | US4 | 3 | 15–17 August | 1–3 days | 18 August |
7 | ABA2 | 1 | 15–21 August | 1–7 days | 22 August |
8 | ABA3 | 2 | 16–22 August | 1–7 days | 23 August |
9 | ABA5 | 3 | 17–23 August | 1–7 days | 24 August |
10 | VG1 | 1 | 16–24 August | 1–9 days | 25 August |
11 | VG2 | 2 | 16–24 August | 1–9 days | 25 August |
12 | VG5 | 3 | 17–25 August | 1–9 days | 26 August |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sehar, M.; Borrill, P.; Vickers, L.; Kettlewell, P.S. Transcriptomic Responses of Wheat Anthers to Drought Stress and Antitranspirants. Plants 2025, 14, 2633. https://doi.org/10.3390/plants14172633
Sehar M, Borrill P, Vickers L, Kettlewell PS. Transcriptomic Responses of Wheat Anthers to Drought Stress and Antitranspirants. Plants. 2025; 14(17):2633. https://doi.org/10.3390/plants14172633
Chicago/Turabian StyleSehar, Misbah, Philippa Borrill, Laura Vickers, and Peter S. Kettlewell. 2025. "Transcriptomic Responses of Wheat Anthers to Drought Stress and Antitranspirants" Plants 14, no. 17: 2633. https://doi.org/10.3390/plants14172633
APA StyleSehar, M., Borrill, P., Vickers, L., & Kettlewell, P. S. (2025). Transcriptomic Responses of Wheat Anthers to Drought Stress and Antitranspirants. Plants, 14(17), 2633. https://doi.org/10.3390/plants14172633