Optimization of In Vitro Germination, Viability Tests and Storage of Daylily (Hemerocallis spp.) Pollen
Abstract
:1. Introduction
2. Results and Analysis
2.1. Optimization of Culture Medium for Pollen Germination In Vitro
2.1.1. Effect of Different Media on Pollen Germination
2.1.2. Effects of Different Media on Pollen Tube Growth
2.2. Effects of Different Culture Temperatures on Daylily Pollen Germination and Pollen Tube Growth
2.3. Screening of Suitable Pollen Viability Assay Methods
2.4. Effects of Different Collection Times on Daylily Pollen Viability
2.5. Effect of Storage Temperature and Storage Time on Pollen Viability
2.5.1. Effects of 25 °C and 4 °C Storage Conditions on Pollen Viability
2.5.2. Effects of −20 °C and −40 °C Storage Conditions on Pollen Viability
3. Discussion
3.1. Pollen In Vitro Germination Culture
3.2. Effect of Different Incubation Temperatures on Pollination
3.3. Effect of Staining Method and Collection Time on Pollen Viability
3.4. Pollen Storage Conditions
4. Materials and Methods
4.1. Plant Material and Pollen Collection
4.2. Pollen Germination and Germination Medium
4.3. Screening of Pollen Viability Determination Methods
4.4. Effect of Different Collection Times and Storage Conditions on Pollen Viability
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, L.; Zhang, X.; Li, J.; Chu, B.; Yin, X. Comparison of Pollen Viability and Stigmatic Pollination of 10 Hemerocallis Species. J. Hebei For. Sci. Technol. 2023, 04, 22–26. [Google Scholar]
- Zhang, S.J.; Zhang, Z.G. Origin, Distribution, Classification and Application of Hemerocallis Species. Garden 2018, 5, 5–9. [Google Scholar]
- Zhou, Q.; Shi, J.; Ma, G. Comparative Analysis of Pollen Viability and Stigma Receptivity of Five Hemerocallis fulva Cultivars. Mol. Plant Breed. 2022, 20, 8272–8278. [Google Scholar]
- Zhou, X.; Zhu, S.; Wei, J.; Zhou, Y. Volatile Metabolomics and Chemometric Study Provide Insight into the Formation of the Characteristic Cultivar Aroma of Hemerocallis. Food Chem. 2023, 404, 134495. [Google Scholar] [CrossRef]
- Duan, L.; Li, Y.; Dong, Y.; Ai, X.; Pan, X.; Wang, Z.; Yu, S.; Li, J. Comparison of Fertility and Pollen Morphology of Five Double-Petaled Hemerocallis fulva Varieties. Mol. Plant Breed. 2025, 1–11. [Google Scholar]
- Iovane, M.; Cirillo, A.; Izzo, L.G.; Di Vaio, C.; Aronne, G. High Temperature and Humidity Affect Pollen Viability and Longevity in Olea europaea L. Agronomy 2022, 12, 1. [Google Scholar] [CrossRef]
- Akhond, M.A.Y.; Molla, M.A.H.; Islam, M.O.; Ali, M. Cross Compatibility Between Abelmoschus esculentus and A. moschatus. Euphytica 2000, 114, 175–180. [Google Scholar] [CrossRef]
- Meng, X.; Yin, S.; Di, W.; Xue, R.; Xu, J.; Liu, Y. ROS-Induced Oxidative Stress is Closely Related to Pollen Deterioration Following Cryopreservation. Vitr. Cell. Dev. Biol.-Plant 2017, 53, 433–439. [Google Scholar]
- Mazzeo, A.; Palasciano, M.; Gallotta, A.; Camposeo, S.; Pacifico, A.; Ferrara, G. Amount and Quality of Pollen Grains in Four Olive (Olea europaea L.) Cultivars as Affected by “On” and “Off” Years. Sci. Hortic. 2014, 170, 89–93. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, P.; Mao, H. Viability of the Pollen of Hemerocallis hybridus under Different Media and Store Conditions. J. Northwest For. Univ. 2009, 03, 95–97. [Google Scholar]
- Zhao, Y.; Li, J.; Chu, B.; Kang, X.; Yin, X. Pollen Viability of 6 Hemerocallis hybrida Varieties. J. West China For. Sci. 2017, 46, 15–19+31. [Google Scholar]
- Wang, J.; Luan, D.; Liang, J.; Yin, D.; Zhang, Z. Effects of Different Storage Temperatures on Pollen Viability of Hemerocallis fulva. Mol. Plant Breed. 2019, 17, 3058–3063. [Google Scholar]
- Li, M.; Jiang, F.; Huang, L.; Wang, H.; Song, W.; Zhang, X.; Zhang, Y.; Niu, L. Optimization of In Vitro Germination, Viability Tests and Storage of Paeonia ostii Pollen. Plants 2023, 12, 2460. [Google Scholar] [CrossRef] [PubMed]
- Tushabe, D.; Rosbakh, S. A Compendium of in vitro Germination Media for Pollen Research. Front. Plant Sci. 2021, 12, 709945. [Google Scholar] [CrossRef]
- Fayos, O.; Echávarri, B.; Vallés, M.P.; Mallor, C.; Garcés-Claver, A.; Castillo, A.M. A Simple and Efficient Method for Onion Pollen Preservation: Germination, Dehydration, Storage Conditions, and Seed Production. Sci. Hortic. 2022, 305, 111358. [Google Scholar] [CrossRef]
- Jia, W.; Wang, Y.; Mi, Z.; Wang, Z.; He, S.; Kong, D. Optimization of Culture Medium for in Vitro Germination and Storage Conditions of Exochorda racemosa Pollen. Front. Plant Sci. 2022, 13, 994214. [Google Scholar] [CrossRef]
- Hirose, T.; Hashida, Y.; Aoki, N.; Okamura, M.; Yonekura, M.; Ohto, C.; Terao, T.; Ohsugi, R. Analysis of Gene-Disruption Mutants of a Sucrose Phosphate Synthase Gene in Rice, OsSPS1, Shows the Importance of Sucrose Synthesis in Pollen Germination. Plant Sci. 2014, 225, 102–106. [Google Scholar] [CrossRef]
- Jia, W.; Wang, Y.; Guo, Y.; Wang, Z.; Qi, Q.; Yan, S.; Liu, H.; He, S. Characterization of Pollen Germination and Storage of Paeonia ludlowii. Sci. Silvae Sin. 2021, 57, 82–92. [Google Scholar]
- Mesnoua, M.; Roumani, M.; Bensalah, M.K.; Salem, A.; Benaziza, A. Optimization of Conditions for in Vitro Pollen Germination and Pollen Tube Growth of Date Palm (Phoenix dactylifera L.). J. Fundam. Appl. Sci. 2018, 10, 158. [Google Scholar] [CrossRef]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. Global Warming and Sexual Plant Reproduction. Trends Plant Sci. 2009, 14, 30–36. [Google Scholar] [CrossRef]
- Acar, I.; Kakani, V.G. The Effects of Temperature on in Vitro Pollen Germination and Pollen Tube Growth of Pistacia spp. Sci. Hortic. 2010, 125, 569–572. [Google Scholar] [CrossRef]
- Beltrán, R.; Valls, A.; Cebrián, N.; Zornoza, C.; García Breijo, F.; Reig Armiñana, J.; Garmendia, A.; Merle, H. Effect of Temperature on Pollen Germination for Several Rosaceae Species: Influence of Freezing Conservation Time on Germination Patterns. PeerJ 2019, 7, e8195. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.T.; Hewett, E.W.; Noiton, D.; Plummer, J.A. Self Incompatibility and Temperature Affect Pollen Tube Growth in ‘Sundrop’ Apricot (Prunus armeniaca L.). J. Hortic. Sci. Biotechnol. 1998, 73, 375–386. [Google Scholar] [CrossRef]
- Mog, B.; Veena, G.L.; Adiga, J.D.; Hebbar, K.B.; M, S.; Manjesh, G.N.; Eradasappa, E.; Mohana, G.S.; Thandaiman, V.; Vanitha, K.; et al. Pollen Morphological Study and Temperature Effect on the Pollen Germination of Cashew (Anacardium occidentale L.) Varieties. Sci. Hortic. 2023, 314, 111957. [Google Scholar] [CrossRef]
- Selak, G.V.; Ban, S.G.; Perica, S. The Effect of Temperature on Olive Pollen Germination. Acta Hortic. 2019, 1231, 49–53. [Google Scholar] [CrossRef]
- Pham, V.T.; Herrero, M.; Hormaza, J.I. Effect of Temperature on Pollen Germination and Pollen Tube Growth in Longan (Dimocarpus longan Lour.). Sci. Hortic. 2015, 197, 470–475. [Google Scholar] [CrossRef]
- Hebbar, K.B.; Rose, H.M.; Nair, A.R.; Kannan, S.; Niral, V.; Arivalagan, M.; Gupta, A.; Samsudeen, K.; Chandran, K.P.; Chowdappa, P.; et al. Differences in in Vitro Pollen Germination and Pollen Tube Growth of Coconut (Cocos nucifera L.) Cultivars in Response to High Temperature Stress. Environ. Exp. Bot. 2018, 153, 35–44. [Google Scholar] [CrossRef]
- Salem, M.A.; Kakani, V.G.; Koti, S.; Reddy, K.R. Pollen-Based Screening of Soybean Genotypes for High Temperatures. Crop Sci. 2007, 47, 219–231. [Google Scholar] [CrossRef]
- Atlagić, J.; Terzić, S.; Marjanović-Jeromela, A. Staining and Fluorescent Microscopy Methods for Pollen Viability Determination in Sunflower and Other Plant Species. Ind. Crops Prod. 2012, 35, 88–91. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, M.; Creech, D.L.; Yu, C. Microsporogenesis, Pollen Ornamentation, Viability of Stored Taxodium distichum var. distichum Pollen and Its Feasibility for Cross Breeding. Forests 2022, 13, 694. [Google Scholar] [CrossRef]
- Alexander, M.P. Differential Staining of Aborted and Nonaborted Pollen. Stain. Technol. 1969, 44, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, T.; Sinanoğlu, E.; Kırbay, E.; Kazaz, S.; Ercişli, S. Determining Appropriate Methods for Estimating Pollen Viability and Germination Rates in Lisianthus. Acta Sci. Pol. Hortorum Cultus 2024, 23, 33–42. [Google Scholar] [CrossRef]
- Xiang, Y.; Huang, W.; Lai, J.; Tang, L.; Lin, T. Determination of Viability of Passion Fruit Pollens. Fujian J. Agric. Sci. 2024, 39, 302–309. [Google Scholar]
- Martins, E.S.; Davide, L.M.C.; Miranda, G.J.; Barizon, J.d.O.; Souza Junior, F.d.A.; de Carvalho, R.P.; Gonçalves, M.C. Viabilidade in Vitro de Pólen de Cultivares de Milho em Diferentes Tempos de Coleta. Cienc. Rural 2017, 47, e20151077. [Google Scholar]
- Youmbi, E.; Tonfack, L.; Mbogning, J.; Nkongmeneck, B. Effect of Storage Conditions on Pollen Grains Viability and Pollen Tubes Elongation of Four Cola Species (Malvaceae). Res. Rev. Biosci. 2012, 6, 35–40. [Google Scholar]
- Kadri, K.; Elsafy, M.; Makhlouf, S.; Awad, M.A. Effect of Pollination Time, the Hour of Daytime, Pollen Storage Temperature and Duration on Pollen Viability, Germinability, and Fruit Set of Date Palm (Phoenix dactylifera L.) cv “Deglet Nour”. Saudi J. Biol. Sci. 2022, 29, 1085–1091. [Google Scholar] [CrossRef]
- Dinato, N.B.; Santos, I.R.I.; Vigna, B.B.Z.; Ferreira de Paula, A.; Favero, A.P. PERSPECTIVE: Pollen Cryopreservation for Plant Breeding and Genetic Resources Conservation. Cryo Lett. 2020, 41, 115–127. [Google Scholar]
- Akond, A.S.M.G.M.; Pounders, C.T.; Blythe, E.K.; Wang, X. Longevity of Crapemyrtle Pollen Stored at Different Temperatures. Sci. Hortic. 2012, 139, 53–57. [Google Scholar] [CrossRef]
- Ćalić, D.; Milojević, J.; Belić, M.; Miletić, R.; Zdravković-Korać, S. Impact of Storage Temperature on Pollen Viability and Germinability of Four Serbian Autochthon Apple Cultivars. Front. Plant Sci. 2021, 12, 709231. [Google Scholar] [CrossRef]
- Dutta, S.K.; Srivastav, M.; Chaudhary, R.; Lal, K.; Patil, P.; Singh, S.K.; Singh, A.K. Low Temperature Storage of Mango (Mangifera indica L.) Pollen. Sci. Hortic. 2013, 161, 193–197. [Google Scholar] [CrossRef]
- Novara, C.; Ascari, L.; La Morgia, V.; Reale, L.; Genre, A.; Siniscalco, C. Viability and Germinability in Long Term Storage of Corylus avellana Pollen. Sci. Hortic. 2017, 214, 295–303. [Google Scholar] [CrossRef]
- Yuan, S.C.; Chin, S.W.; Lee, C.Y.; Chen, F.C. Phalaenopsis Pollinia Storage at Sub-Zero Temperature and Its Pollen Viability Assessment. Bot. Stud. 2018, 59, 6. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, A. Effect of Low-Temperature Storage on Sweet Cherry (Prunus avium L.) Pollen Quality. HortScience 2020, 55, 258–260. [Google Scholar] [CrossRef]
- Mesnoua, M.; Roumani, M.; Salem, A. The Effect of Pollen Storage Temperatures on Pollen Viability, Fruit Set and Fruit Quality of Six Date Palm Cultivars. Sci. Hortic. 2018, 236, 279–283. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, X.; Gao, Y. Studies on Flowering Characteristics and Breeding System of Hemerocallis minor. J. China Agric. Univ. 2023, 28, 146–152. [Google Scholar]
- An, M.S.; Jo, J.H.; Choe, S.R.; Im, H.C.; Choe, D.C.; Park, Y.J. Pollen Germination of Hemerocallis spp. Affected by Media Type and. Korean J. Hortic. Sci. Technol. 2003, 21, 359–361. [Google Scholar]
- Hao, Q.; Xu, L.; Wang, H.; Liu, Q.; Wang, K. Evaluation of Pollen Viability, Stigma Receptivity, and the Cross Barrier Between Tropical and Hardy Water Lily Cultivars. Flora 2022, 290, 152046. [Google Scholar] [CrossRef]
- Buchner, L.; Eisen, A.K.; Šikoparija, B.; Jochner-Oette, S. Pollen Viability of Fraxinus excelsior in Storage Experiments and Investigations on the Potential Effect of Long-Range Transport. Forests 2022, 13, 600. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, K.; Zhong, W.P.; Chen, P.; Fan, X.M.; Yuan, D.Y. Optimization of in Vitro Pollen Germination and Pollen Viability Tests for Castanea mollissima and Castanea henryi. Sci. Hortic. 2020, 271, 109481. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, J.; Wang, X.; Zhao, Y. Studies on Pollen Morphology, Pollen Vitality and Preservation Methods of Gleditsia sinensis Lam. (Fabaceae). Forests 2023, 14, 243. [Google Scholar] [CrossRef]
- Du, K.; Zhang, D.; Ma, J.; Dan, Z.; Wen, X.; Lv, W.; Yang, L.; Bao, L.; Li, Y.; Chen, G.; et al. Effect of Ultra-Low Temperature Storage on the Viability of Pepper Pollen and Its Implications for Hybrid Breeding. Front. Plant Sci. 2025, 16, 1516016. [Google Scholar] [CrossRef]
- Cai, Z.; Su, W.; Dong, L.; Qiu, W.; Shi, P.; Liu, Y.; Huang, H.; Huang, Z.; Ren, H.; Wang, X. Effects of Calcium, Magnesium, Potassium, Light and Temperature on Pollen Germination and Pollen Tube Elongation of Passion Fruit in Vitro. J. Fruit Sci. 2022, 39, 86–94. [Google Scholar]
No. | Source g·L−1 | H3BO3 g·L−1 | KNO3 g·L−1 | Ca(NO3)2 g·L−1 | Pollen Germination Rates of Different Daylily Cultivars/% | ||||
---|---|---|---|---|---|---|---|---|---|
H. ‘Golden Coffee Ruffles’ | H. ‘Prairie Belle’ | H. ‘Kimberly’ | H. ‘Water Dragon’ | Hemerocallis fulva | |||||
1 | 50 | 0.1 | 0.06 | 0.2 | 36.43 ± 1.99 a | 48.91 ± 3.08 a | 42.78 ± 2.92 a | 62.65 ± 3.34 a | 28.82 ± 1.62 a |
2 | 50 | 0.2 | 0.08 | 0.25 | 28.18 ± 3.32 b | 30.75 ± 2.41 bc | 33.36 ± 4.06 b | 53.62 ± 5.46 b | 16.55 ± 2.52 bc |
3 | 50 | 0.3 | 0.1 | 0.3 | 18.72 ± 2.35 cd | 35.01 ± 2.81 b | 32.93 ± 2.95 b | 39.24 ± 4.04 c | 20.01 ± 1.81 b |
4 | 100 | 0.1 | 0.08 | 0.3 | 24.34 ± 3.17 bc | 25.03 ± 1.74 cd | 27.13 ± 1.97 bc | 32.12 ± 2.45 cd | 14.45 ± 1.43 cd |
5 | 100 | 0.2 | 0.1 | 0.2 | 25.63 ± 3.79 bc | 16.4 ± 1.42 e | 19.15 ± 1.58 cde | 29.35 ± 3.22 de | 17.73 ± 2.07 bc |
6 | 100 | 0.3 | 0.06 | 0.25 | 19.67 ± 3.84 bcd | 19.12 ± 1.65 de | 15.01 ± 2.46 de | 27.26 ± 2.15 de | 20.55 ± 1.77 b |
7 | 150 | 0.1 | 0.1 | 0.25 | 12.77 ± 2.2 de | 33.22 ± 3.9 b | 23.7 ± 3.37 cd | 13.23 ± 1.43 g | 10.23 ± 0.47 de |
8 | 150 | 0.2 | 0.06 | 0.3 | 17.06 ± 2.08 cde | 25.38 ± 2.83 cd | 26.86 ± 4.12 bc | 14.76 ± 1.69 fg | 12.37 ± 2.13 cd |
9 | 150 | 0.3 | 0.08 | 0.2 | 9.38 ± 1.81 e | 22.78 ± 1.11 de | 13.92 ± 2.51 e | 22.51 ± 1.57 f | 5.88 ± 1.07 e |
Cultivar | Factor Level | Source | H3BO3 | KNO3 | Ca(NO3)2 |
---|---|---|---|---|---|
H. ‘Golden Coffee Ruffles’ | K1 | 27.78 a | 24.51 a | 24.38 a | 23.81 a |
K2 | 23.22 a | 23.62 a | 20.63 a | 20.20 a | |
K3 | 13.07 b | 15.92 b | 19.04 a | 20.04 a | |
R | 14.71 | 8.59 | 5.35 | 3.77 | |
H. ‘Prairie Belle’ | K1 | 38.22 a | 30.87 a | 32.90 a | 29.36 a |
K2 | 21.95 b | 24.18 b | 26.19 b | 24.61 a | |
K3 | 22.28 b | 27.40 ab | 23.36 b | 28.48 a | |
R | 16.27 | 6.69 | 9.54 | 4.75 | |
H. ‘Kimberly’ | K1 | 36.36 a | 31.20 a | 28.22 a | 25.28 a |
K2 | 20.43 b | 26.46 ab | 24.80 a | 24.02 a | |
K3 | 21.49 b | 20.62 b | 25.26 a | 28.97 a | |
R | 15.93 | 10.58 | 3.41 | 4.95 | |
H. ‘Water Dragon’ | K1 | 51.84 a | 36 a | 34.89 a | 38.17 a |
K2 | 29.58 b | 32.58 a | 36.08 a | 31.37 a | |
K3 | 16.83 c | 29.67 b | 27.27 b | 28.70 a | |
R | 35.01 | 6.33 | 8.81 | 9.47 | |
Hemerocallis fulva | K1 | 21.79 a | 17.83 a | 20.58 a | 17.48 a |
K2 | 17.57 b | 15.55 a | 12.28 b | 15.78 a | |
K3 | 9.49 c | 15.48 a | 15.99 b | 15.60 a | |
R | 12.30 | 2.35 | 8.29 | 1.87 |
Variety | Factor | Variance of Square | df | Average of Square | F Value (F) | p Value |
---|---|---|---|---|---|---|
H. ‘Golden Coffee Ruffles’ | Sucrose | 3060.90 | 2 | 1530.45 | 21.25 | 0.000 |
H3BO3 | 1204.59 | 2 | 602.29 | 8.36 | 0.001 | |
KNO3 | 406.98 | 2 | 203.49 | 2.83 | 0.066 | |
Ca(NO3)2 | 245.58 | 2 | 122.79 | 1.70 | 0.189 | |
Inaccuracies | 5186.80 | 72 | 72.04 | |||
H. ‘Prairie Belle’ | Sucrose | 4672.83 | 2 | 2336.42 | 59.03 | 0.000 |
H3BO3 | 605 | 2 | 302.50 | 7.64 | 0.001 | |
KNO3 | 1296.89 | 2 | 645.44 | 16.38 | 0.000 | |
Ca(NO3)2 | 344.35 | 2 | 172.18 | 4.35 | 0.016 | |
Inaccuracies | 2849.56 | 72 | 39.58 | |||
H. ‘Kimberly’ | Sucrose | 4282.39 | 2 | 2141.19 | 26.49 | 0.000 |
H3BO3 | 1517.64 | 2 | 758.82 | 9.39 | 0.000 | |
KNO3 | 185.26 | 2 | 92.63 | 1.15 | 0.324 | |
Ca(NO3)2 | 357.46 | 2 | 178.73 | 2.21 | 0.117 | |
Inaccuracies | 5819.53 | 72 | 80.83 | |||
H. ‘Water Dragon’ | Sucrose | 16,950.24 | 2 | 8475.12 | 98.99 | 0.000 |
H3BO3 | 542.07 | 2 | 271.04 | 3.17 | 0.048 | |
KNO3 | 1234.32 | 2 | 617.16 | 7.21 | 0.001 | |
Ca(NO3)2 | 1286.40 | 2 | 643.20 | 7.51 | 0.001 | |
Inaccuracies | 6163.81 | 72 | 85.61 | |||
Hemerocallis fulva | Sucrose | 2108.39 | 2 | 1054.20 | 29.38 | 0.000 |
H3BO3 | 96.50 | 2 | 48.25 | 1.35 | 0.267 | |
KNO3 | 932.36 | 2 | 466.18 | 12.99 | 0.000 | |
Ca(NO3)2 | 57.92 | 2 | 28.96 | 0.81 | 0.450 | |
Inaccuracies | 2583.49 | 72 | 35.88 |
Factor Level | Cultivar | |||||
---|---|---|---|---|---|---|
H. ‘Golden Coffee Ruffles’ | H. ‘Prairie Belle’ | H. ‘Kimberly’ | H. ‘Water Dragon’ | Hemerocallis fulva | ||
Sucrose | T1 | 1556.75 a | 1665.25 a | 1910 a | 2674.25 a | 1548.75 a |
T2 | 1220.5 b | 1347.75 b | 1599 b | 1949.5 b | 1007 b | |
T3 | 887.25 c | 1037.75 c | 786 c | 1179.5 c | 536 c | |
R | 669.5 | 627.5 | 1124 | 1494.75 | 1012.75 | |
H3BO3 | T1 | 1300 a | 1532.5 a | 1562 a | 2198.75 a | 1244.75 a |
T2 | 1210.25 ab | 1261.5 b | 1395.5 ab | 1871.75 b | 1227.25 a | |
T3 | 1154.25 b | 1256.75 b | 1337.5 b | 1732.75 b | 942 b | |
R | 145.75 | 275.75 | 224.5 | 466 | 302.75 | |
KNO3 | T1 | 1169.25 b | 1491.25 a | 1361 a | 1996 a | 1003.25 a |
T2 | 1179.75 b | 1323.5 b | 1340 a | 1968.5 a | 976.25 a | |
T3 | 1315.5 a | 1236 b | 1594 b | 1838.75 a | 1112.25 a | |
R | 146.25 | 255.25 | 254 | 157.25 | 27 | |
Ca(NO3)2 | T1 | 1166.25 a | 1326.75 a | 1371.5 a | 1875 a | 1068.75 a |
T2 | 1235.75 a | 1371 a | 1469 a | 2027 a | 1017 a | |
T3 | 1262.5 a | 1353 a | 1454.5 a | 1901.25 a | 1006 a | |
R | 96.25 | 44.25 | 97.5 | 152 | 62.75 |
Type of Dye Method | Post-Treatment | Judgment Basis of Active Pollen |
---|---|---|
0.5% TTC | 30 min of dark culture at 30 °C [7] | red |
0.5% I2-KI | Observe immediately [50] | red |
1% Acetocarmine staining | Stand for 5 min [9] | red |
Level | Factor | |||
---|---|---|---|---|
Sucrose/(g·L−1) | H3BO3/(g·L−1) | KNO3/(g·L−1) | Ca(NO3)2/(g·L−1) | |
1 | 50 | 0.1 | 0.06 | 0.2 |
2 | 100 | 0.2 | 0.08 | 0.25 |
3 | 150 | 0.3 | 0.1 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Yang, C.; Li, J.; Huang, L.; Guo, J.; Feng, F. Optimization of In Vitro Germination, Viability Tests and Storage of Daylily (Hemerocallis spp.) Pollen. Plants 2025, 14, 1854. https://doi.org/10.3390/plants14121854
Li W, Yang C, Li J, Huang L, Guo J, Feng F. Optimization of In Vitro Germination, Viability Tests and Storage of Daylily (Hemerocallis spp.) Pollen. Plants. 2025; 14(12):1854. https://doi.org/10.3390/plants14121854
Chicago/Turabian StyleLi, Wei, Chongcheng Yang, Jiyuan Li, Lixin Huang, Jinsong Guo, and Feng Feng. 2025. "Optimization of In Vitro Germination, Viability Tests and Storage of Daylily (Hemerocallis spp.) Pollen" Plants 14, no. 12: 1854. https://doi.org/10.3390/plants14121854
APA StyleLi, W., Yang, C., Li, J., Huang, L., Guo, J., & Feng, F. (2025). Optimization of In Vitro Germination, Viability Tests and Storage of Daylily (Hemerocallis spp.) Pollen. Plants, 14(12), 1854. https://doi.org/10.3390/plants14121854