Integrative Transcriptome and Metabolome Analysis Identifies Potential Pathways Associated with Cadmium Tolerance in Two Maize Inbred Lines
Abstract
:1. Introduction
2. Results
2.1. Effects of Cd Stress on Morphological and Physiological Changes for C7_2 and Z58
2.2. The Transcriptomic Analysis of C7_2 and Z58 Under Cd Stress
2.2.1. Analysis of RNA-Seq Data and DEGs for C7_2 and Z58 Under Cd Stress
2.2.2. GO and KEGG Analysis for the DEGs of C7_2 and Z58 Under Cd Stress
2.2.3. Construction of Traits-Associated Co-Expression Networks by WGCNA
2.3. The Metabolomic Analysis Between C7_2 and Z58 Under Cd Stress
2.3.1. PCA and Metabolite Analysis for C7_2 and Z58 Under Cd Stress
2.3.2. Venn and KEGG Analysis of the DAMs for C7_2 and Z58 Under Cd Stress
2.4. Key Pathways Based on Joint Analysis of Transcriptome and Metabolism
3. Discussion
3.1. Effect of Cd Stress on the Morphological and Physiological Changes in C7_2 and Z58
3.2. Response of Transcriptome and Metabolome for C7_2 and Z58 Under Cd Stress
3.3. Pathways of Phenylpropanoid Biosynthesis and Zeatin Biosynthesis Responding to Cd Stress in Maize
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Identification of Morphological and Physiological Traits
4.3. RNA Extraction and Transcriptomic Analysis
4.4. Metabolite Extraction and Metabolomic Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.U.; Shahbaz, N.; Waheed, S.; Mahmood, A.; Shinwari, Z.K.; Malik, R.N. Comparative health risk surveillance of heavy metals via dietary foodstuff consumption in different land-use types of pakistan. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 168–186. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Q.; Pei, S.; Li, J.; Ma, L.; Zhang, L.; Niu, J.; Tian, T. Ecological and health risk assessment of heavy metals in agricultural soils from northern China. Environ. Monit. Assess. 2024, 196, 99. [Google Scholar] [CrossRef] [PubMed]
- Mi, Z.; Liu, P.; Du, L.; Han, T.; Wang, C.; Fan, X.; Liu, H.; He, S.; Wu, J. The influence of cadmium on fountain grass performance correlates closely with metabolite profiles. Plants 2023, 12, 3713. [Google Scholar] [CrossRef]
- Zaid, A.; Mohammad, F.; Fariduddin, Q. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol. Mol. Biol. Plants 2020, 26, 25–39. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, W.; Gao, X. Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biol. Plant. 2003, 47, 79–83. [Google Scholar] [CrossRef]
- Jin, W.; Cheng, L.; Liu, C.; Liu, H.; Jiao, Q.; Wang, H.; Deng, Z.; Seth, C.S.; Guo, H.; Shi, Y. Cadmium negatively affects the growth and physiological status and the alleviation effects by exogenous selenium in silage maize (Zea mays L.). Environ. Sci. Pollut. Res. 2024, 31, 21646–21658. [Google Scholar] [CrossRef]
- He, S.; Yang, X.; He, Z.; Baligar, V.C. Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere 2017, 27, 421–438. [Google Scholar] [CrossRef]
- Alharby, H.F.; Al-Zahrani, H.S.; Hakeem, K.R.; Alsamadany, H.; Desoky, E.M.; Rady, M.M. Silymarin-enriched biostimulant foliar application minimizes the toxicity of cadmium in maize by suppressing oxidative stress and elevating antioxidant gene expression. Biomolecules 2021, 11, 465. [Google Scholar] [CrossRef]
- Guo, H.; Deng, M.; Yu, F.; Li, H.; Cao, Z.; Zeng, Q.; Chen, Z.; Luo, H.; Tang, B. Phenotypic and proteomic insights into differential cadmium accumulation in maize kernels. Genes 2023, 14, 2204. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, J.; Yin, Y.; Zhang, X.; Dai, Y.; Xing, Y.; Cheng, X.; Zhang, A.; Li, C.; Zhu, Y.; et al. Dynamic transcriptome profiling revealed a key gene ZmJMJ20 and pathways associated with cadmium stress in maize. Ecotoxicol. Environ. Saf. 2024, 277, 116352. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Li, C.; Wang, W.; Zhang, J.; Scali, M.; Li, W.; Liu, H.; Tai, F.; Hu, X.; Wu, X. Cadmium tolerance and hyperaccumulation in plants—A proteomic perspective of phytoremediation. Ecotoxicol. Environ. Saf. 2023, 256, 114882. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Li, W.; Ashraf, U.; Ma, L.; Tang, X.; Pan, S.; Tian, H.; Mo, Z. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J. Nanobiotechnol. 2021, 19, 75. [Google Scholar] [CrossRef]
- Lu, M.; Yu, S.; Lian, J.; Wang, Q.; He, Z.; Feng, Y.; Yang, X. Physiological and metabolomics responses of two wheat (Triticum aestivum L.) Genotypes differing in grain cadmium accumulation. Sci. Total Environ. 2021, 769, 145345. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Ai, H.; Hu, Z.; Du, D.; Sun, J.; Chen, K.; Chen, L. Comparative transcriptome combined with metabolome analyses revealed key factors involved in nitric oxide (NO)-regulated cadmium stress adaptation in tall fescue. BMC Genom. 2020, 21, 601. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Luo, M.; Zhang, Y.; Guo, H.; Li, J.; Song, W.; Zhang, R.; Feng, Z.; Kong, M.; Li, H.; et al. Natural variations in the p-type ATPase heavy metal transporter gene ZmHMA3 control cadmium accumulation in maize grains. J. Exp. Bot. 2021, 72, 6230–6246. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Li, X.; Zhang, Y.; Chen, X.; Liu, J.; Qiua, Y.; Wang, A. Integration of metabolomics and transcriptomics reveals the regulation mechanism of the phenylpropanoid biosynthesis pathway in insect resistance traits in Solanum habrochaites. Hortic. Res. 2024, 11, uhad277. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Xiao, W.; Chen, D.; Hu, J.; Gao, N.; Huang, M.; Ye, X. Comparative transcriptome analysis reveals key genes and coordinated mechanisms in two rice cultivars differing in cadmium accumulation. Chemosphere 2023, 338, 139489. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, T.; Niu, K.; Ma, H. Co-expression analyses reveal key cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass. Chemosphere 2024, 363, 142937. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, W.; Sun, Y.; Shen, Y.; Mao, L.; Dai, Y.; Yang, B.; Liu, Z. Integrated transcriptome and metabolome analysis reveals anthocyanin biosynthesis mechanisms in pepper (Capsicum annuum L.) Leaves under continuous blue light irradiation. BMC Plant Biol. 2024, 24, 210. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Zia-Ur-Rehman, M.; Abbas, Z.; Hannan, F. Use of maize (Zea mays L.) For phytomanagement of cd-contaminated soils: A critical review. Environ. Geochem. Health 2017, 39, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zou, J.; Duan, X.; Jiang, W.; Liu, D. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresour. Technol. 2007, 98, 82–88. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Bibi, S. Heavy metal, waste, COVID-19, and rapid industrialization in this modern era—Fit for sustainable future. Sustainability 2022, 14, 4746. [Google Scholar] [CrossRef]
- Redha, A.; Al-Hasan, R.; Afzal, M. Synergistic and concentration-dependent toxicity of multiple heavy metals compared with single heavy metals in Conocarpus lancifolius. Environ. Sci. Pollut. Res. 2021, 28, 23258–23272. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Peláez Vico, M.Á.; Sinha, R.; Pascual, L.S.; Mittler, R. The impact of multifactorial stress combination on plants, crops, and ecosystems: How should we prepare for what comes next? Plant. J. 2024, 117, 1800–1814. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- Alhaj Hamoud, Y.; Shaghaleh, H.; Zia-Ur-Rehman, M.; Rizwan, M.; Umair, M.; Usman, M.; Ayub, M.A.; Riaz, U.; Alnusairi, G.S.H.; Alghanem, S.M.S. Cadmium and lead accumulation in important food crops due to wastewater irrigation: Pollution index and health risks assessment. Heliyon 2024, 10, e24712. [Google Scholar] [CrossRef]
- Hussain, S.; Irfan, M.; Sattar, A.; Hussain, S.; Ullah, S.; Abbas, T.; Ur-Rehman, H.; Nawaz, F.; Al-Hashimi, A.; Elshikh, M.S.; et al. Alleviation of cadmium stress in wheat through the combined application of boron and biochar via regulating morpho-physiological and antioxidant defense mechanisms. Agronomy 2022, 12, 434. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, L.; Huang, X.; Li, Y.; Wang, C.; Huang, Q.; Yu, L.; Pan, C. Transcriptomics and metabolomics association analysis revealed the responses of Gynostemma pentaphyllum to cadmium. Front. Plant Sci. 2023, 14, 1265971. [Google Scholar] [CrossRef]
- Cai, M.; Yang, T.; Fang, S.; Ye, L.; Gu, L.; Wang, H.; Du, X.; Zhu, B.; Zeng, T.; Peng, T. Integrative physiological and transcriptome analysis reveals the mechanism of cd tolerance in sinapis alba. Genes 2023, 14, 2224. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Sun, S.; Li, Y.; Jia, L.; Ye, S.; Yu, Y.; Dossa, K.; Luan, Y. Physiological and transcriptional mechanisms associated with cadmium stress tolerance in Hibiscus syriacus L. BMC Plant Biol. 2023, 23, 286. [Google Scholar]
- Wang, J.; Liu, X.; Chen, Y.; Zhu, F.L.; Sheng, J.; Diao, Y. Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia. PLoS ONE 2024, 19, e0302940. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, X.; Li, W.; Wang, X.; Zhong, X.; Gao, Y.; Xu, H.; Hu, H.; Zhang, L.; Cheng, X.; et al. The regulatory metabolic networks of the Brassica campestris L. Hairy roots in response to cadmium stress revealed from proteome studies combined with a transcriptome analysis. Ecotoxicol. Environ. Saf. 2023, 263, 115214. [Google Scholar] [CrossRef]
- Xin, J.; Zhao, C.; Li, Y.; Ma, S.; Tian, R. Transcriptional, secondary metabolic, and antioxidative investigations elucidate the rapid response mechanism of Pontederia cordata to cadmium. Ecotoxicol. Environ. Saf. 2022, 232, 113236. [Google Scholar] [CrossRef]
- Concepcion, J.C.T.; Calingacion, M.; Garson, M.J.; Fitzgerald, M.A. Lipidomics reveals associations between rice quality traits. Metabolomics 2020, 16, 54. [Google Scholar] [CrossRef]
- Cao, H.; Chen, D.; Kuang, L.; Yan, T.; Gao, F.; Wu, D. Metabolomic analysis reveals the molecular responses to copper toxicity in rice (Oryza sativa). Plant Physiol. Biochem. 2023, 199, 107727. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.Y.; Li, C.; Zou, Y.; Wu, H. Glycosylphosphatidylinositol anchoring: Control through modification. Plant Physiol. 2014, 166, 748–750. [Google Scholar] [CrossRef]
- Mei, J.; Ning, N.; Wu, H.; Chen, X.; Li, Z.; Liu, W. Glycosylphosphatidylinositol anchor biosynthesis pathway-related protein GPI7 is required for the vegetative growth and pathogenicity of Colletotrichum graminicola. Int. J. Mol. Sci. 2022, 23, 2985. [Google Scholar] [CrossRef] [PubMed]
- Chalbi, N.; Martínez-Ballesta, M.C.; Youssef, N.B.; Carvajal, M. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity. J. Plant Physiol. 2015, 175, 148–156. [Google Scholar] [CrossRef]
- Wu, F.; Chen, Z.; Zhang, F.; Zheng, H.; Li, S.; Gao, Y.; Yang, J.; Sui, N. Identification and transcriptome analysis of genes related to membrane lipid regulation in sweet sorghum under salt stress. Int. J. Mol. Sci. 2022, 23, 5465. [Google Scholar] [CrossRef]
- Ding, N.; Wang, L.; Kang, Y.; Luo, K.; Zeng, D.; Man, Y.B.; Zhang, Q.; Zeng, L.; Luo, J.; Jiang, F. The comparison of transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) and 4-n-nonylphenol. Environ. Geochem. Health 2020, 42, 2881–2894. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Wang, W.; Shi, Z.; Cao, G.; Zhao, X.; Su, X.; Chen, Y.; Wu, J.; Yang, Z.; Liu, C.; et al. Comparative metabolomics combined with physiological analysis revealed cadmium tolerance mechanism in indica rice (Oryza sativa L.). J. Agric. Food. Chem. 2023, 71, 7669–7678. [Google Scholar] [CrossRef]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Yu, M.; Zhuo, R.; Lu, Z.; Li, S.; Chen, J.; Wang, Y.; Li, J.; Han, X. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix matsudana. J. Hazard. Mater. 2023, 441, 129909. [Google Scholar] [CrossRef]
- Zhu, Y.; Qiu, W.; He, X.; Wu, L.; Bi, D.; Deng, Z.; He, Z.; Wu, C.; Zhuo, R. Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in Sedum plumbizincicola. Ecotoxicol. Environ. Saf. 2022, 230, 113149. [Google Scholar] [CrossRef]
- Zhang, Y.; Chao, J.; Li, X.; Zhang, C.; Khan, R.; Du, S.; Xu, N.; Song, L.; Liu, H.; Shi, Y. Comparative transcriptome combined with biochemical and physiological analyses provide new insights toward cadmium accumulation with two contrasting nicotiana species. Physiol. Plant. 2021, 173, 369–383. [Google Scholar] [PubMed]
- Liu, J.; Zhang, D.; Zhang, Y.; Zhou, H.; Chen, P.; Yuan, Y.; Yang, Q.; Zhao, L.; Feng, B. Dynamic and comparative transcriptome analyses reveal key factors contributing to cadmium tolerance in broomcorn millet. Int. J. Mol. Sci. 2022, 23, 6148. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Xu, Q.; Tang, T.; Li, X.; Pan, Y. Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to cd toxicity. Front. Plant Sci. 2024, 15, 1389207. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, S. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The role of salicylic acid in plants exposed to heavy metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef]
- Kudo, T.; Makita, N.; Kojima, M.; Tokunaga, H.; Sakakibara, H. Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-o-glucosyltransferase in rice. Plant Physiol. 2012, 160, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, J.; Liu, J.; Zhang, P.; Kudoyarova, G.; Liu, C.; Zhang, K. Spatially distributed cytokinins: Metabolism, signaling, and transport. Plant Commun. 2024, 5, 100936. [Google Scholar] [CrossRef] [PubMed]
- Rijavec, T.; Jain, M.; Dermastia, M.; Chourey, P.S. Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize. Ann. Bot. 2011, 107, 1235–1245. [Google Scholar] [CrossRef]
- Veach, Y.K.; Martin, R.C.; Mok, D.W.S.; Malbeck, J.; Vankova, R.; Mok, M.C. O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol. 2003, 131, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Xie, R.; Tian, H.; Wang, Q.; Guo, F. Putative zeatin o-glucosyltransferase OscZOG1 regulates root and shoot development and formation of agronomic traits in rice. J. Integr. Plant Biol. 2016, 58, 627–641. [Google Scholar] [CrossRef]
- Silva-Navas, J.; Conesa, C.M.; Saez, A.; Navarro-Neila, S.; Garcia-Mina, J.M.; Zamarreno, A.M.; Baigorri, R.; Swarup, R.; Del, P.J. Role of cis-zeatin in root responses to phosphate starvation. New Phytol. 2019, 224, 242–257. [Google Scholar] [CrossRef]
- Yang, T.; Pang, B.; Zhou, L.; Gu, L.; Wang, H.; Du, X.; Wang, H.; Zhu, B. Transcriptome profiling, physiological and biochemical analyses reveal comprehensive insights in cadmium stress in Brassica carinata L. Int. J. Mol. Sci. 2024, 25, 1260. [Google Scholar] [CrossRef]
- Liu, H.; Chi, X.; Yang, J.; Ding, G.; Xu, F.; Yang, C.; Wang, S. Integrated analysis of physiological and metabolic data uncovers essential dynamic mechanisms involved in the maturation of cigar tobacco leaves. Sci. Rep. 2024, 14, 31330. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Li, D.; Xu, J.; Gu, R.; Zheng, J.; Fu, J.; Wang, J.; Zhang, H. Cloning of a new allele of ZmAMP1 and evaluation of its breeding value in hybrid maize. Crop J. 2023, 11, 157–165. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Li, M.; Ma, X.; Zhao, B.; Jin, X.; Zhang, H.; Chen, S.; Wu, X.; Zhang, X. Integrative Transcriptome and Metabolome Analysis Identifies Potential Pathways Associated with Cadmium Tolerance in Two Maize Inbred Lines. Plants 2025, 14, 1853. https://doi.org/10.3390/plants14121853
Wang P, Li M, Ma X, Zhao B, Jin X, Zhang H, Chen S, Wu X, Zhang X. Integrative Transcriptome and Metabolome Analysis Identifies Potential Pathways Associated with Cadmium Tolerance in Two Maize Inbred Lines. Plants. 2025; 14(12):1853. https://doi.org/10.3390/plants14121853
Chicago/Turabian StyleWang, Pingxi, Min Li, Xingye Ma, Bin Zhao, Xining Jin, Huaisheng Zhang, Shilin Chen, Xiangyuan Wu, and Xiaoxiang Zhang. 2025. "Integrative Transcriptome and Metabolome Analysis Identifies Potential Pathways Associated with Cadmium Tolerance in Two Maize Inbred Lines" Plants 14, no. 12: 1853. https://doi.org/10.3390/plants14121853
APA StyleWang, P., Li, M., Ma, X., Zhao, B., Jin, X., Zhang, H., Chen, S., Wu, X., & Zhang, X. (2025). Integrative Transcriptome and Metabolome Analysis Identifies Potential Pathways Associated with Cadmium Tolerance in Two Maize Inbred Lines. Plants, 14(12), 1853. https://doi.org/10.3390/plants14121853