Physiological Performance of Poplar and Willow Clones Growing on Metal-Contaminated Landfills
Abstract
:1. Introduction
2. Results
2.1. Heavy Metal Content in Plant Material
2.2. Results of Gas Exchange Parameters
3. Discussion
4. Materials and Methods
4.1. Experimental Design and Site Properties
4.2. Plants Material
4.3. Assessment of Carbon and Heavy Metal Content in Aboveground Woody Biomass
- (i)
- the amount of accumulated carbon in the above-ground parts of the plant per area unit (Ctot [kg ha−1]):
- (ii)
- and the amount of carbon dioxide equivalent to the amount of accumulated carbon in the above-ground parts of the plant per unit area (CO2 eq [kg ha−1]):
4.4. Assessment of Leaf Gas Exchange
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; De los Rios-Escalante, P.R.; Shafiq, M. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. J. King Saud Univ.-Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Bauer, E.O. Selecting and Utilizing Populus and Salix for Landfill Covers: Implications for Leachate Irrigation. Int. J. Phytormediat. 2007, 9, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Gupta, B. Sen Contemporary Environmental Issues of Landfill Leachate: Assessment and Remedies. Crit. Rev. Environ. Sci. Technol. 2015, 45, 472–590. [Google Scholar] [CrossRef]
- Mostafa, S.; Balaldehi, E. The effect of Landfill Leachate Irrigation on Different Soil Characteristics and Plant Nutrition: A review. Water Soil Manag. Model. 2023, 4, 33–54. [Google Scholar] [CrossRef]
- Pilipović, A.; Headlee, W.L.; Zalesny, R.S.; Pekeč, S.; Bauer, E.O. Water Use Efficiency of Poplars Grown for Biomass Production in the Midwestern United States. GCB Bioenergy 2022, 14, 287–306. [Google Scholar] [CrossRef]
- Pajevic, S.; Borisev, M.; Nikolic, N.; Krstic, B.; Pilipovic, A.; Orlovic, S. Phytoremediation Capacity of Poplar (Populus spp.) and Willow (Salix spp.) Clonesin Relation to Photosynthesis. Arch. Biol. Sci. 2009, 61, 239–247. [Google Scholar] [CrossRef]
- Flexas, J.; Niinemets, Ü.; Gallé, A.; Barbour, M.M.; Centritto, M.; Diaz-Espejo, A.; Douthe, C.; Galmés, J.; Ribas-Carbo, M.; Rodriguez, P.L.; et al. Diffusional Conductances to CO2 as a Target for Increasing Photosynthesis and Photosynthetic Water-Use Efficiency. Photosynth. Res. 2013, 117, 45–59. [Google Scholar] [CrossRef]
- Orlović, S.; Stanković, D.; Kesić, L.; Milović, M.; Pekeč, S.; Poljaković Pajnik, L.; Kovačević, B. Early selection of most appropriate poplar and willow cultivars for landfill remediation using plant physiology parameters. In Proceedings of the IFAC Proceedings Volumes, Zagreb, Croatia, 3–5 December 2024; p. 50. [Google Scholar]
- Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Renninger, H.; Kyaw, T.Y.; Siegert, C.M.; Rousseau, R.J. Water Use Efficiency, Leaf Physiology, and Productivity of Black Willow (Salix nigra Marshall) for Short Rotation Bioenergy Production in the Southern U.S. Biomass Bioenergy 2024, 183, 107135. [Google Scholar] [CrossRef]
- Woś, B.; Misebo, A.M.; Ochał, W.; Klamerus-Iwan, A.; Pająk, M.; Sierka, E.; Kompała-Bąba, A.; Bujok, M.; Bierza, W.; Józefowska, A.; et al. Biodiversity Characteristics and Carbon Sequestration Potential of Successional Woody Plants versus Tree Plantation under Different Reclamation Treatments on Hard-Coal Mine Heaps––A Case Study from Upper Silesia. Sustainability 2024, 16, 4793. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, S.; Zhao, S. No TitleValuing Urban Green Spaces in Mitigating Climate Change: A City-Wide Estimate of Aboveground Carbon Stored in Urban Green Spaces of China’s Capital. Glob. Chang. Biol. 2019, 25, 1717–1732. [Google Scholar] [CrossRef]
- Siqueira, C.C.Z.; Chiba, M.K.; Moreira, R.S.; Abdo, M.T.V.N. Carbon Stocks of a Degraded Soil Recovered with Agroforestry Systems. Agrofor. Syst. 2020, 94, 1059–1069. [Google Scholar] [CrossRef]
- Kesić, L.; Kovačević, B.; Milović, M.; Poljaković-Pajnik, L.; Pekeč, S.; Višacki, V.; Orlović, S. Physiological Responses of Poplar and Willow Clones Grown in Pot Trials on Soil From landfills. Topola 2024, 82, 55–63. [Google Scholar] [CrossRef]
- Lhotská, M.; Zemanová, V.; Pavlík, M.; Pavlíková, D.; Hnilička, F.; Popov, M. Leaf Fitness and Stress Response after the Application of Contaminated Soil Dust Particulate Matter. Sci. Rep. 2022, 12, 10046. [Google Scholar] [CrossRef]
- Tőzsér, D.; Horváth, R.; Simon, E.; Magura, T. Heavy Metal Uptake by Plant Parts of Populus Species: A Meta-Analysis. Environ. Sci. Pollut. Res. 2023, 30, 69416–69430. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Y.; Chen, Y.; Wang, S.; Mu, C.; Shi, X. The Phytoremediation Potential of 14 Salix Clones Grown in Pb/Zn and Cu Mine Tailings. Forests 2024, 15, 257. [Google Scholar] [CrossRef]
- Prouzová, N.; Kubátová, P.; Mercl, F.; Száková, J.; Najmanová, J.; Tlustoš, P. Biomass Yield and Metal Phytoextraction Efficiency of Salix and Populus Clones Harvested at Different Rotation Lengths in the Field Experiment. Chem. Biol. Technol. Agric. 2024, 11, 78. [Google Scholar] [CrossRef]
- Kovačević, B.; Milović, M.; Kesić, L.; Pajnik, L.P.; Pekeč, S.; Stanković, D.; Orlović, S. Interclonal Variation in Heavy Metal Accumulation Among Poplar and Willow Clones: Implications for Phytoremediation of Contaminated Landfill Soils. Plants 2025, 14, 567. [Google Scholar] [CrossRef]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; Osório, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How Plants Cope with Water Stress in the Field. Photosynthesis and growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef]
- Leuschner, C.; Wedde, P.; Lübbe, T. The Relation Between Pressure–Volume Curve Traits and Stomatal Regulation of Water Potential in Five Temperate Broadleaf Tree Species. Ann. For. Sci. 2019, 76, 60. [Google Scholar] [CrossRef]
- Rodríguez-Gamir, J.; Xue, J.; Clearwater, M.J.; Meason, D.F.; Clinton, P.W.; Domec, J.C. Aquaporin Regulation in Roots Controls Plant Hydraulic Conductance, Stomatal Conductance, and Leaf Water Potential in Pinus Radiata Under Water Stress. Plant Cell Environ. 2019, 42, 717–729. [Google Scholar] [CrossRef]
- Yan, M.J.; Yamanaka, N.; Yamamoto, F.; Du, S. Responses of Leaf Gas Exchange, Water Relations, and Water Consumption in Seedlings of Four Semiarid Tree Species to Soil Drying. Acta Physiol. Plant. 2010, 32, 183–189. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of Drought on Photosynthesis in Grapevines Under Field Conditions: An Evaluation of Stomatal and Mesophyll Limi-Tations. Funct. Plant Biol. 2004, 29, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Galle, A.; Florez-Sarasa, I.; Tomas, M.; Pou, A.; Medrano, H.; Ribas-Carbo, M.; Flexas, J. The Role of Mesophyll Conductance During Water Stress and Recovery in Tobacco (Nicotiana sylvestris): Acclimation or limitation? J. Exp. Bot. 2009, 60, 2379–2390. [Google Scholar] [CrossRef] [PubMed]
- Asargew, M.F.; Masutomi, Y.; Kobayashi, K.; Aono, M. Water Stress Changes the Relationship Between Photosynthesis and Stomatal Conductance. Sci. Total Environ. 2024, 907, 167886. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates: Sunderland, MA, USA, 2016. [Google Scholar]
- Popa, A.; Popa, I. Photosynthesis Traits of Pioneer Broadleaves Species from Tailing Dumps in Călimani Mountains (Eastern carpathians). Forests 2021, 12, 658. [Google Scholar] [CrossRef]
- Guidi, L.; Landi, M.; Penella, C.; Calatayud, A. Application of Modulated Chlorophyll Fluorescence and Modulated Chlorophyll Fluorescence Imaging to Study the Environmental Stresses Effect. Ann. Bot. 2016, 6, 5–22. [Google Scholar] [CrossRef]
- Pilipović, A.; Zalesny, R.S., Jr.; Rončević, S.; Nikolić, N.; Orlović, S.; Beljin, J.; Katanić, M. Growth, Physiology, and Phytoextraction Potential of Poplar and Willow Established in Soils Amended with Heavy-Metal Contaminated, Dredged River Sediments. JEM 2019, 239, 352–365. [Google Scholar] [CrossRef]
- Rogers, E.R.; Zalesny, R.S.; Hallett, R.A.; Headlee, W.L.; Wiese, A.H. Relationships Among Root-Shoot Ratio, Early Growth, and Health of Hybrid Poplar and Willow Clones Grown in Different Landfill Soils. Forests 2019, 10, 49. [Google Scholar] [CrossRef]
- Gratani, L.; Crescente, M.F.; Petruzzi, M. Gas Exchange and Chlorophyll Fluorescence of Two Evergreen Species in Response to Air Pollution in Urban Areas. Environ. Pollut. 2003, 121, 365–373. [Google Scholar]
- Nikolić, N.; Zorić, L.; Cvetković, I.; Pajević, S.; Borišev, M.; Orlović, S.; Pilipović, A. Assessment of Cadmium Tolerance and Phytoextraction Ability in Young Populus Deltoides L. and Populus × Euramericana Plants Through Morpho-Anatomical and Physiological Responses to Growth in Cadmium Enriched SOIL. IForest 2017, 10, 635–644. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Xu, H.; Creed, I.F.; Blanco, J.A.; Wei, X.; Sun, G.; Asbjornsen, H.; Bishop, K. Forest Water-Use Efficiency: EFFECTS of Climate Change and Management on the Coupling of Carbon and Water Processes. For. Ecol. Manag. 2023, 534, 120853. [Google Scholar] [CrossRef]
- Maier, C.A.; Burley, J.; Cook, R.; Ghezehei, S.B.; Hazel, D.W.; Nichols, E.G. Tree Water Use, Water Use Efficiency, and Carbon Isotope Discrimination in Relation to Growth Potential in Populus Deltoides and Hybrids Under Field Conditions. Forests 2019, 10, 993. [Google Scholar] [CrossRef]
- Lüttschwager, D.; Ewald, D.; Atanet Alía, L. Consequences of Moderate Drought Stress on the net Photosynthesis, Water-Use Efficiency and Biomass Production of Three Poplar Clones. Acta Physiol. Plant. 2016, 38, 27. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Zhu, J.Y.; Headlee, W.L.; Gleisner, R.; Pilipović, A.; Van Acker, J.; Bauer, E.O.; Birr, B.A.; Wiese, A.H. Ecosystem Services, Physiology, and Biofuels Recalcitrance of Poplars Grown for Landfill Phytoremediation. Plants 2020, 9, 1357. [Google Scholar] [CrossRef]
- Pilipović, A.; Zalesny, R.S.; Rogers, E.R.; McMahon, B.G.; Nelson, N.D.; Burken, J.G.; Hallett, R.A.; Lin, C.H. Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, Usa. Ii. New Clones Show Exceptional Promise. Forests 2021, 12, 474. [Google Scholar] [CrossRef]
- Schad, P. World Reference Base for Soil Resources; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780124095489. [Google Scholar]
- Pekeč, S.; Marković, M.; Katanić, M.; Galović, V. Fizičke i Hemijske Osobine Zemljišta Za Proizvodnju Topole Rasadnika “Žarkovac” u Šumskoj Upravi Kovin/Physical and Chemical Soil Properties for Poplar Production in Nursery “Žarkovac” in Kovin Forest Administration. Topola/Poplar 2019, 114, 79–84. [Google Scholar]
- Cools, N.; De Vos, B. Part X. Sampling and Analysis of Soil—Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects 573 of Air Pollution on Forests; Version 2020-1; UNECE ICP Forests Programme Co-ordinating 572 Centre, Ed.; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2020; 29p + Annex; Available online: https://www.icp-forests.net/page/icp-forests-manual (accessed on 5 April 2025).
- Lamlom, S.H.; Savidge, R.A. A Reassessment of Carbon Content in Wood: Variation within and between 41 North American Species. Biomass Bioenergy 2003, 25, 381–388. [Google Scholar] [CrossRef]
- Kebert, M.; Rapparini, F.; Neri, L.; Bertazza, G.; Orlović, S.; Biondi, S. Copper-Induced Responses in Poplar Clones are Associated with Genotype- and Organ-Specific Changes in Peroxidase Activity and Proline, Polyamine, ABA, and IAA Levels. J. Plant Growth Regul. 2017, 36, 131–147. [Google Scholar] [CrossRef]
- TIBCO Software Inc. Data Science WorkBench 14.0.0; TIBCO Software Inc.: Palo Alto, CA, USA, 2020. [Google Scholar]
P/S (1) | Clone | Landfill (2) | As (3) | Ba | Cd | Cr | Cu | Fe | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Means at the level of interaction clone x landfill | ||||||||||
S | 378 | BG | 1.392 a (4) | 4.811 bc | 0.546 bc | 0.435 b | 8.672 b | 34.927 b | 1.205 a | 39.235 cde |
NS | 0.646 a | 8.780 a | 0.544 bc | 0.707 ab | 17.813 a | 37.052 b | 2.507 a | 56.265 a | ||
S | 380 | BG | 1.433 a | 3.158 c | 0.631 ab | 0.830 ab | 10.089 b | 48.507 b | 1.211 a | 53.466 ab |
NS | 0.143 a | 5.652 abc | 0.805 a | 0.746 ab | 17.104 a | 41.056 b | 0.980 a | 63.796 a | ||
S | 107/65/9 | BG | 1.023 a | 3.799 bc | 0.462 bcd | 0.533 ab | 9.423 b | 41.785 b | 1.366 a | 32.676 def |
NS | 0.814 a | 7.029 ab | 0.548 bc | 0.829 ab | 17.765 a | 36.746 b | 1.563 a | 55.962 a | ||
P | 135/81 | BG | 1.525 a | 4.604 bc | 0.429 cd | 0.491 ab | 9.556 b | 38.732 b | 1.464 a | 25.774 fg |
NS | 0.564 a | 6.236 abc | 0.519 bcd | 0.549 ab | 15.162 a | 35.687 b | 1.319 a | 38.716 cde | ||
P | I-214 | BG | 0.000 a | 4.030 bc | 0.397 cd | 0.498 ab | 8.856 b | 35.050 b | 2.446 a | 17.354 g |
NS | 1.891 a | 4.522 bc | 0.386 cd | 0.534 ab | 16.848 a | 28.077 b | 1.387 a | 30.968 ef | ||
P | Pannonia | BG | 0.000 a | 4.597 bc | 0.348 cd | 0.491 ab | 9.267 b | 36.030 b | 1.140 a | 22.623 fg |
NS | 1.234 a | 4.713 bc | 0.534 bcd | 0.459 b | 18.273 a | 41.055 b | 0.922 a | 42.442 cd | ||
P | PE19/66 | BG | 0.746 a | 3.580 bc | 0.388 cd | 1.241 a | 10.367 b | 82.723 a | 1.737 a | 27.125 fg |
NS | 1.731 a | 6.239 abc | 0.644 ab | 0.882 ab | 18.010 a | 44.100 b | 1.445 a | 41.155 cde | ||
P | S1-8 | BG | 0.893 a | 3.597 bc | 0.333 d | 0.498 ab | 10.221 b | 45.146 b | 1.207 a | 23.996 fg |
NS | 1.559 a | 4.290 bc | 0.420 cd | 0.620 ab | 18.432 a | 42.703 b | 0.911 a | 43.916 bc | ||
Means of landfills | ||||||||||
BG | 0.877 a | 4.022 b | 0.442 b | 0.627 a | 9.556 b | 45.363 a | 1.472 a | 30.281 b | ||
NS | 1.073 a | 5.933 a | 0.550 a | 0.666 a | 17.426 a | 38.309 a | 1.379 a | 46.653 a | ||
Means of clones | ||||||||||
S | 378 | 1.019 a | 6.796 a | 0.545 b | 0.571 a | 13.242 a | 35.989 b | 1.856 a | 47.750 b | |
S | 380 | 0.788 a | 4.405 ab | 0.718 a | 0.788 a | 13.597 a | 44.782 ab | 1.095 a | 58.631 a | |
S | 107/65/9 | 0.918 a | 5.414 ab | 0.505 bc | 0.681 a | 13.594 a | 39.266 ab | 1.465 a | 44.319 b | |
P | 135/81 | 1.045 a | 5.420 ab | 0.474 bc | 0.520 a | 12.359 a | 37.209 b | 1.392 a | 32.245 c | |
P | I-214 | 0.946 a | 4.276 ab | 0.391 c | 0.516 a | 12.852 a | 31.564 b | 1.916 a | 24.161 d | |
P | Pannonia | 0.617 a | 4.655 ab | 0.441 bc | 0.475 a | 13.770 a | 38.542 b | 1.031 a | 32.532 c | |
P | PE19/66 | 1.239 a | 4.909 ab | 0.516 bc | 1.061 a | 14.188 a | 63.411 a | 1.591 a | 34.140 c | |
P | S1-8 | 1.226 a | 3.944 b | 0.376 c | 0.559 a | 14.326 a | 43.924 ab | 1.059 a | 33.956 c |
P/S (1) | Clone | Landfill (2) | gs (3) | A | E | WUE | mP | CO2 eq |
---|---|---|---|---|---|---|---|---|
Means of landfills | ||||||||
BG | 35.296 b (4) | 2.573 b | 2.934 b | 0.857 b | 4315.810 b | 2125.536 b | ||
NS | 61.005 a | 4.713 a | 4.651 a | 1.019 a | 10,303.200 a | 5074.328 a | ||
Means of clones | ||||||||
S | 378 | 54.722 abc | 5.450 a | 4.349 ab | 1.243 a | 8465.510 ab | 4169.265 ab | |
S | 380 | 48.600 bc | 3.333 b | 3.835 b | 0.916 bc | 5840.330 ab | 2876.364 ab | |
S | 107/65/9 | 59.067 ab | 4.713 a | 4.487 a | 1.016 ab | 5301.890 b | 2611.181 b | |
P | 135/81 | 55.222 abc | 3.075 bc | 4.331 ab | 0.716 c | 8046.670 ab | 3962.985 ab | |
P | I-214 | 51.800 abc | 5.122 a | 4.046 ab | 1.208 a | 6823.560 ab | 3360.604 ab | |
P | Pannonia | 35.133 d | 2.444 c | 3.050 c | 0.735 c | 5528.030 ab | 2722.555 ab | |
P | PE19/66 | 43.306 cd | 3.564 b | 3.688 bc | 0.909 bc | 5259.800 b | 2590.454 b | |
P | S1-8 | 63.000 a | 3.544 b | 4.302 ab | 0.911 bc | 13,210.250 a | 6506.046 a | |
Means at the level of interaction clone x landfill | ||||||||
S | 378 | BG | 38.333 bcde | 3.189 bcde | 3.306 bcd | 0.966 abcd | 1915.390 c | 943.329 c |
S | 378 | NS | 60.185 abc | 6.204 a | 4.697 ab | 1.335 a | 15,015.640 ab | 7395.201 ab |
S | 380 | BG | 23.722 e | 2.056 de | 2.249 d | 0.961 bcd | 2214.840 c | 1090.811 c |
S | 380 | NS | 65.185 ab | 4.185 b | 4.892 a | 0.887 cd | 9465.820 abc | 4661.917 abc |
S | 107/65/9 | BG | 38.389 de | 1.978 de | 3.188 cd | 0.616 d | 2774.150 bc | 1366.271 bc |
S | 107/65/9 | NS | 72.852 a | 6.537 a | 5.353 a | 1.283 ab | 7829.630 abc | 3856.091 abc |
S | 135/81 | BG | 38.222 de | 2.600 cde | 3.409 c | 0.764 d | 3389.610 bc | 1669.382 bc |
S | 135/81 | NS | 72.222 a | 3.550 bc | 5.253 a | 0.667 d | 12,703.730 abc | 6256.589 abc |
P | I-214 | BG | 33.500 de | 3.028 bcde | 2.879 cd | 0.949 bcd | 4676.170 abc | 2303.012 abc |
P | I-214 | NS | 64.000 ab | 6.519 a | 4.824 a | 1.380 a | 8970.950 abc | 4418.195 abc |
P | Pannonia | BG | 27.722 de | 1.828 e | 2.326 d | 0.662 d | 5677.260 abc | 2796.052 abc |
P | Pannonia | NS | 40.074 de | 2.856 cde | 3.533 c | 0.783 d | 5378.800 abc | 2649.058 abc |
P | PE19/66 | BG | 38.222 bcde | 2.378 bcde | 3.323 bcd | 0.749 cd | 4092.880 abc | 2015.744 abc |
P | PE19/66 | NS | 45.000 cd | 3.959 bc | 3.809 c | 0.962 cd | 6426.730 abc | 3165.164 abc |
P | S1-8 | BG | 47.941 bcd | 3.806 bc | 3.185 cd | 1.213 abc | 9786.160 abc | 4819.684 abc |
P | S1-8 | NS | 73.667 a | 3.358 bcd | 5.093 a | 0.698 d | 16,634.330 a | 8192.408 a |
Granulometric Composition | ||||||||
---|---|---|---|---|---|---|---|---|
Horizon | Soil Depth (cm) | Coarse Sand (%) | Fine Sand (%) | Silt (%) | Clay (%) | Total Sand (%) | Total Clay (%) | Texture Class |
SU1 | 0–10 | 24.34 | 58.46 | 11.76 | 5.44 | 82.80 | 17.20 | Loamy Sand |
SU2 | 10–40 | 15.67 | 68.17 | 10.04 | 6.12 | 83.84 | 16.16 | Loamy Sand |
SU3 | 40–100 | 37.53 | 43.67 | 9.00 | 9.80 | 81.20 | 18.80 | Loamy Sand |
P4 | 100–130 | 40.55 | 44.53 | 6.68 | 8.24 | 85.08 | 14.92 | Loamy Sand |
Chemical composition | ||||||||
Horizon | Soil depth (cm) | CaCO3 (%) | pH | Humus (%) | Total nitrogen (%) | P2 O5 (mg/100 g) | K2 O (mg/100 g) | |
SU1 | 0–10 | 1.40 | 7.50 | 1.90 | 0.031 | 4.98 | 3.86 | |
SU2 | 10–40 | 4.50 | 7.86 | 0.59 | 0.028 | 4.79 | 3.71 | |
SU3 | 40–100 | 2.64 | 7.63 | 0.43 | 0.035 | 5.27 | 4.10 | |
P4 | 100–130 | 6.11 | 7.54 | 0.32 | 0.025 | 4.57 | 3.52 |
Granulometric Composition | ||||||||
---|---|---|---|---|---|---|---|---|
Horizon | Soil Depth (cm) | Coarse Sand (%) | Fine Sand (%) | Silt (%) | Clay (%) | Total Sand (%) | Total Clay (%) | Texture Class |
SU1 | 0–10 | 4.29 | 43.15 | 25.92 | 26.64 | 47.44 | 52.56 | Sandy clay loam |
SU2 | 10–40 | 4.29 | 41.67 | 26.96 | 27.08 | 45.96 | 54.04 | Sandy clay loam |
SU3 | 40–100 | 8.32 | 40.28 | 27.40 | 24.00 | 48.60 | 51.40 | Sandy clay loam |
Chemical composition | ||||||||
Horizon | Soil depth (cm) | CaCO3 (%) | pH | Humus (%) | Total nitrogen (%) | P2 O5 (mg/100 g) | K2 O (mg/100 g) | |
SU1 | 0–10 | 6.07 | 7.81 | 1.69 | 0.115 | 11.32 | 9.16 | |
SU2 | 10–40 | 2.09 | 7.71 | 1.67 | 0.118 | 11.58 | 9.38 | |
SU3 | 40–100 | 5.45 | 7.79 | 1.66 | 0.112 | 11.11 | 8.98 |
Species | Clone | Registration Numbers | |
---|---|---|---|
Poplar Clones | Populus deltoides Bartr. ex Marsh. | 135/81 | Experimental phase |
PE19/66 | Experimental phase | ||
S1-8 | 7722/1 | ||
Populus x euramericana (Dode) Guinier | I–214 | Domesticated clone | |
Pannonia | 4/008-003/051 | ||
Willow clones | Salix alba L. | 380 | Experimental phase |
107/65/9 | Experimental phase | ||
378 | Experimental phase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kesić, L.; Kovačević, B.; Milović, M.; Stanković, D.; Ilić, M.; Poljaković-Pajnik, L.; Pekeč, S.; Orlović, S. Physiological Performance of Poplar and Willow Clones Growing on Metal-Contaminated Landfills. Plants 2025, 14, 1705. https://doi.org/10.3390/plants14111705
Kesić L, Kovačević B, Milović M, Stanković D, Ilić M, Poljaković-Pajnik L, Pekeč S, Orlović S. Physiological Performance of Poplar and Willow Clones Growing on Metal-Contaminated Landfills. Plants. 2025; 14(11):1705. https://doi.org/10.3390/plants14111705
Chicago/Turabian StyleKesić, Lazar, Branislav Kovačević, Marina Milović, Dragica Stanković, Marko Ilić, Leopold Poljaković-Pajnik, Saša Pekeč, and Saša Orlović. 2025. "Physiological Performance of Poplar and Willow Clones Growing on Metal-Contaminated Landfills" Plants 14, no. 11: 1705. https://doi.org/10.3390/plants14111705
APA StyleKesić, L., Kovačević, B., Milović, M., Stanković, D., Ilić, M., Poljaković-Pajnik, L., Pekeč, S., & Orlović, S. (2025). Physiological Performance of Poplar and Willow Clones Growing on Metal-Contaminated Landfills. Plants, 14(11), 1705. https://doi.org/10.3390/plants14111705