Preparation of Gynostemma pentaphyllum Extracts Using Natural Deep Eutectic Solvents with Ultrasound-Assisted Extraction for Cosmetic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of GP Extracts by DESs
2.2. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) Determination
2.3. In Vitro Antioxidant Activities Investigation of DESs GP Extracts
2.4. Anti-Inflammatory Assay
2.4.1. Cytotoxicity of DESs GP Extracts Against RAW264.7 Cells
2.4.2. Effects of DESs GP Extracts on Nitric Oxide Secretion
2.5. Bioactive Content Determination by HPLC Assay
2.6. Preparation of Cosmetic Formulations Contained DESs GP Extracts
2.6.1. Formulation Optimization Using Design of Experiment (DOE)
2.6.2. Accelerated Stability Test
3. Materials and Methods
3.1. Chemical Materials
3.2. Plant Materials
3.3. Preparation of DESs
3.4. Extraction
3.5. Preliminary Phytochemicals Analysis
3.5.1. TPC Determination by Folin-Ciocâlteu Method
3.5.2. TFC Determination by Aluminum Chloride Colorimetric Method
3.6. In Vitro Biological Activities Determination
3.6.1. Free Radical Scavenging Assay
3.6.2. Lipid Peroxidation Inhibition Assay
3.6.3. Metal Chelating Activity
3.6.4. Nitric Oxide (NO) Radical Scavenging Assay
3.6.5. Ferric Reducing Antioxidant Power (FRAP) Assay
3.6.6. ABTS Scavenging Ability
3.6.7. Collagenase Enzyme Inhibition
3.7. In Vitro Anti-Inflammatory Assay
3.7.1. Cell Viability Assessment Using MTT Assay
3.7.2. Measurement of NO Production
3.8. Bioactive Content Determination by HPLC Assay
3.9. Preparation of Cosmetic Formulations
3.9.1. Formulation Optimization Using DoE
3.9.2. Preparation of Cosmetic Formulations Contain DES GP Extract
3.9.3. Formulations Characterization
3.9.4. Accelerated Stability Test
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, A.; Saleem, M.A.; Saeed, F.; Afzaal, M.; Imran, A.; Nadeem, M.; Ambreen, S.; Imran, M.; Hussain, M.; Jbawi, E. Gynostemma pentaphyllum an immortal herb with promising therapeutic potential: A comprehensive review on its phytochemistry and pharmacological perspective. Int. J. Food Prop. 2023, 26, 808–832. [Google Scholar] [CrossRef]
- Su, C.; Li, N.; Ren, R.; Wang, Y.; Su, X.; Lu, F.; Zong, R.; Yang, L.; Ma, X. Progress in the Medicinal Value, Bioactive Compounds, and Pharmacological Activities of Gynostemma pentaphyllum. Molecules 2021, 26, 6249. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, L.; Wei, S. Gynostemma pentaphyllum: A review on its traditional uses, phytochemistry and pharmacology. Jobs Future 2025, 124, 106651. [Google Scholar] [CrossRef]
- Sainakham, M.; Jantrawut, P.; Kiattisin, K.; Chittasupho, C.; Singh, S. Potential of green extraction using edible deep eutectic solvents on the bioactivities from Curcuma aromatica rhizome extracts for food application. J. Agric. Food Res. 2023, 14, 100868. [Google Scholar] [CrossRef]
- Rashid, R.; Wani, S.M.; Manzoor, S.; Masoodi, F.A.; Dar, M.M. Green extraction of bioactive compounds from apple pomace by ultrasound assisted natural deep eutectic solvent extraction: Optimisation, comparison and bioactivity. Food Chem. 2023, 398, 133871. [Google Scholar] [CrossRef]
- Garcia-Roldan, A.; Piriou, L.; Jauregi, P. Natural deep eutectic solvents as a green extraction of polyphenols from spent coffee ground with enhanced bioactivities. Front. Plant Sci. 2023, 13, 1072592. [Google Scholar] [CrossRef]
- Liu, Y.J.; Lou, L.; Huang, Q.; Xu, W.; Li, H. Ultrasonic extraction and purification of scutellarin from Erigerontis Herba using deep eutectic solvent. Ultrason. Sonochemistry 2023, 99, 106560. [Google Scholar] [CrossRef]
- Ferreira, C.; Sarraguça, M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals 2024, 17, 124. [Google Scholar] [CrossRef]
- Grillo, G.; Tabasso, S.; Capaldi, G.; Radosevic, K.; Radojcic-Redovnikovic, I.; Gunjevic, V.; Calcio Gaudino, E.; Cravotto, G. Food-Waste Valorisation: Synergistic Effects of Enabling Technologies and Eutectic Solvents on the Recovery of Bioactives from Violet Potato Peels. Foods 2023, 12, 2214. [Google Scholar] [CrossRef]
- Jin, L.; Jin, W.F.; Zeng, Q.; Yu, L.; Yang, J.H.; Wan, H.T.; He, Y. Optimization of green extraction process with natural deep eutectic solvent and comparative pharmacokinetics of bioactive compounds from Astragalus-Safflower pair. Phytomedicine 2023, 114, 154814. [Google Scholar] [CrossRef]
- Nekkaa, A.; Benaissa, A.; El Djalil Lalaouna, A.; Dupire, F.; Risler, A.; Mutelet, F.; Canabady-Rochelle, L. Green and innovative extraction of polyphenols from Rhamnus alaternus using natural deep eutectic solvents and evaluation of their bioactivities. J. Appl. Res. Med. Aromat. Plants 2023, 35, 100503. [Google Scholar] [CrossRef]
- Wu, D.T.; Deng, W.; Li, J.; Geng, J.L.; Hu, Y.C.; Zou, L.; Liu, Y.; Liu, H.Y.; Gan, R.Y. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Phenolic Compounds from Thinned Young Kiwifruits and Their Beneficial Effects. Antioxidants 2023, 12, 1475. [Google Scholar] [CrossRef] [PubMed]
- Santos-Martín, M.; Cubero-Cardoso, J.; González-Domínguez, R.; Cortés-Triviño, E.; Sayago, A.; Urbano, J.; Fernández-Recamales, Á. Ultrasound-assisted extraction of phenolic compounds from blueberry leaves using natural deep eutectic solvents (NADES) for the valorization of agrifood wastes. Biomass Bioenergy 2023, 175, 106882. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Vilková, M.; Plotka-Wasylka, J.; Andruch, V. The role of water in deep eutectic solvent-base extraction. J. Mol. Liq. 2020, 304, 112747. [Google Scholar] [CrossRef]
- Ling, J.K.U.; Hadinoto, K. Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review. Int. J. Mol. Sci. 2022, 23, 3381. [Google Scholar] [CrossRef]
- Kaoui, S.; Chebli, B.; Ait Baddi, G.; Basaid, K.; Mir, Y. Response surface modeling and optimization of the extraction conditions using lactic acid-based deep eutectic solvents as green alternative extraction media for Mentha pulegium. Phytochem. Anal. 2022, 33, 906–914. [Google Scholar] [CrossRef]
- Buarque, F.S.; Monteiro, E.; Silva, S.A.; Ribeiro, B.D. Choline chloride-based deep eutectic solvent as an inhibitor of metalloproteases (collagenase and elastase) in cosmetic formulation. 3 Biotech 2023, 13, 219. [Google Scholar] [CrossRef]
- Juszczak, A.M.; Marijan, M.; Jakupović, L.; Tomczykowa, M.; Tomczyk, M.; Zovko Končić, M. Glycerol and Natural Deep Eutectic Solvents Extraction for Preparation of Luteolin-Rich Jasione montana Extracts with Cosmeceutical Activity. Metabolites 2023, 13, 32. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, W.; Huang, H.; Slavin, M.; Zhao, Y.; Whent, M.; Blackford, J.; Lutterodt, H.; Zhou, H.; Chen, P.; et al. Chemical composition of five commercial Gynostemma pentaphyllum samples and their radical scavenging, antiproliferative, and anti-inflammatory properties. J. Agric. Food Chem. 2010, 58, 11243–11249. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, Z.; Niu, Y.; Shi, H.; Chen, P.; Yu, L.L. Chemical compositions, HPLC/MS fingerprinting profiles and radical scavenging properties of commercial Gynostemma pentaphyllum (Thunb.) Makino samples. Food Chem. 2012, 134, 180–188. [Google Scholar] [CrossRef]
- Heijnen, C.G.; Haenen, G.R.; Minou Oostveen, R.; Stalpers, E.M.; Bast, A. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radic. Res. 2002, 36, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.G.; Baek, C.Y.; Hwang, Y.; Baek, E.; Park, C.; Song, H.S.; Lee, D. Investigating the Anti-Inflammatory, Analgesic, and Chondroprotective Effects of Gynostemma pentaphyllum (Thunb.) Makino in Osteoarthritis: An In Vitro and In Vivo Study. Int. J. Mol. Sci. 2024, 25, 9594. [Google Scholar] [CrossRef] [PubMed]
- García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol. 2007, 557, 221–229. [Google Scholar] [CrossRef]
- Lerche, D.; Sobisch, T. Direct and Accelerated Characterization of Formulation Stability. J. Dispers. Sci. Technol. 2011, 32, 1799–1811. [Google Scholar] [CrossRef]
- Choi, E.; Maeng, S.J.; Yun, S.; Yu, H.; Shin, J.-S.; Yun, J.-Y. The degeneration of skin cosmetics and the structural changes of the chemical components as an indicator of product shelf life. J. Ind. Eng. Chem. 2021, 100, 317–323. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Wongwad, E.; Preedalikit, W.; Changprasoed, S.; Somsai, S.; Singmee, N.; Srisuksomwong, P.; Srivilai, J.; Rungsang, T.; Mungmai, L. Effects of Different Drying Processes on the Bioactivity and Rutin Content of Prunus spp. (Plums). Int. J. Food Sci. 2024, 16, 9999731. [Google Scholar] [CrossRef]
- Manosroi, A.; Sainakham, M.; Chankhampan, C.; Abe, M.; Manosroi, W.; Manosroi, J. Potent in vitro anti-proliferative, apoptotic and anti-oxidative activities of semi-purified Job’s tears (Coix lachryma-jobi Linn.) extracts from different preparation methods on 5 human cancer cell lines. J. Ethnopharmacol. 2016, 187, 281–292. [Google Scholar] [CrossRef]
- Poomanee, W.; Leelapornpisid, W.; Trakoolpua, K.; Salamon, I.; Leelapornpisid, P. Ameliorative Effect of Bouea macrophylla Griffth Seed Extract Against Bacteria-Induced Acne Inflammation: In vitro study. J. Oleo Sci. 2022, 71, 1521–1530. [Google Scholar] [CrossRef]
- Poomanee, W.; Thavanapong, T.; Yaowiwat, N.; Chaichit, S.; Sainakham, M.; Kiattisin, K.; Chaiyana, W. Unlocking the anti-aging ingredients of Sacha inchi husk through ultrasound-assisted extraction: Response surface methodology and comprehensive analytical approach. J. Agric. Food Res. 2024, 15, 101016. [Google Scholar] [CrossRef]
- Chittasupho, C.; Ditsri, S.; Singh, S.; Kanlayavattanakul, M.; Duangnin, N.; Ruksiriwanich, W.; Athikomkulchai, S. Ultraviolet Radiation Protective and Anti-Inflammatory Effects of Kaempferia galanga L. Rhizome Oil and Microemulsion: Formulation, Characterization, and Hydrogel Preparation. Gels 2022, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Ruksiriwanich, W.; Khantham, C.; Muangsanguan, A.; Chittasupho, C.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Sommano, S.R.; Sringarm, K.; Ferrer, E.; et al. Phytochemical Constitution, Anti-Inflammation, Anti-Androgen, and Hair Growth-Promoting Potential of Shallot (Allium ascalonicum L.) Extract. Plants 2022, 11, 1499. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Mei, Q.; Wan, X.; Que, H.; Li, L.; Wan, D. Determination of rutin and isoquercetin contents in Hibisci mutabilis Folium in different collection periods by HPLC. J. Chromatogr. Sci. 2015, 53, 1680–1684. [Google Scholar] [CrossRef]
- Wang, L.; Mei, Q.; Wan, D. Simultaneous Determination by HPLC of Quercetin and Kaempferol in Three Sedum Medicinal Plants Harvested in Different Seasons. J. Chromatogr. Sci. 2014, 52, 334–338. [Google Scholar] [CrossRef]
- Boudesocque-Delaye, L.; Ardeza, I.M.; Verger, A.; Grard, R.; Théry-Koné, I.; Perse, X.; Munnier, E. Natural Deep Eutectic Solvents as a Novel Bio-Based Matrix for Ready-to-Use Natural Antioxidants-Enriched Ingredients: Extraction and Formulation Optimization. Cosmetics 2024, 11, 17. [Google Scholar] [CrossRef]
- Jamaleddine, A.; Urrutigoïty, M.; Bouajila, J.; Merah, O.; Evon, P.; de Caro, P. Ecodesigned Formulations with Tomato Pomace Extracts. Cosmetics 2023, 10, 7. [Google Scholar] [CrossRef]
- Tai, A.; Bianchini, R.; Jachowicz, J. Texture analysis of cosmetic/pharmaceutical raw materials and formulations. Int. J. Cosmet. Sci. 2014, 36, 291–304. [Google Scholar] [CrossRef]
- Tunit, P.; Chittasupho, C.; Sriyakul, K.; Tungsuruthai, P.; Chakkavittumrong, P.; Na-Bangchang, K.; Kietinun, S. Emulgels Containing Perilla frutescens Seed Oil, Moringa oleifera Seed Oil, and Mixed Seed Oil: Microemulsion and Safety Assessment. Polymers 2022, 14, 2348. [Google Scholar] [CrossRef]
- Kartika Restu, W.; Sampora, Y.; Meliana, Y.; Haryono, A. Effect of Accelerated Stability Test on Characteristics of Emulsion Systems with Chitosan as a Stabilizer. Procedia Chem. 2015, 16, 171–176. [Google Scholar] [CrossRef]
Code | Components | The Extraction Yield | |
---|---|---|---|
TPC (mg GAE/g) | TFC (mg QE/g) | ||
S1 | Water Leaves | 5.86 ± 0.15 | 6.70 ± 0.66 |
S2 | Water Stem | 4.73 ± 0.41 | 7.46 ± 0.13 |
S3 | 95% EtOH Leaves | 0.59 ± 0.04 | 7.95 ± 0.83 |
S4 | 95% EtOH Stem | 0.35 ± 0.04 | 3.41 ± 0.29 |
S5 | 50% EtOH Leaves | 4.50 ± 0.33 | 5.63 ± 1.82 |
S6 | 50% EtOH Stem | 4.12 ± 0.28 | 6.17 ± 0.46 |
S7 | LA:G Leaves | 6.93 ± 0.59 * | 8.17 ± 0.07 |
S8 | LA:G Stem | 2.46 ± 0.16 | 1.89 ± 0.19 |
S9 | LA:F Leaves | 5.82 ± 0.56 | 5.08 ± 0.94 |
S10 | LA:F Stem | 3.16 ± 0.45 | 1.48 ± 0.44 |
S11 | CA:G Leaves | 3.05 ± 0.38 | 2.33 ± 0.11 |
S12 | CA:G Stem | 0.42 ± 0.21 | 1.75 ± 0.12 |
S13 | CA:F Leaves | 6.55 ± 0.10 | 2.44 ± 0.02 |
S14 | CA:F Stem | 3.54 ± 0.07 | 1.60 ± 0.48 |
S15 | CA:S Leaves | 3.51 ± 0.22 | 2.09 ± 0.93 |
S16 | CA:S stem | 0.62 ± 0.10 | 2.19 ± 0.29 |
S17 | MA:G Leaves | 1.38 ± 0.51 | 1.62 ± 0.64 |
S18 | MA:G Stem | 0.39 ± 0.04 | 1.60 ± 0.27 |
S19 | MA:F Leaves | 4.09 ± 0.62 | 2.63 ± 0.58 |
S20 | MA:F Stem | 2.45 ± 0.23 | 1.98 ± 0.23 |
S21 | MA:S Leaves | 4.43 ± 0.19 | 3.13 ± 0.28 |
S22 | MA:S Stem | 1.09 ± 0.09 | 2.88 ± 0.52 |
Code | Components | Free Radical Scavenging | Lipid Peroxidation Inhibition | Nitric Oxide Radical Scavenging | Collagenase Enzyme Inhibition |
---|---|---|---|---|---|
S1 | Water Leaves | 30.28 ± 9.49 | 132.29 ± 74.89 | - | - |
S2 | Water Stem | 76.79 ± 29.03 | >1000 | >1000 | - |
S3 | 95% EtOH Leaves | >1000 | >1000 | - | - |
S4 | 95% EtOH Stem | >1000 | >1000 | - | - |
S5 | 50% EtOH Leaves | >1000 | >1000 | - | - |
S6 | 50% EtOH Stem | 644.76 ± 762.35 | >1000 | - | - |
S7 | LA:G Leaves | 8.54 ± 3.31 * | 8.38 ± 0.05 * | 38.63 ± 1.46 | 1.27 ± 0.01 |
S8 | LA:G Stem | 55.71 ± 10.04 | 16.60 ± 7.40 | 74.60 ± 19.16 | 4.40 ± 0.07 |
S9 | LA:F Leaves | 9.91 ± 2.28 * | 9.27 ± 2.58 * | 67.20 ± 11.39 | 3.77 ± 0.52 |
S10 | LA:F Stem | 164.30 ± 133.77 | 20.17 ± 5.13 | 156.00 ± 22.23 | 1.15 ± 0.02 |
S11 | CA:G Leaves | 51.30 ± 30.29 | 10.26 ± 0.80 | >1000 | 0.95 ± 0.06 |
S12 | CA:G Stem | 273.41 ± 217.76 | 30.00 ± 11.91 | 137.74 ± 57.46 | 1.24 ± 0.03 |
S13 | CA:F Leaves | 163.14 ± 107.12 | 6.04 ± 0.82 * | 268.27 ± 161.03 | 0.92 ± 0.04 |
S14 | CA:F Stem | 374.70 ± 130.74 | 13.54 ± 4.34 | 131.77 ± 70.93 | 2.97 ± 0.02 |
S15 | CA:S Leaves | 587.96 ± 302.14 | 12.14 ± 7.54 | 554.85 ± 362.96 | 0.95 ± 0.05 |
S16 | CA:S stem | >1000 | 54.46 ± 28.12 | - | - |
S17 | MA:G Leaves | >1000 | 8.79 ± 2.17 * | - | - |
S18 | MA:G Stem | >1000 | 34.03 ± 15.08 | - | - |
S19 | MA:F Leaves | >1000 | 6.73 ± 1.48 * | - | - |
S20 | MA:F Stem | >1000 | 27.48 ± 0.59 | - | - |
S21 | MA:S Leaves | >1000 | 18.56 ± 3.18 | - | - |
S22 | MA:S Stem | >1000 | 39.47 ± 20.13 | - | - |
Ascorbic acid | 0.08 ± 0.03 | 0.08 ± 0.06 | 1.77 ± 0.15 | 0.034 ± 0.003 |
Code | Components | %Metal Chelating Activity | %ABTS Scavenging Activity | FRAP Value |
---|---|---|---|---|
S1 | Water Leaves | 59.42 ± 3.38 | 18.79 ± 1.18 | 251.02 ± 11.38 |
S2 | Water Stem | 45.08 ± 6.95 | - | - |
S3 | 95% EtOH Leaves | 54.78 ± 5.28 | - | - |
S4 | 95% EtOH Stem | 60.97 ± 2.70 | - | - |
S5 | 50% EtOH Leaves | 33.81 ± 0.87 | - | - |
S6 | 50% EtOH Stem | 38.40 ± 3.58 | - | - |
S7 | LA:G Leaves | 24.86 ± 1.31 | 20.72 ± 1.43 | 139.24 ± 2.83 |
S8 | LA:G Stem | 21.97 ± 6.62 | 10.41 ± 058 | 3.67 ± 1.80 |
S9 | LA:F Leaves | 29.23 ± 1.24 | 24.91 ± 2.47 | 129.83 ± 9.00 |
S10 | LA:F Stem | 25.46 ± 5.63 | 12.90 ± 0.56 | 31.69 ± 7.50 |
S11 | CA:G Leaves | 12.95 ± 1.94 | 14.65 ± 0.13 | - |
S12 | CA:G Stem | 15.57 ± 0.51 | 5.08 ± 0.50 | - |
S13 | CA:F Leaves | 19.72 ± 0.01 | 14.30 ± 1.03 | - |
S14 | CA:F Stem | 20.42 ± 1.47 | 8.29 ± 0.40 | - |
S15 | CA:S Leaves | 18.37 ± 1.72 | 8.86 ± 0.25 | - |
S16 | CA:S stem | 14.80 ± 5.95 | - | - |
S17 | MA:G Leaves | 8.18 ± 1.78 | - | - |
S18 | MA:G Stem | 9.63 ± 1.48 | - | - |
S19 | MA:F Leaves | 11.13 ± 1.45 | - | - |
S20 | MA:F Stem | 7.88 ± 2.43 | - | - |
S21 | MA:S Leaves | 10.66 ± 2.45 | - | - |
S22 | MA:S Stem | 3.97 ± 1.16 | - | - |
Ascorbic acid | - | 99.69 ± 0.24 | 2358.77 ± 8.45 | |
EDTA | 99.83 ± 0.03 | - | - |
Code | Concentration (mg/mL) | % Cell Viability | IC50 (mg/mL) |
---|---|---|---|
S1 Water Leaves | 0.27 | 91.96 ± 4.89 | 127.81 ± 41.43 |
0.55 | 90.53 ± 2.65 | ||
1.1 | 89.58 ± 5.06 | ||
2.2 | 83.26 ± 4.30 | ||
4.39 | 76.09 ± 2.31 | ||
S7 LA:G Leaves | 0.25 | 97.64 ± 5.47 | 9.20 ± 0.15 |
0.51 | 95.50 ± 6.24 | ||
1.02 | 101.46 ± 4.80 | ||
2.03 | 98.82 ± 4.15 | ||
4.06 | 89.20 ± 2.56 | ||
S9 LA:F Leaves | 0.23 | 96.74 ± 5.43 | 8.00 ± 0.19 |
0.46 | 94.83 ± 5.11 | ||
0.93 | 92.14 ± 1.33 | ||
1.85 | 92.69 ± 4.51 | ||
3.71 | 79.77 ± 7.42 | ||
S11 CA:G Leaves | 0.25 | 90.06 ± 7.74 | 8.28 ± 0.45 |
0.49 | 95.74 ± 1.48 | ||
0.98 | 91.45 ± 6.62 | ||
1.97 | 92.74 ± 1.70 | ||
3.93 | 76.28 ± 4.72 | ||
S13 CA:F Leaves | 0.26 | 95.55 ± 9.72 | 8.80 ± 1.48 |
0.52 | 99.66 ± 4.81 | ||
1.04 | 96.23 ± 5.16 | ||
2.07 | 93.53 ± 9.67 | ||
4.14 | 87.84 ± 9.99 |
Samples | Rutin Content (mg/g Extract) | Kaempferol Content (mg/g Extract) |
---|---|---|
S1 Water Leaves | 8.95 ± 0.03 | - |
S7 LA:G Leaves | 7.87 ± 0.01 | 25.36 ± 0.08 |
S13 CA:F Leaves | 6.39 ± 0.01 | 24.78 ± 0.10 |
Formulations | Factor Variables | Response Variables | |||||
---|---|---|---|---|---|---|---|
DES Extract | Emulsifier | Emollient | Viscosity (Pa.s) | Spreadability (g) | Cohesiveness (g) | Consistency (g.s) | |
F1 | 1 | 2 | 30 | 1.48 ± 0.13 | 18.27 ± 0.25 | 10.67 ± 0.14 | 45.48 ± 2.93 |
F2 | 1 | 5 | 30 | 5.15 ± 0.38 | 50.25 ± 4.12 | 25.17 ± 1.76 | 125.51 ± 14.56 |
F3 | 1 | 2 | 15 | 2.87± 0.30 | 23.50 ± 1.65 | 11.93 ± 0.68 | 58.05 ± 0.14 |
F4 | 5 | 2 | 15 | 3.29 ± 0.17 | 21.68± 1.17 | 10.23 ± 0.12 | 55.55 ± 6.10 |
F5 | 5 | 5 | 30 | 5.40 ± 0.26 | 40.02 ± 0.81 | 18.87 ± 1.06 | 96.31 ± 4.97 |
F6 | 5 | 5 | 15 | 5.30 ± 0.39 | 44.08 ± 1.04 | 17.54 ± 1.40 | 103.77± 0.52 |
F7 | 1 | 5 | 15 | 4.34 ± 0.28 | 32.80 ± 0.81 | 13.44 ± 0.14 | 76.28 ± 2.21 |
F8 | 5 | 2 | 30 | 1.59 ± 0.07 | 15.50 ± 0.51 | 9.38± 0.32 | 40.63 ± 1.47 |
Responses | Viscosity | Spreadability | Cohesiveness | Consistency |
---|---|---|---|---|
Linear terms | ||||
Intercept (β0) | 3.68 | 30.89 | 14.65 | 75.93 |
βA | 0.2175 | - | −0.6488 | - |
βB | 1.37 * | 10.90 * | 4.10 * | 24.54 * |
βC | −0.2739 * | - | 1.37 * | - |
Interaction terms | ||||
βAB | - | - | - | - |
βAC | - | −2.68 | −1.25 | −6.65 |
βBC | 0.5005 | 3.2 | 1.90 * | 9.38 |
βABC | - | - | −1.35 * | - |
Model | ||||
F-value | 64.06 | 21.88 | 431.34 | 15.51 |
p-value | 0.0031 | 0.0061 | 0.0368 | 0.0114 |
R2 | 0.9884 | 0.9462 | 0.9996 | 0.9209 |
Adjusted R2 | 0.9730 | 0.8995 | 0.9973 | 0.8615 |
Predicted R2 | 0.9177 | 0.7703 | 0.9753 | 0.6834 |
Adequate Precision | 19.9317 | 11.6591 | 59.4407 | 10.2135 |
Ingredients | Total 100 g | ||
---|---|---|---|
Hydrogenated lecithin (B) | 3 | 2 | |
Caprylic/capric triglycerides (C) | 25 | 15 | |
DES extract (A) | 0 | 1 | |
Xanthan gum | 1 | 1 | |
Glycerin | 10 | 10 | |
Phenoxyethanol | 1 | 1 | |
DI Water | 60 | 70 | |
Responses | Control formulation | Optimized formulation (F3) | %RSE |
Viscosity (Pa.s) | 2.74 ± 0.12 | 2.87 ± 0.30 | 4.74 |
Spreadability (g) | 21.31 ± 0.60 | 23.50 ± 1.65 | 10.28 |
Cohesiveness (g) | 12.10 ± 0.31 | 11.93 ± 0.68 | 1.40 |
Consistency (g.sec) | 54.43 ± 2.70 | 58.05 ± 0.14 | 6.65 |
Characterizations | Control Formulation | F3 | ||
---|---|---|---|---|
Before | After | Before | After | |
Viscosity (Pa·s) | 2.74 ± 0.12 | 1.91 ± 0.10 | 2.87 ± 0.30 | 2.15 ± 0.10 |
Spreadability (g) | 21.31 ± 0.60 | 19.56 ± 0.81 | 23.50 ± 1.65 | 16.85 ± 0.49 |
Cohesiveness (g) | 12.10 ± 0.31 | 9.70 ± 0.31 | 11.93 ± 0.68 | 7.22 ± 0.19 |
Consistency (g·s) | 54.43 ± 2.70 | 48.26 ± 1.35 | 58.05 ± 0.14 | 42.95 ± 1.43 |
Abbreviation | Components | Molar Ratio | Appearance |
---|---|---|---|
LA:F | Lactic acid (88%):Fructose | 5:1 | Light clear yellow liquid |
LA:G | Lactic acid (88%):Glucose | 5:1 | Transparent liquid |
CA:S | Citric acid:Sucrose | 1:1 | Transparent liquid |
CA:F | Citric acid:Fructose | 1:1 | Light clear yellow liquid |
CA:G | Citric acid:Glucose | 1:1 | Transparent liquid |
MA:G | Malic acid:Glucose | 1:1 | Transparent liquid |
MA:F | Malic acid:Fructose | 1:1 | Light clear yellow liquid |
MA:S | Malic acid:Sucrose | 1:1 | Light clear yellow liquid |
Ingredients | Function | Total 100 g |
---|---|---|
Oil phase | ||
Hydrogenated lecithin | Emulsifier | 3 |
Caprylic/capric triglycerides | Emollient | 25 |
Water phase | ||
DES extract | Active | 0 |
Xanthan gum | Thickener | 1 |
Glycerin | Humectant | 10 |
Phenoxyethanol | Preservative | 1 |
DI Water | Solvent | 60 |
Independent Variables | Name | Unit | Level | |
---|---|---|---|---|
Low (−) | High (+) | |||
A | DES extract | %, w/w | 1 | 5 |
B | Emulsifier | %, w/w | 2 | 5 |
C | Emollient | %, w/w | 15 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaikampan, K.; Poomanee, W.; Thavanapong, T.; Chittasupho, C.; Jantadee, K.; Sainakham, M. Preparation of Gynostemma pentaphyllum Extracts Using Natural Deep Eutectic Solvents with Ultrasound-Assisted Extraction for Cosmetic Applications. Plants 2025, 14, 1622. https://doi.org/10.3390/plants14111622
Jaikampan K, Poomanee W, Thavanapong T, Chittasupho C, Jantadee K, Sainakham M. Preparation of Gynostemma pentaphyllum Extracts Using Natural Deep Eutectic Solvents with Ultrasound-Assisted Extraction for Cosmetic Applications. Plants. 2025; 14(11):1622. https://doi.org/10.3390/plants14111622
Chicago/Turabian StyleJaikampan, Komcharn, Worrapan Poomanee, Thasang Thavanapong, Chuda Chittasupho, Kantamanee Jantadee, and Mathukorn Sainakham. 2025. "Preparation of Gynostemma pentaphyllum Extracts Using Natural Deep Eutectic Solvents with Ultrasound-Assisted Extraction for Cosmetic Applications" Plants 14, no. 11: 1622. https://doi.org/10.3390/plants14111622
APA StyleJaikampan, K., Poomanee, W., Thavanapong, T., Chittasupho, C., Jantadee, K., & Sainakham, M. (2025). Preparation of Gynostemma pentaphyllum Extracts Using Natural Deep Eutectic Solvents with Ultrasound-Assisted Extraction for Cosmetic Applications. Plants, 14(11), 1622. https://doi.org/10.3390/plants14111622