Mitigating Drought Stress in Maize: Synergistic Effects of Zinc Sulfate and Pseudomonas spp. on Physiological and Biochemical Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Field Preparation, Planting, and Management
2.3. Physiological, Biochemical, and Morphological Measurements
2.4. Statistical Analysis
3. Results
3.1. Chlorophyll and Carotenoid Content
3.2. Osmoprotectants and Oxidative Stress
3.3. Antioxidant Enzyme Activity
3.4. Leaf Area Index (LAI) and Grain Yield
3.5. Principal Component Analysis (PCA)
4. Discussion
4.1. Chlorophyll and Carotenoid Content
4.2. Osmoprotectants and Oxidative Stress
4.3. Antioxidant Enzyme Activity
4.4. Leaf Area Index (LAI) and Grain Yield
4.5. Principal Component Analysis (PCA)
4.6. Proposed Mechanistic Model for Drought Tolerance Enhancement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LAI | leaf area index |
PCA | principal component analysis |
Zn | zinc |
PGPR | plant-growth-promoting rhizobacteria |
MDA | malondialdehyde |
SOD | superoxide dismutase |
CAT | catalase |
POD | peroxidase |
EL | electrolyte leakage |
References
- FAO. The State of Food Security and Nutrition in the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Pandey, A. Microbial interventions for drought stress mitigation in crops. Plant Soil 2022, 471, 665–677. [Google Scholar] [CrossRef]
- Gu, Z.; Hu, C.; Gan, Y.; Zhou, J.; Tian, G.; Gao, L. Role of microbes in alleviating crop drought stress: A review. Plants 2024, 13, 384. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Zinc in Soils and Crop Nutrition; International Zinc Association: Brussels, Belgium, 2008. [Google Scholar]
- Ghasemi, S.; Khoshgoftarmanesh, A.H.; Afyuni, M. Zinc nutrition of wheat as affected by soil properties and nitrogen fertilization. J. Plant Nutr. 2020, 43, 678–690. [Google Scholar] [CrossRef]
- Hafeez, B.; Khanif, Y.M.; Saleem, M. Role of zinc in plant nutrition—A review. J. Exp. Agric. Int. 2021, 43, 374–391. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Vazin, F. Effect of zinc sulfate on quantitative and qualitative characteristics of corn (Zea mays) in drought stress. Cercet. Agron. Mold. 2012, 3, 15–24. [Google Scholar] [CrossRef]
- Glick, B.R. Beneficial Plant-Bacterial Interactions; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, M.; Sharma, S. Plant growth-promoting rhizobacteria: A review of their mechanisms and applications. Microorganisms 2021, 9, 1623. [Google Scholar] [CrossRef]
- Saharan, B.S.; Nehra, V. Plant growth-promoting rhizobacteria: A critical review. Life Sci. Med. Res. 2011, 21, 1–30. [Google Scholar]
- Sayyed, R.Z.; Reddy, M.S.; Vijay Kumar, K.; Yellareddygari, S.K.R.; Deshmukh, A.M.; Patel, P.R.; Gangurde, N.S. Potential of plant growth-promoting rhizobacteria for sustainable agriculture. In Bacteria in Agrobiology: Plant Probiotics; Maheshwari, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Shafiq, S.; Akram, N.A.; Ashraf, M.; García-Caparrós, P.; Ali, O.M.; Latef, A.A.H.A. Influence of glycine betaine (natural and synthetic) on growth, metabolism and yield production of drought-stressed maize (Zea mays L.) Plants. Plants 2021, 10, 2540. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Naveed, M.; Nawaz, A.; Shahzad, B. Seed priming Zn with endophytic bacteria improves bread wheat’s productivity and grain biofortification. Eur. J. Agron. 2018, 94, 98–107. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Khaledi, F.; Balouchi, H.R.; Movahhedi Dehnavi, M.; Salehi, A. Enhancing maize yield, water use efficiency, and Zn content under drought stress by applying Zn-solubilizing bacteria. Agric. Water Manag. 2025, 308, 109313. [Google Scholar] [CrossRef]
- Arisandy, P.; Bayuardi Suwarno, W.; Azrai, M. Evaluation of drought tolerance in maize hybrids using stress tolerance indices. Int. J. Agron. Agric. Res. 2017, 11, 46–54. [Google Scholar]
- Zand, B.; Sorooshzadeh, A.; Ghanati, F.; Moradi, F. Effect of zinc and auxin foliar application on grain yield and its components of grain maize under water deficit conditions. Seed Plant Prod. J. 2010, 25, 431–448. [Google Scholar] [CrossRef]
- Chaichi, M.R.; Nurre, P.; Slaven, J.; Rostamza, M. Surfactant application on yield and irrigation water use efficiency in corn under limited irrigation. Crop Sci. 2015, 55, 386–393. [Google Scholar] [CrossRef]
- Noorjoo, M.; Golkarhamzi Yazd, H.; Tavousi, M. Water, irrigation and productivity: Yield and efficiency of sunflower water use under surface irrigation systems and strip diameters in Miandoab region. In Proceedings of the National Iranian Irrigation and Drainage Congress, 13–14 May 2015; Mashhad, Iran. Available online: https://www.sid.ir/fa/seminar/ViewPaper.aspx?ID=65128 (accessed on 13 May 2015).
- Zareabayneh, H.; Noori, H.; Liaghat, A.; Noori, H.; Karimi, V. Comparison of Penman-Monteith FAO method and a class pan evaporation with lysimeter measurements in estimation of rice evapotranspiration in Amol region. Phys. Geogr. Res. 2011, 43, 71–83. [Google Scholar]
- Snyder, R.L. Equation for evaporation pan to evapotranspiration conversions. J. Irrig. Drain. Eng. 1992, 118, 977–980. [Google Scholar] [CrossRef]
- Farshi, A.A.; Shariati, M.R.; Jarollahi, R.; Ghaemi, M.R.; Shahabifar, M.; Tavallaei, M.M. An Estimate of Water Requirement of Main Field Crops and Orchards in Iran; Agricultural Education Publications; Agricultural Research, Education and Extension Organization of Iran; Water and Soil Research Institute Press: Karaj, Iran, 1997; 629p. (In Persian) [Google Scholar]
- Arnon, D.E. Copper enzymes in isolated chloroplasts polyphenol oxidase (Beta vulgaris). Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Paquine, R.; Lechasseur, P. Observations sur une method dosage la libre dans les de plantes. Can. J. Bot. 1979, 57, 1851–1854. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Emerich, D.W.; Sanchez-Diaz, M. Water stress induced changes in proline and total soluble sugars concentrations in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photo per oxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid per oxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases I. occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Mac-Adam, J.W.; Nelson, C.J.; Sharp, R.E. Peroxidase activity in the leaf elongation zone of tall fescue I. spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol. 1992, 99, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.W.; Nguyen, H.T.; Haloday, A.S. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 1990, 30, 105–111. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef]
- Abdel-Motagally, F.M.F.; El-Zohri, M. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. J. Saudi Soc. Agric. Sci. 2018, 17, 178–185. [Google Scholar] [CrossRef]
- Miri, H.R.; Armin, M. The interaction effect of drought and exogenous application of glycine betaine on corn (Zea mays L.). Eur. J. Exp. Biol. 2013, 3, 197–206. [Google Scholar]
- Silva, M.A.; Jifon, J.L.; Silva, J.A.G.; Sharma, V. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol. 2007, 19, 193–201. [Google Scholar] [CrossRef]
- Hinojosa, L.; Gonzalez, J.; Barrios-Masias, F.; Fuentes, F.; Murphy, K. Quinoa abiotic stress responses: A review. Plants 2018, 7, 106–138. [Google Scholar] [CrossRef]
- Sankar, B.; Jaleel, C.A.; Manivannan, P.; Kishorekumar, A.; Somasundaram, R.; Panneerselvam, R. Drought induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Bot. Croat. 2007, 66, 43–56. [Google Scholar]
- Shoresh, M.; Harman, G.E. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach. Plant Physiol. 2008, 147, 2147–2163. [Google Scholar] [CrossRef] [PubMed]
- Jamali, J.; Enteshari, S.; Hosseini, S.M. Effect of potassium and Zn on biochemical and physiological changes to drought resistance in Maize (cv. SC 704). Crop Physiol. J. 2012, 4, 37–44. [Google Scholar]
- Azeem, M.; Zulqurnain Haider, M.; Javed, S.; Saleem, M.H.; Alatawi, A. Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains under Sterile Soil Conditions. Agriculture 2022, 12, 50. [Google Scholar] [CrossRef]
- Ali, Q.; Ashraf, M.; Anwar, F. Seed composition and seed oil antioxidant activity of maize under water stress. J. Am. Oil Chem. Soc. 2010, 87, 1179–1187. [Google Scholar] [CrossRef]
- Makela, P.; Peltonen-Sainio, P.; Jokinen, K.; Pehu, E.; Setala, H.; Hinkkanen, R.; Somersalo, S. Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant Sci. 1996, 121, 221–230. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Ghanbari, M.; Mokhtassi Bidgoli, A.; Ghanaei Pashaki, K.; Talebi Siah Saran, P. The study of yield and physiological characteristics of pearl millet (Pennisetum glaucum) in response to bio-fertilizers and different irrigation regimes. J. Agric. Sci. Sustain. Prod. 2021, 31, 23–37. [Google Scholar] [CrossRef]
S.O.V. | D.F. | Mean Squares | |||||||
---|---|---|---|---|---|---|---|---|---|
Chlorophyll a | Chlorophyll b | Chlorophyll ab | Carotenoid | Proline | Soluble Sugars | Glycine Betaine | MDA | ||
Year (Y) | 1 | 3.673 **1 | 0.444 ** | 6.376 ** | 1.247 ** | 686.44 ** | 283.36 ns | 0.040 ns | 0.183 ns |
Replicate (R) × Y | 4 | 0.06 | 0.013 | 0.152 | 0.061 | 15.07 | 105.4 | 0.283 | 0.069 |
Drought (D) | 1 | 0.380 ** | 0.062 * | 0.117 ns | 0.054 ns | 464.40 ** | 476.69 * | 5.210 ** | 64.26 ** |
D × Y | 1 | 0.0003 ns | 0.010 ns | 0.008 ns | 0.250 ns | 21.01 ns | 156.25 ns | 0.012 ns | 0.011 ns |
R × Y × D | 4 | 0.044 | 0.006 | 0.058 | 0.006 | 8.27 | 250.14 | 0.064 | 0.274 |
Zn − Bacteria (ZB) | 11 | 0.136 ** | 0.019 ns | 0.167 * | 0.098 ** | 37.31 ** | 1244.98 ** | 0.196 ns | 0.859 ** |
Y × ZB | 11 | 0.293 ** | 0.014 ns | 0.410 ** | 0.081 ** | 42.80 ** | 127.56 ns | 0.124 ns | 0.087 ns |
D × ZB | 11 | 0.094 ns | 0.020 ns | 0.177 * | 0.041 ns | 87.47 ** | 493.74 ** | 0.230 ns | 0.182 ns |
Y × D× ZB | 11 | 0.214 ** | 0.011 ns | 0.284 ** | 0.85 ** | 54.10 ** | 80.17 ns | 0.200 ns | 0.064 ns |
Error | 88 | 0.053 | 0.0107 | 0.082 | 0.024 | 11.7 | 143.58 | 0.127 | 0.201 |
C.V. (%) | 17.38 | 23.35 | 16.22 | 17.5 | 17.66 | 21.85 | 19.94 | 5.84 |
Treatment | Chlorophyll a (mg·g−1 FW) | Chlorophyll ab (mg·g−1 FW) | Carotenoid (mg·g−1 FW) | Proline (μmol·g−1) | Peroxidase Activity (unite·min−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
NS | C | 0.83 ± 0.11 cd1 | 1.61 ± 0.21 ab | 1.13 ± 0.12 cd | 2.10 ± 0.31 ab | 0.47 ± 0.05 c | 0.43 ± 0.06 c | 13.3 ± 2.3 d | 9.7 ± 0.3 e | 0.026 ± 0.003 bc | 0.028 ± 0.006 bc |
ZnP | 1.19 ± 0.16 bc | 1.58 ± 0.12 ab | 1.57 ± 0.15 c | 1.97 ± 0.15 bc | 0.63 ± 0.08 bc | 0.37 ± 0.11 c | 16.2 ± 1.5 cd | 15.3 ± 1.4 cd | 0.037 ± 0.003 b | 0.023 ± 0.005 c | |
ZnF | 1.71 ± 0.15 ab | 1.40 ± 0.12 bc | 2.17 ± 0.13 ab | 1.83 ± 0.17 bc | 1.00 ± 0.03 a | 0.47 ± 0.07 c | 14.2 ± 1.4 cd | 13.1 ± 1.4 d | 0.029 ± 0.003 bc | 0.032 ± 0.005 bc | |
ZnS | 0.86 ± 0.07 cd | 1.71 ± 017 ab | 1.13 ± 0.11 cd | 2.20 ± 0.16 ab | 0.47 ± 0.06 c | 0.37 ± 0.13 c | 30.3 ± 1.5 a | 11.7 ± 1.3 de | 0.020 ± 0.003 c | 0.021 ± 0.002 c | |
Bpf | 0.92 ± 013 cd | 1.93 ± 0.03 a | 1.33 ± 0.14 cd | 2.50 ± 0.06 a | 0.47 ± 0.14 c | 0.60 ± 0.04 bc | 13.9 ± 1.9 d | 15.1 ± 1.1 cd | 0.019 ± 0.001 c | 0.012 ± 0.001 c | |
ZnP+Bpf | 1.37 ± 0.29 bc | 1.25 ± 0.13 bc | 1.67 ± 0.33 bc | 1.63 ± 0.08 bc | 0.90 ± 0.30 ab | 0.37 ± 0.01 c | 15.5 ± 1.9 cd | 15.4 ± 1.9 cd | 0.021 ± 0.003 c | 0.022 ± 0.006 c | |
ZnF+Bpf | 1.46 ± 0.17 bc | 1.38 ± 0.12 bc | 1.87 ± 0.24 bc | 1.83 ± 0.14 bc | 0.83 ± 0.13 ab | 0.53 ± 0.02 bc | 24.1 ± 1.2 b | 17.5 ± 1.6 cd | 0.023 ± 0.003 c | 0.019 ± 0.003 bc | |
ZnS+Bpf | 1.01 ± 0.15 cd | 1.53 ± 0.16 b | 1.37 ± 0.21 cd | 2.03 ± 0.17 b | 0.50 ± 0.10 bc | 0.37 ± 0.07 c | 21.4 ± 1.5 bc | 14.5 ± 2.0 cd | 0.039 ± 0.004 ab | 0.023 ± 0.005 c | |
Bpa | 1.52 ± 0.08 b | 1.49 ± 0.08 bc | 1.93 ± 0.13 bc | 1.90 ± 0.07 bc | 1.07 ± 0.06 a | 0.50 ± 0.02 bc | 14.5 ± 1.9 cd | 19.6 ± 1.8 c | 0.016 ± 0.002 c | 0.018 ± 0.004 c | |
ZnP+Bpa | 1.36 ± 0.11 bc | 1.54 ± 0.14 b | 1.73 ± 0.11 bc | 2.00 ± 0.18 bc | 0.90 ± 0.09 ab | 1.03 ± 0.07 a | 20.7 ± 1.0 bc | 20.4 ± 2.6 bc | 0.038 ± 0.001 ab | 0.024 ± 0.004 bc | |
ZnF+Bpa | 1.23 ± 0.16 bc | 1.57 ± 0.06 ab | 1.67 ± 0.16 bc | 2.03 ± 0.08 b | 0.70 ± 0.09 bc | 0.60 ± 0.04 bc | 23.5 ± 2.1 b | 20.2 ± 2.4 bc | 0.039 ± 0.004 ab | 0.025 ± 0.006 bc | |
ZnS+Bpa | 1.16 ± 0.12 bc | 1.41 ± 0.19 bc | 1.57 ± 0.15 c | 1.97 ± 0.25 bc | 0.63 ± 0.05 bc | 0.50 ± 0.08 bc | 24.4 ± 1.9 b | 16.3 ± 0.8 cd | 0.032 ± 0.006 bc | 0.018 ± 0.002 c | |
DS | C | 0.72 ± 0.03 d | 1.55 ± 0.11 ab | 1.03 ± 0.03 d | 2.27 ± 0.19 ab | 0.33 ± 0.03 c | 0.57 ± 0.04 bc | 26.1 ± 1.3 ab | 21.0 ± 2.2 bc | 0.040 ± 0.002 ab | 0.049 ± 0.008 a |
ZnP | 1.23 ± 0.14 bc | 1.75 ± 0.06 ab | 1.60 ± 0.17 bc | 2.37 ± 0.11 ab | 0.73 ± 0.10 b | 0.57 ± 0.07 bc | 19.2 ± 1.9 cd | 20.9 ± 3.8 bc | 0.043 ± 0.003 ab | 0.042 ± 0.004 ab | |
ZnF | 1.38 ± 0.11 bc | 1.51 ± 0.12 b | 1.83 ± 0.15 bc | 2.03 ± 0.15 b | 0.90 ± 0.03 ab | 0.50 ± 0.02 bc | 31.4 ± 0.8 a | 20.7 ± 4.3 bc | 0.035 ± 0.005 bc | 0.032 ± 0.006 bc | |
ZnS | 1.06 ± 0.20 cd | 1.76 ± 0.12 ab | 1.53 ± 0.21 cd | 2.33 ± 0.19 ab | 0.47 ± 0.09 c | 0.50 ± 0.03 bc | 26.5 ± 1.9 ab | 19.9 ± 2.8 c | 0.036 ± 0.002 bc | 0.032 ± 0.004 bc | |
Bpf | 1.19 ± 0.13 bc | 1.03 ± 0.07 cd | 1.63 ± 0.17 bc | 1.47 ± 0.05 cd | 0.63 ± 0.13 bc | 0.37 ± 0.05 c | 28.4 ± 1.3 a | 16.5 ± 1.8 cd | 0.045 ± 0.001 ab | 0.047 ± 0.006 ab | |
ZnP+Bpf | 1.03 ± 0.18 cd | 1.67 ± 0.03 ab | 1.47 ± 0.23 cd | 2.27 ± 0.06 ab | 0.53 ± 0.12 bc | 0.60 ± 0.10 bc | 21.6 ± 1.7 bc | 24.3 ± 2.5 b | 0.045 ± 0.003 ab | 0.027 ± 0.005 bc | |
ZnF+Bpf | 1.31 ± 0.20 bc | 1.09 ± 0.14 c | 1.73 ± 0.26 bc | 1.53 ± 0.19 cd | 0.87 ± 0.08 ab | 0.40 ± 0.03 c | 26.3 ± 1.3 ab | 15.4 ± 1.5 cd | 0.022 ± 0.002 c | 0.028 ± 0.007 bc | |
ZnS+Bpf | 0.75 ± 0.06 cd | 1.17 ± 0.05 bc | 1.10 ± 0.11 d | 1.60 ± 0.09 bc | 0.33 ± 0.02 c | 0.43 ± 0.01 c | 13.8 ± 1.4 d | 15.7 ± 3.0 cd | 0.039 ± 0.005 ab | 0.044 ± 0.002 ab | |
Bpa | 0.95 ± 0.11 cd | 1.36 ± 0.07 bc | 1.33 ± 0.20 cd | 1.87 ± 0.06 bc | 0.43 ± 0.02 c | 0.50 ± 0.08 bc | 25.4 ± 0.7 b | 15.2 ± 0.6 cd | 0.032 ± 0.003 bc | 0.037 ± 0.004 b | |
ZnP+Bpa | 1.00 ± 0.03 cd | 1.76 ± 0.11 ab | 1.43 ± 0.01 cd | 2.30 ± 0.14 ab | 0.57 ± 0.06 bc | 0.57 ± 0.03 bc | 18.8 ± 2.4 cd | 14.8 ± 2.6 cd | 0.026 ± 0.006 bc | 0.046 ± 0.006 ab | |
ZnF+Bpa | 1.35 ± 0.13 bc | 1.10 ± 0.19 c | 1.67 ± 0.16 bc | 1.47 ± 0.22 cd | 0.57 ± 0.07 bc | 0.40 ± 0.09 c | 26.0 ± 0.6 ab | 18.3 ± 4.0 cd | 0.027 ± 0.005 bc | 0.033 ± 0.009 bc | |
ZnS+Bpa | 1.38 ± 0.10 bc | 1.35 ± 0.12 bc | 1.90 ± 0.11 bc | 2.00 ± 0.18 bc | 0.73 ± 0.03 b | 0.47 ± 0.14 bc | 20.9 ± 1.7 bc | 20.1 ± 0.8 bc | 0.028 ± 0.002 bc | 0.027 ± 0.006 bc |
Year | Chlorophyll b (mg·g−1 FW) | LAI | Catalase Activity (mmol·g−1 FW·min−1) |
---|---|---|---|
2018 | 0.39 ± 0.0120 b1 | 3.84 ± 0.056 b | 183.10 ± 5.3 a |
2019 | 0.50 ± 0.0124 a | 4.06 ± 0.059 a | 112.33 ± 5.0 b |
Treatment | Chlorophyll b (mg·g−1 FW) | Glycine Betaine (µg·g−1 DW) | MDA (µmol·g−1 FW) | EL (%) | LAI |
---|---|---|---|---|---|
NS | 0.42 ± 0.012 b1 | 1.60 ± 0.043 b | 7.01 ± 0.057 b | 35.48 ± 1.0 b | 4.16 ± 0.06 a |
DS | 0.46 ± 0.015 a | 1.98 ± 0.048 a | 8.34 ± 0058 a | 50.53 ± 1.2 a | 3.74 ± 0.05 b |
Treatment | Soluble Sugars (mg·g−1 FW) | Catalase Activity (mmol·g−1 FW·min−1) | |
---|---|---|---|
NS | C | 65.7 ± 3.9 bc1 | 106.3 ± 9.3 b |
ZnP | 62.7 ± 4.2 bc | 154.0 ± 25.5 ab | |
ZnF | 44.8 ± 5.0 cd | 110.8 ± 25.4 b | |
ZnS | 47.0 ± 4.9 cd | 107.3 ± 17.2 b | |
Bpf | 64.3 ± 2.8 bc | 156.2 ± 31.2 ab | |
ZnP+Bpf | 53.8 ± 4.3 c | 187.0 ± 32.4 a | |
ZnF+Bpf | 54.3 ± 2.0 bc | 124.5 ± 19.7 b | |
ZnS+Bpf | 67.7 ± 4.8 b | 128.5 ± 20.9 b | |
Bpa | 34.0 ± 2.6 d | 125.3 ± 17.2 b | |
ZnP+Bpa | 32.3 ± 1.7 d | 156.3 ± 28.5 ab | |
ZnF+Bpa | 49.5 ± 5.9 ab | 106.5 ± 9.9 b | |
ZnS+Bpa | 60.2 ± 4.7 bc | 133.5 ± 19.2 b | |
DS | C | 43.0 ± 4.8 cd | 163.3 ± 21.4 ab |
ZnP | 61.2 ± 2.1 bc | 174.7 ± 21.0 ab | |
ZnF | 37.7 ± 3.1 d | 126.0 ± 11.8 b | |
ZnS | 55.2 ± 2.4 bc | 180.3 ± 23.3 ab | |
Bpf | 63.7 ± 4.6 bc | 179.3 ± 25.6 b | |
ZnP+Bpf | 81.5 ± 5.3 a | 202.3 ± 20.1 a | |
ZnF+Bpf | 59.5 ± 9.3 bc | 132.0 ± 20.6 b | |
ZnS+Bpf | 65.8 ± 10.4 bc | 168.7 ± 15.6 ab | |
Bpa | 40.8 ± 2.8 cd | 175.5 ± 18.1 b | |
ZnP+Bpa | 53.7 ± 5.5 c | 137.0 ± 16.3 b | |
ZnF+Bpa | 54.8 ± 7.2 bc | 128.8 ± 13.1 b | |
ZnS+Bpa | 63.2 ± 8.4 bc | 184.8 ± 30.6 ab |
S.O.V. | D.F. | Mean Squares | ||||
---|---|---|---|---|---|---|
EL | LAI | CAT | SOD | POD | ||
Year (Y) | 1 | 36.40 ns | 1.72 * | 180,271.01 ** | 0.1805 ** | 0.000136 ns |
Replicate (R) × Y | 4 | 37.85 | 0.1 | 1477.78 | 0.0027 | 0.000085 |
Drought stress (D) | 1 | 8157.10 ** | 6.34 * | 7267.56 * | 0.1331 ns | 0.004096 ** |
D × Y | 1 | 24.17 ns | 0.24 ns | 7070.01 ns | 0.0016 ** | 0.00060 ns |
R × Y × D | 4 | 202.3 | 0.36 | 58.22 | 0.0039 | 0.000033 |
Zn—Bacteria (ZB) | 11 | 96.21 ns | 0.36 * | 5807.58 ** | 0.0021 ns | 0.000254 ** |
Y × ZB | 11 | 81.56 ns | 0.34 ns | 1550.07 ns | 0.0015 ns | 0.000059 ns |
D × ZB | 11 | 63.40 ns | 0.053 ns | 4262.38 * | 0.0011 ns | 0.000251 ** |
Y × D× ZB | 11 | 50.30 ns | 0.130 ns | 2257.85 ns | 0.0010 ns | 0.000136 * |
Error | 88 | 103.02 | 0.178 | 1799.07 | 0.0027 | 0.000052 |
C.V. (%) | 23.6 | 10.68 | 18.71 | 23.11 | 23.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaledi, F.; Balouchi, H.; Movahhedi Dehnavi, M.; Salehi, A.; Dedicova, B. Mitigating Drought Stress in Maize: Synergistic Effects of Zinc Sulfate and Pseudomonas spp. on Physiological and Biochemical Responses. Plants 2025, 14, 1483. https://doi.org/10.3390/plants14101483
Khaledi F, Balouchi H, Movahhedi Dehnavi M, Salehi A, Dedicova B. Mitigating Drought Stress in Maize: Synergistic Effects of Zinc Sulfate and Pseudomonas spp. on Physiological and Biochemical Responses. Plants. 2025; 14(10):1483. https://doi.org/10.3390/plants14101483
Chicago/Turabian StyleKhaledi, Fahimeh, Hamidreza Balouchi, Mohsen Movahhedi Dehnavi, Amin Salehi, and Beata Dedicova. 2025. "Mitigating Drought Stress in Maize: Synergistic Effects of Zinc Sulfate and Pseudomonas spp. on Physiological and Biochemical Responses" Plants 14, no. 10: 1483. https://doi.org/10.3390/plants14101483
APA StyleKhaledi, F., Balouchi, H., Movahhedi Dehnavi, M., Salehi, A., & Dedicova, B. (2025). Mitigating Drought Stress in Maize: Synergistic Effects of Zinc Sulfate and Pseudomonas spp. on Physiological and Biochemical Responses. Plants, 14(10), 1483. https://doi.org/10.3390/plants14101483