Enhancing the Storage Longevity of Apples: The Potential of Bacillus subtilis and Streptomyces endus as Preventative Bioagents against Post-Harvest Gray Mold Disease, Caused by Botrytis cinerea
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of Bioagents
2.2. B. subtilis and S. endus Inhibited the Mycelial Growth of B. cinerea
2.3. Biological Control of Apple Gray Mold at Room Temperature
2.3.1. B. subtilis and S. endus Reduced the Apple Gray Mold Disease
2.3.2. B. subtilis and S. endus Stimulated the Enzymatic Antioxidant Defense Machinery of Apple Fruits
2.3.3. B. subtilis Enhanced the Non-Enzymatic Antioxidant Defense Machinery of Apple Fruits
2.4. Biological Control of Apple Gray Mold under Cold Storage (1 °C)
2.4.1. B. subtilis and S. endus Diminish the Gray Mold Disease and Enhance the Storage Characteristics of Apples under Cold Storage (1 °C) Conditions
2.4.2. B. subtilis and S. endus Maintain the Quality Indices and Physiological Properties of Apples under Cold Storage (1 °C) Conditions
- Relative weight loss (%)
- b.
- Titratable acidity
- c.
- Firmness
- d.
- Total soluble solids (TSSs)
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. The Phytopathogenic Fungus B. cinerea
4.3. Bacterial Bioagents
4.4. In Vitro Antifungal Activity of B. subtilis and S. endus
4.5. In Vivo Antifungal Activity of B. subtilis and S. endus
4.5.1. Biological Control of Gray Mold Disease at Room Temperature
Antioxidant Enzymes
Total Soluble Phenolic Compounds
Total Soluble Flavonoids
4.5.2. Biological Control of Gray Mold Disease during Cold Storage at 1 °C
Disease Assessment
- a.
- Storage period
- b.
- Disease incidence (DI)
The Quality Indices and Physiological Properties
- Weight loss (%)
- b.
- Total soluble solids (TSSs)
- c.
- Titratable acidity (TA)
- d.
- Flesh firmness
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva Ripardo-Filho, H.; Ruíz, V.C.; Suárez, I.; Moraga, J.; Aleu, J.; Collado, I.G. From Genes to Molecules, Secondary Metabolism in Botrytis cinerea: New Insights into Anamorphic and Teleomorphic Stages. Plants 2023, 12, 553. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M. The Rising Threat of Fungicide Resistance in Plant Pathogenic Fungi: Botrytis as a Case Study. J. Chem. Biol. 2014, 7, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Kheireddine, A.; Essghaier, B.; Hedi, A.; Dhieb, C.; Sadfi-Zouaoui, N. New Epiphytic Yeasts Able to Reduce Grey Mold Disease on Apples. Plant Prot. Sci. 2018, 54, 248–257. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, J.; Wang, Y.; Yang, L.; Wu, M.; Li, G.; Zhang, J. Biological Characterization of the Melanin Biosynthesis Gene Bcscd1 in the Plant Pathogenic Fungus Botrytis cinerea. Fungal Genet. Biol. 2022, 160, 103693. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, R. Global Trends in the Crop Protection Industry. J. Pestic. Sci 2019, 44, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Janisiewicz, W.J.; Korsten, L. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 2002, 40, 411–452. [Google Scholar] [CrossRef] [PubMed]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty Years of Postharvest Biocontrol Research: Is It Time for a New Paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- He, C.; Zhang, Z.; Li, B.; Xu, Y.; Tian, S. Effect of Natamycin on Botrytis cinerea and Penicillium expansum—Postharvest Pathogens of Grape Berries and Jujube Fruit. Postharvest Biol. Technol. 2019, 151, 134–141. [Google Scholar] [CrossRef]
- Berrie, A.M.; Xu, X.M.; Johnson, D. Lower Temperatures More Effective than Atmosphere Modification in Controlling Botrytis and Nectria Rots in Stored Apples. J. Phytopathol. 2011, 159, 73–79. [Google Scholar] [CrossRef]
- Kim, J.C.; Choi, G.J.; Lee, S.W.; Kim, J.S.; Chung, K.Y.; Cho, K.Y. Screening Extracts of Achyranthes japonica and Rumex crispus for Activity against Various Plant Pathogenic Fungi and Control of Powdery Mildew. Pest Manag. Sci. 2004, 60, 803–808. [Google Scholar] [CrossRef]
- Wassermann, B.; Kusstatscher, P.; Berg, G. Microbiome Response to Hot Water Treatment and Potential Synergy with Biological Control on Stored Apples. Front. Microbiol. 2019, 10, 490265. [Google Scholar] [CrossRef]
- Minas, I.S.; Karaoglanidis, G.S.; Manganaris, G.A.; Vasilakakis, M. Effect of Ozone Application during Cold Storage of Kiwifruit on the Development of Stem-End Rot Caused by Botrytis cinerea. Postharvest Biol. Technol. 2010, 58, 203–210. [Google Scholar] [CrossRef]
- Youssef, K.; Ligorio, A.; Sanzani, S.M.; Nigro, F.; Ippolito, A. Control of Storage Diseases of Citrus by Pre- and Postharvest Application of Salts. Postharvest Biol. Technol. 2012, 72, 57–63. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological Control of Postharvest Diseases of Fruits and Vegetables by Microbial Antagonists: A Review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Park, S.W.; Kaimoyo, E.; Kumar, D.; Mosher, S.; Klessig, D.F. Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance. Science 2007, 318, 113–116. [Google Scholar] [CrossRef]
- Calvo-Garrido, C.; Viñas, I.; Usall, J.; Rodríguez-Romera, M.; Ramos, M.C.; Teixidó, N. Survival of the Biological Control Agent Candida Sake CPA-1 on Grapes under the Influence of Abiotic Factors. J. Appl. Microbiol. 2014, 117, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Earl, A.M.; Losick, R.; Kolter, R. Ecology and Genomics of Bacillus subtilis. Trends Microbiol. 2008, 16, 269–275. [Google Scholar] [CrossRef]
- Bu, S.; Munir, S.; He, P.; Li, Y.; Wu, Y.; Li, X.; Kong, B.; He, P.; He, Y. Bacillus subtilis L1-21 as a Biocontrol Agent for Postharvest Gray Mold of Tomato Caused by Botrytis cinerea. Biol. Control 2021, 157, 104568. [Google Scholar] [CrossRef]
- Allam, S.A.; Elkot, G.A.; Elzaawely, A.A.; El-Zahaby, H.M. Potential Control of Postharvest Gray Mold of Pomegranate Fruits Caused by Botrytis cinerea. Environ. Biodivers. Soil Secur. 2017, 1, 145–156. [Google Scholar] [CrossRef]
- Bolivar-Anillo, H.J.; González-Rodríguez, V.E.; Cantoral, J.M.; García-Sánchez, D.; Collado, I.G.; Garrido, C. Endophytic Bacteria Bacillus subtilis, Isolated from Zea Mays, as Potential Biocontrol Agent against Botrytis cinerea. Biol. Biol. 2021, 10, 492. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, X.D.; Ren, B.; Zeng, J.R.; Xu, T.; Yang, Y.Z.; Hu, X.C.; Zhu, Z.Y.; Shi, L.M.; Zhou, G.Y.; et al. Antagonistic Activity against Rice Blast Disease and Elicitation of Host-Defence Response Capability of an Endophytic Streptomyces Albidoflavus OsiLf-2. Plant Pathol. 2020, 69, 259–271. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, T.; Cao, L.; Tong, C.; Zhang, X.; Luo, D.; Han, S.; Pang, P.; Fu, W.; Yan, J.; et al. The Role of Iron Competition in the Antagonistic Action of the Rice Endophyte Streptomyces sporocinereus OsiSh-2 Against the Pathogen Magnaporthe oryzae. Microb. Ecol. 2018, 76, 1021–1029. [Google Scholar] [CrossRef]
- Yong, D.; Li, Y.; Gong, K.; Yu, Y.; Zhao, S.; Duan, Q.; Ren, C.; Li, A.; Fu, J.; Ni, J.; et al. Biocontrol of Strawberry Gray Mold Caused by Botrytis cinerea with the Termite Associated Streptomyces Sp. Sdu1201 and Actinomycin D. Front. Microbiol. 2022, 13, 1051730. [Google Scholar] [CrossRef] [PubMed]
- Pétriacq, P.; López, A.; Luna, E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? Plants 2018, 7, 77. [Google Scholar] [CrossRef]
- Mahmoud, G.A.; Abbas, M.S.; Soliman, A.S.; Selim, A. Effect of Essential Oils Treatments on Quality Characteristics of Apple (Malus domestica Var. Gala) During Storage. Am. J. Agric. Environ. Sci. 2019, 19, 448–459. [Google Scholar] [CrossRef]
- Abdelhalim, A.; El-Kot, G.A.; Elzaawely, A.A. Isolation, Morphological Characterization, and Phylogenetic Identification of Botrytis cinerea Associated with Postharvest Gray Mold of Apple Fruits. J. Sustain. Agric. Environ. Sci. 2023, 2, 91–103. [Google Scholar] [CrossRef]
- de Moura, G.G.D.; de Barros, A.V.; Machado, F.; Martins, A.D.; da Silva, C.M.; Durango, L.G.C.; Forim, M.; Alves, E.; Pasqual, M.; Doria, J. Endophytic Bacteria from Strawberry Plants Control Gray Mold in Fruits via Production of Antifungal Compounds against Botrytis cinerea L. Microbiol. Res. 2021, 251, 126793. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.L.; Hirkala, D.L.; Nelson, L.M. Postharvest Biological Control of Blue Mold of Apple by Pseudomonas fluorescens during Commercial Storage and Potential Modes of Action. Postharvest Biol. Technol. 2017, 133, 1–11. [Google Scholar] [CrossRef]
- Wallace, R.L.; Hirkala, D.L.; Nelson, L.M. Mechanisms of Action of Three Isolates of Pseudomonas fluorescens Active against Postharvest Grey Mold Decay of Apple during Commercial Storage. Biol. Control 2018, 117, 13–20. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Gao, Y.; Gao, T.; Zhang, D. Inhibitory Abilities of Bacillus Isolates and Their Culture Filtrates against the Gray Mold Caused by Botrytis cinerea on Postharvest Fruit. Plant Pathol. J. 2019, 35, 425. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, J.; Zhang, Y.; Li, R.; Liu, L.; Deng, J. Biocontrol Ability and Action Mechanism of Bacillus halotolerans against Botrytis cinerea Causing Grey Mould in Postharvest Strawberry Fruit. Postharvest Biol. Technol. 2021, 174, 111456. [Google Scholar] [CrossRef]
- Zheng, L.; Gu, X.; Xiao, Y.; Wang, S.; Liu, L.; Pan, H.; Zhang, H. Antifungal Activity of Bacillus mojavensis D50 against Botrytis cinerea Causing Postharvest Gray Mold of Tomato. Sci. Hortic. 2023, 312, 111841. [Google Scholar] [CrossRef]
- Dai, P.; Li, N.; Li, B.; Wang, S.; Wang, Y.; Meng, X.; Li, B.; Cao, K.; Hu, T. An Endophytic Strain Bacillus velezensis JZ51 Controlled Pink Mold Rot of Postharvest Apple Fruit via Antagonistic Action and Disease Resistance Induction. Postharvest Biol. Technol. 2024, 210, 112793. [Google Scholar] [CrossRef]
- Abdelhai, M.H.; Awad, F.N.; Yang, Q.; Mahunu, G.K.; Godana, E.A.; Zhang, H. Enhancement the Biocontrol Efficacy of Sporidiobolus pararoseus Y16 against Apple Blue Mold Decay by Glycine Betaine and Its Mechanism. Biol. Control 2019, 139, 104079. [Google Scholar] [CrossRef]
- Sun, C.; Huang, Y.; Lian, S.; Saleem, M.; Li, B.; Wang, C. Improving the Biocontrol Efficacy of Meyerozyma guilliermondii Y-1 with Melatonin against Postharvest Gray Mold in Apple Fruit. Postharvest Biol. Technol. 2021, 171, 111351. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Dhanasekaran, S.; Guo, Z.; Chen, S.; Zhang, X.; Zhang, H. Efficacy of Wickerhamomyces Anomalus Yeast in the Biocontrol of Blue Mold Decay in Apples and Investigation of the Mechanisms Involved. BioControl 2021, 66, 547–558. [Google Scholar] [CrossRef]
- Zhang, H.; Kong, N.; Liu, B.; Yang, Y.; Li, C.; Qi, J.; Ma, Y.; Ji, S.; Liu, Z. Biocontrol Potential of Trichoderma harzianum CGMCC20739 (Tha739) against Postharvest Bitter Rot of Apples. Microbiol. Res. 2022, 265, 127182. [Google Scholar] [CrossRef] [PubMed]
- Prihatiningsih, N.; Asnani, A.; Djatmiko, H.A. Extracellular Protease from Bacillus subtilis B315 with Antagonistic Activity against Bacterial Wilt Pathogen (Ralstonia solanacearum) of Chili. Biodiversitas J. Biol. Divers. 2021, 22, 1291–1295. [Google Scholar] [CrossRef]
- Bouchard-Rochette, M.; Machrafi, Y.; Cossus, L.; Nguyen, T.T.A.; Antoun, H.; Droit, A.; Tweddell, R.J. Bacillus pumilus PTB180 and Bacillus subtilis PTB185: Production of Lipopeptides, Antifungal Activity, and Biocontrol Ability against Botrytis Cinerea. Biol. Control 2022, 170, 104925. [Google Scholar] [CrossRef]
- Verma, V.C.; Singh, S.K.; Prakash, S. Bio-Control and Plant Growth Promotion Potential of Siderophore Producing Endophytic Streptomyces from Azadirachta indica A. Juss. J. Basic Microbiol. 2011, 51, 550–556. [Google Scholar] [CrossRef]
- Goudjal, Y.; Toumatia, O.; Yekkour, A.; Sabaou, N.; Mathieu, F.; Zitouni, A. Biocontrol of Rhizoctonia solani Damping-off and Promotion of Tomato Plant Growth by Endophytic Actinomycetes Isolated from Native Plants of Algerian Sahara. Microbiol. Res. 2014, 169, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Koobaz, P.; Azimi, H.; Karimi, E.; Akbari, A.R. Plant Growth Promotion and Suppression of Phytophthora drechsleri Damping-off in Cucumber by Cellulase-Producing Streptomyces. BioControl 2017, 62, 805–819. [Google Scholar] [CrossRef]
- Cao, P.; Liu, C.; Sun, P.; Fu, X.; Wang, S.; Wu, F.; Wang, X. An Endophytic Streptomyces sp. Strain DHV3-2 from Diseased Root as a Potential Biocontrol Agent against Verticillium dahliae and Growth Elicitor in Tomato (Solanum lycopersicum). Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2016, 109, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Li, Y.; Zeng, X.; Yang, X.; Yang, Y.; Yuan, S.; Hu, X.; Zeng, J.; Wang, Z.; Liu, Q.; et al. Isolation and Evaluation of Endophytic Streptomyces endus OsiSh-2 with Potential Application for Biocontrol of Rice Blast Disease. J. Sci. Food Agric. 2017, 97, 1149–1157. [Google Scholar] [CrossRef]
- Nakkeeran, S.; Vinodkumar, S.; Senthilraja, C.; Renukadevi, P. Antimicrobial Peptides of Bacillus Species: Biosynthesis, Mode of Action and Their Role in Plant Disease Management. In Microbial Antagonists: Their Role in Biological Control of Plant Diseases; Pandey, R.N., Chakraborty, B.N., Singh, D., Sharma, P., Eds.; Today & Tomorrow’s Printers and Publishers: New Delhi, India, 2019; pp. 487–514. [Google Scholar]
- Xia, Y.; Liu, J.; Wang, Z.; He, Y.; Tan, Q.; Du, Z.; Niu, A.; Liu, M.; Li, Z.; Sang, M.; et al. Antagonistic Activity and Potential Mechanisms of Endophytic Bacillus subtilis YL13 in Biocontrol of Camellia oleifera Anthracnose. Forests 2023, 14, 886. [Google Scholar] [CrossRef]
- Dimkić, I.; Janakiev, T.; Petrović, M.; Degrassi, G.; Fira, D. Plant-Associated Bacillus and Pseudomonas Antimicrobial Activities in Plant Disease Suppression via Biological Control Mechanisms—A Review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Shafi, J.; Tian, H.; Ji, M. Bacillus Species as Versatile Weapons for Plantpathogens: A Review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- El-Fadly, G.A.B.; Abou-Shoshah, A.A.M.; Rehan, M.R.A. Interspecific Streptomyces Protoplast Fusants as Biological Control Agents. Egypt. Soc. Environ. Sci. 2009, 4, 37–44. [Google Scholar]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biol. Biol. 2021, 10, 267. [Google Scholar] [CrossRef]
- Racchi, M.L. Antioxidant Defenses in Plants with Attention to Prunus and Citrus spp. Antioxidants 2013, 2, 340–369. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zeng, J.K.; Tang, H.; Zhou, Y.; Li, W. The Chemical Treatments Combined with Antagonistic Yeast Control Anthracnose and Maintain the Quality of Postharvest Mango Fruit. J. Integr. Agric. 2019, 18, 1159–1169. [Google Scholar] [CrossRef]
- Khalil, H.A.; Abdelkader, M.F.M.; Lo’ay, A.A.; El-Ansary, D.O.; Shaaban, F.K.M.; Osman, S.O.; Shenawy, I.E.; Osman, H.E.H.; Limam, S.A.; Abdein, M.A.; et al. The Combined Effect of Hot Water Treatment and Chitosan Coating on Mango (Mangifera indica L. Cv. Kent) Fruits to Control Postharvest Deterioration and Increase Fruit Quality. Coatings 2022, 12, 83. [Google Scholar] [CrossRef]
- Mo, Y.; Gong, D.; Liang, G.; Han, R.; Xie, J.; Li, W. Enhanced Preservation Effects of Sugar Apple Fruits by Salicylic Acid Treatment during Post-Harvest Storage. J. Sci. Food Agric. 2008, 88, 2693–2699. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M.; Wang, H.; Zhou, C.; Yuan, J.; Li, X.; Pan, Y. Isothermal Storage Delays the Senescence of Post-Harvest Apple Fruit through the Regulation of Antioxidant Activity and Energy Metabolism. Foods 2023, 12, 1765. [Google Scholar] [CrossRef]
- Mohammadi, M.; Kazemi, H. Changes in Peroxidase and Polyphenol Oxidase Activities in Susceptible and Resistant Wheat Heads Inoculated with Fusarium graminearum and Induced Resistance. Plant Sci. 2002, 162, 491–498. [Google Scholar] [CrossRef]
- Prasannath, K. Plant Defense-Related Enzymes against Pathogens: A Review. J. Agric. Sci. 2017, 11, 38. [Google Scholar] [CrossRef]
- Bora, S.; Borah, R.; Giri, K. Role of Proteins and Enzymes in Plant Disease Control. In Plant Protection: From Chemicals to Biologicals; Soni, R., Suyal, D.C., Goel, R., Eds.; De Gruyter: Berlin, Germany, 2022; pp. 395–414. [Google Scholar]
- Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How Do Plants Defend Themselves against Pathogens-Biochemical Mechanisms and Genetic Interventions. Physiol. Mol. Biol. Plants 2022, 28, 485. [Google Scholar] [CrossRef] [PubMed]
- Beckles, D.M. Factors Affecting the Postharvest Soluble Solids and Sugar Content of Tomato (Solanum lycopersicum L.) Fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Javanmardi, J.; Kubota, C. Variation of Lycopene, Antioxidant Activity, Total Soluble Solids and Weight Loss of Tomato during Postharvest Storage. Postharvest Biol. Technol. 2006, 41, 151–155. [Google Scholar] [CrossRef]
- Sharma, S.; Pareek, S.; Sagar, N.A.; Valero, D.; Serrano, M. Modulatory Effects of Exogenously Applied Polyamines on Postharvest Physiology, Antioxidant System and Shelf Life of Fruits: A Review. Int. J. Mol. Sci. 2017, 18, 1789. [Google Scholar] [CrossRef] [PubMed]
- Khalil, U.; Rajwana, I.A.; Razzaq, K.; Farooq, U.; Saleem, B.A.; Brecht, J.K. Quality Attributes and Biochemical Changes in White and Colored Table Grapes as Influenced by Harvest Maturity and Ambient Postharvest Storage. S. Afr. J. Bot. 2023, 154, 273–281. [Google Scholar] [CrossRef]
- Gajbhiye, M.H.; Sathe, S.J.; Marathe, R.J.; Deshmukh, R.B. Antifungal Bacillus subtilis AFB22 from Pomegranate with Potential to Control Fruit Rot. Res. J. Biotechnol. 2013, 8, 26–35. [Google Scholar]
- Gabr, M.A.; Zaghloul, A.E.; Nabil, W.; El-Abd, A.A. Response of “Anna” Apple Storability to Foliar Spray with Some PGPR as A Substitute to Synthetic Biostimulants. Alex. Sci. Exch. J. 2012, 33, 34–43. [Google Scholar] [CrossRef]
- Bai, J.L.; Wang, H.H.; Zhang, J.M.; Wu, Q.P.; Mo, S.P.; He, Y.L.; Weng, S.Q.; Yang, X.J.; Li, C.Z. Postharvest Quality Maintenance of Wax Apple and Guava Fruits by Use of a Fermented Broth of an ∈-Poly-L-Lysine-Producing Streptomyces Strain. PLoS ONE 2022, 17, e0265457. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, Q.; Cao, J.; Jiang, W. Effects of Chitosan Coating on Postharvest Quality of Mango (Mangifera indica L. Cv. Tainong) Fruits. J. Food Process. Preserv. 2008, 32, 770–784. [Google Scholar] [CrossRef]
- Nikutsa, A.; Bujoreanu, N. Effect of Storage Technology on the Titratable Acidity of Apples. In Proceedings of the Biotehnologii Avansate–Realizări şi Perspective, Chişinău, Moldova, 3–4 October 2022; pp. 107–109. [Google Scholar]
- Cheng, Z.; Li, R.; Jiang, Z.; Tang, Y.; Li, W.; Shao, Y.; Li, W. Combined Effect of Bacillus siamensis and Chlorogenic Acid on Maintenance of Quality and Control of Disease in Stored Wax Apple Fruit. Food Qual. Saf. 2022, 6, fyac026. [Google Scholar] [CrossRef]
- Esitken, A.; Pirlak, L.; Ipek, M.; Donmez, M.F.; Cakmakci, R.; Sahin, F. Fruit Bio-Thinning by Plant Growth Promoting Bacteria (PGPB) in Apple Cvs. Golden Delicious and Braeburn. Biol. Agric. Hortic. 2009, 26, 379–390. [Google Scholar] [CrossRef]
- Chen, O.; Deng, L.; Ruan, C.; Yi, L.; Zeng, K. Pichia Galeiformis Induces Resistance in Postharvest Citrus by Activating the Phenylpropanoid Biosynthesis Pathway. J. Agric. Food Chem. 2021, 69, 2619–2631. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, H.; Lin, Y.; Shi, J.; Xue, S.; Hung, Y.C.; Chen, Y.; Wang, H. Effects of Biocontrol Bacteria Bacillus amyloliquefaciens LY-1 Culture Broth on Quality Attributes and Storability of Harvested Litchi Fruit. Postharvest Biol. Technol. 2017, 132, 81–87. [Google Scholar] [CrossRef]
- El-Kot, G.A.N. Biological Control of Black Scurf and Dry Rot of Potato; In Proceedings of the 10th Congress of Phytopathology, Giza, Egypt, 28 November 2007.
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Wootton, J.C.; Gertz, E.M.; Agarwala, R.; Morgulis, A.; Schaffer, A.A.; Yu, Y.-K. Protein Database Searches Using Compositionally Adjusted Substitution Matrices. FEBS J. 2005, 272, 5101–5109. [Google Scholar] [CrossRef]
- Al-Hussini, H.S.; Al-Rawahi, A.Y.; Al-Marhoon, A.A.; Al-Abri, S.A.; Al-Mahmooli, I.H.; Al-Sadi, A.M.; Velazhahan, R. Biological Control of Damping-off of Tomato Caused by Pythium aphanidermatum by Using Native Antagonistic Rhizobacteria Isolated from Omani Soil. J. Plant Pathol. 2019, 101, 315–322. [Google Scholar] [CrossRef]
- Harrach, B.D.; Fodor, J.; Pogány, M.; Preuss, J.; Barna, B. Antioxidant, Ethylene and Membrane Leakage Responses to Powdery Mildew Infection of near-Isogenic Barley Lines with Various Types of Resistance. Eur. J. Plant Pathol. 2008, 121, 21–33. [Google Scholar] [CrossRef]
- Malik, C.P.; Singh, M.B. Plant Enzymology and Histo-Enzymology; Kalyani Publishers: New Delhi, India, 1980. [Google Scholar]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant Activity of Some Algerian Medicinal Plants Extracts Containing Phenolic Compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Nesi, C.N.; Shimakura, S.E.; Junior, P.J.R.; De Mio, L.L.M. Survival Analysis: A Tool in the Study of Post-Harvest Diseases in Peaches. Rev. Ceres 2015, 62, 52–61. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 2020. [Google Scholar]
Treatment | The Way of Exposition | Time of Exposition | Solution/Treatment |
---|---|---|---|
Control | Dipping | 3 min | Sterilized distilled water |
Fungicide Nativo | Dipping | 3 min | Commercial fungicide Nativo at the recommended dose (0.25 g.L−1) |
CaCl2 | Dipping | 3 min | 3% CaCl2 solution |
B. subtilis | Dipping | 3 min | Cell-free filtrate of B. subtilis. |
Wrapping | Stored together till the end of the experiment | Tissue papers saturated with a cell-free filtrate of B. subtilis | |
S. endus | Dipping | 3 min | Cell-free filtrate of S. endus. |
Wrapping | Stored together till the end of the experiment | Tissue papers saturated with a cell-free filtrate of S. endus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhalim, A.; Mazrou, Y.S.A.; Shahin, N.; El-Kot, G.A.; Elzaawely, A.A.; Maswada, H.F.; Makhlouf, A.H.; Nehela, Y. Enhancing the Storage Longevity of Apples: The Potential of Bacillus subtilis and Streptomyces endus as Preventative Bioagents against Post-Harvest Gray Mold Disease, Caused by Botrytis cinerea. Plants 2024, 13, 1844. https://doi.org/10.3390/plants13131844
Abdelhalim A, Mazrou YSA, Shahin N, El-Kot GA, Elzaawely AA, Maswada HF, Makhlouf AH, Nehela Y. Enhancing the Storage Longevity of Apples: The Potential of Bacillus subtilis and Streptomyces endus as Preventative Bioagents against Post-Harvest Gray Mold Disease, Caused by Botrytis cinerea. Plants. 2024; 13(13):1844. https://doi.org/10.3390/plants13131844
Chicago/Turabian StyleAbdelhalim, Aya, Yasser S. A. Mazrou, Nabila Shahin, Gabr A. El-Kot, Abdelnaser A. Elzaawely, Hanafey F. Maswada, Abeer H. Makhlouf, and Yasser Nehela. 2024. "Enhancing the Storage Longevity of Apples: The Potential of Bacillus subtilis and Streptomyces endus as Preventative Bioagents against Post-Harvest Gray Mold Disease, Caused by Botrytis cinerea" Plants 13, no. 13: 1844. https://doi.org/10.3390/plants13131844
APA StyleAbdelhalim, A., Mazrou, Y. S. A., Shahin, N., El-Kot, G. A., Elzaawely, A. A., Maswada, H. F., Makhlouf, A. H., & Nehela, Y. (2024). Enhancing the Storage Longevity of Apples: The Potential of Bacillus subtilis and Streptomyces endus as Preventative Bioagents against Post-Harvest Gray Mold Disease, Caused by Botrytis cinerea. Plants, 13(13), 1844. https://doi.org/10.3390/plants13131844