Significance and Applications of the Thermo-Acidophilic Microalga Galdieria sulphuraria (Cyanidiophytina, Rhodophyta)
Abstract
1. Introduction
2. Synthesis of Bioactive Compounds
Bioactive Compounds | Uses | References |
---|---|---|
Phycobiliproteins | Antioxidant, antibacterial, and antitumor properties | [18] |
C-phycocyanin | A natural dye in the food and cosmetic industries Exhibits potent antioxidant properties Anti-inflammatory and neuroprotective effects | [19] [22,26,27,28] [23,24] |
Phycoerythrin | Utilized in fluorescence-based techniques (flow cytometry and fluorescence microscopy) | [25] |
Allophycocyanin | Used as a fluorescent marker | [21] |
Glutathione | Antioxidant–protects cells from oxidative stress, maintains cellular redox balance; Involved in detoxification, immune function, and regulation of cellular proliferation and apoptosis | [29,30,31] [30,32,33] |
2.1. Synthesis of Phycocyanin (PC)
Eco-Friendly Production of C-phycocyanin by Cultivating Galdieria on Food Waste
2.2. Antioxidant Activity of Galdieria sulphuraria
2.3. Nutritional Properties of Galdieria sulphuraria
2.4. Galdieria sulphuraria as a Food Source
3. Nutrient Removal
4. Recovery of Metals
5. Recovery of Rare Earth Elements
6. Pathogen Reduction
7. Conclusions and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thakur, D.; Jha, A.K.; Chattopadhyay, S.; Chakraborty, S. A Review on Opportunities and Challenges of Nitrogen Removal from Wastewater Using Microalgae. Int. J. Exp. Res. Rev. 2021, 26, 141–157. [Google Scholar] [CrossRef]
- Gouveia, L.; Marques, A.E.; Sousa, J.M.; Moura, P.; Bandarra, N.M. Microalgae—Source of Natural Bioactive Molecules as Functional Ingredients. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 21–37. [Google Scholar] [CrossRef]
- Occhipinti, P.S.; Russo, N.; Foti, P.; Zingale, I.M.; Pino, A.; Romeo, F.V.; Randazzo, C.L.; Caggia, C. Current Challenges of Microalgae Applications: Exploiting the Potential of Non-conventional Microalgae Species. J. Sci. Food Agric. 2024, 104, 3823–3833. [Google Scholar] [CrossRef] [PubMed]
- Maamoun, I.; Bensaida, K.; Eljamal, R.; Falyouna, O.; Sugihara, Y.; Eljamal, O. Innovative Biotechnological Applications of Galdieria sulphuraria-Red Microalgae (GS-RMA) in Water Treatment Systems. Proc. Int. Exch. Innov. Conf. Eng. Sci. IEICES 2020, 6, 163–170. [Google Scholar] [CrossRef]
- Ciniglia, C.; Pinto, G.; Pollio, A. Cyanidium from Caves: A Reinstatement of Cyanidium chilense Schwabe (Cyanidiophytina, Rhodophyta). Phytotaxa 2017, 295, 86. [Google Scholar] [CrossRef]
- Park, S.I.; Cho, C.H.; Ciniglia, C.; Huang, T.; Liu, S.; Bustamante, D.E.; Calderon, M.S.; Mansilla, A.; McDermott, T.; Andersen, R.A.; et al. Revised Classification of the Cyanidiophyceae Based on Plastid Genome Data with Descriptions of the Cavernulicolales Ord. Nov. and Galdieriales Ord. Nov. (Rhodophyta). J. Phycol. 2023, 59, 444–466. [Google Scholar] [CrossRef] [PubMed]
- Del Mondo, A.; Iovinella, M.; Petriccione, M.; Nunziata, A.; Davis, S.; Cioppa, D.; Ciniglia, C. A Spotlight on Rad52 in Cyanidiophytina (Rhodophyta): A Relic in Algal Heritage. Plants 2019, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Bennett, H.M. Microbial Genomes as Cheat Sheets. Nat. Rev. Microbiol. 2013, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Vítová, M.; Goecke, F.; Sigler, K.; Řezanka, T. Lipidomic Analysis of the Extremophilic Red Alga Galdieria sulphuraria in Response to Changes in PH. Algal Res. 2016, 13, 218–226. [Google Scholar] [CrossRef]
- Reeb, V.; Bhattacharya, D. The Thermo-Acidophilic Cyanidiophyceae (Cyanidiales). In Red Algae in the Genomic Age; Seckbach, J., Chapman, D.J., Eds.; Cellular Origin, Life in Extreme Habitats and Astrobiology; Springer: Dordrecht, The Netherlands, 2010; Volume 13, pp. 409–426. ISBN 978-90-481-3794-7. [Google Scholar]
- Barcytė, D.; Nedbalová, L.; Culka, A.; Košek, F.; Jehlička, J. Burning Coal Spoil Heaps as a New Habitat for the Extremophilic Red Alga Galdieria sulphuraria. Fottea 2018, 18, 19–29. [Google Scholar] [CrossRef]
- Sydney, E.B.; Schafranski, K.; Barretti, B.R.V.; Sydney, A.C.N.; Zimmerman, J.F.D.; Cerri, M.L.; Mottin Demiate, I. Biomolecules from Extremophile Microalgae: From Genetics to Bioprocessing of a New Candidate for Large-Scale Production. Process. Biochem. 2019, 87, 37–44. [Google Scholar] [CrossRef]
- Barbier, G.G.; Zimmermann, M.; Weber, A.P.M. Genomics of the Thermo-Acidophilic Red Alga Galdieria sulphuraria; Hoover, R.B., Levin, G.V., Rozanov, A.Y., Gladstone, G.R., Eds.; SPIE: San Diego, CA, USA, 2005; p. 590609. [Google Scholar]
- Čížková, M.; Vítová, M.; Zachleder, V. The Red Microalga Galdieria as a Promising Organism for Applications in Biotechnology. In Microalgae—From Physiology to Application; Vítová, M., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-83880-035-2. [Google Scholar]
- di Cicco, M.R.; Iovinella, M.; Palmieri, M.; Lubritto, C.; Ciniglia, C. Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects. Plants 2021, 10, 2343. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, M.; Iovinella, M.; Davis, S.J.; di Cicco, M.R.; Lubritto, C.; Race, M.; Papa, S.; Fabbricino, M.; Ciniglia, C. Galdieria sulphuraria ACUF427 Freeze-Dried Biomass as Novel Biosorbent for Rare Earth Elements. Microorganisms 2022, 10, 2138. [Google Scholar] [CrossRef]
- Ciniglia, C.; Yang, E.C.; Pollio, A.; Pinto, G.; Iovinella, M.; Vitale, L.; Yoon, H.S. Cyanidiophyceae in Iceland: Plastid Rbc L Gene Elucidates Origin and Dispersal of Extremophilic Galdieria sulphuraria and G. maxima (Galdieriaceae, Rhodophyta). Phycologia 2014, 53, 542–551. [Google Scholar] [CrossRef]
- Dagnino-Leone, J.; Figueroa, C.P.; Castañeda, M.L.; Youlton, A.D.; Vallejos-Almirall, A.; Agurto-Muñoz, A.; Pavón Pérez, J.; Agurto-Muñoz, C. Phycobiliproteins: Structural Aspects, Functional Characteristics, and Biotechnological Perspectives. Comput. Struct. Biotechnol. J. 2022, 20, 1506–1527. [Google Scholar] [CrossRef]
- Carbone, D.A.; Olivieri, G.; Pollio, A.; Melkonian, M. Biomass and Phycobiliprotein Production of Galdieria sulphuraria, Immobilized on a Twin-Layer Porous Substrate Photobioreactor. Appl. Microbiol. Biotechnol. 2020, 104, 3109–3119. [Google Scholar] [CrossRef] [PubMed]
- Campos Assumpção de Amarante, M.; Cavalcante Braga, A.R.; Sala, L.; Juliano Kalil, S. Colour Stability and Antioxidant Activity of C-Phycocyanin-Added Ice Creams after in Vitro Digestion. Food Res. Int. 2020, 137, 109602. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Sun, J.; Bi, Y.; Xu, X.; Zang, X. Fluorescence and Antioxidant Activity of Heterologous Expression of Phycocyanin and Allophycocyanin from Arthrospira platensis. Front. Nutr. 2023, 10, 1127422. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-J.; Yang, H.; Chen, Y.-T.; Li, P.-P. Biosynthesis of Fluorescent β Subunits of C-Phycocyanin from Spirulina subsalsa in Escherichia coli, and Their Antioxidant Properties. Molecules 2018, 23, 1369. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The Antioxidant, Immunomodulatory, and Anti-Inflammatory Activities of Spirulina: An Overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Marín-Prida, J.; Liberato, J.L.; Llópiz-Arzuaga, A.; Stringhetta-Padovani, K.; Pavón-Fuentes, N.; Leopoldino, A.M.; Cruz, O.G.; González, I.H.; Pérez, M.L.; Camins, A.; et al. Novel Insights into the Molecular Mechanisms Involved in the Neuroprotective Effects of C-Phycocyanin against Brain Ischemia in Rats. Curr. Pharm. Des. 2022, 28, 1187–1197. [Google Scholar] [CrossRef]
- Shen, H.; Tang, Y.; Dong, A.; Li, H.; Shen, D.; Yang, S.; Tang, H.; Gu, W.; Shu, Q. Staging and Monitoring of Childhood Rhabdomyosarcoma with Flow Cytometry. Oncol. Lett. 2014, 7, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Bottone, C.; Camerlingo, R.; Miceli, R.; Salbitani, G.; Sessa, G.; Pirozzi, G.; Carfagna, S. Antioxidant and Anti-Proliferative Properties of Extracts from Heterotrophic Cultures of Galdieria sulphuraria. Nat. Prod. Res. 2019, 33, 1659–1663. [Google Scholar] [CrossRef] [PubMed]
- Massa, M.; Buono, S.; Langellotti, A.L.; Martello, A.; Russo, G.L.; Troise, D.A.; Sacchi, R.; Vitaglione, P.; Fogliano, V. Biochemical Composition and in Vitro Digestibility of Galdieria sulphuraria Grown on Spent Cherry-Brine Liquid. New Biotechnol. 2019, 53, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Gürlek, C.; Yarkent, Ç.; Köse, A.; Tuğcu, B.; Gebeloğlu, I.K.; Öncel, S.Ş.; Elibol, M. Screening of Antioxidant and Cytotoxic Activities of Several Microalgal Extracts with Pharmaceutical Potential. Health Technol. 2020, 10, 111–117. [Google Scholar] [CrossRef]
- Salbitani, G.; Bottone, C.; Carfagna, S. Determination of Reduced and Total Glutathione Content in Extremophilic Microalga Galdieria Phlegrea. BIO-Protocol 2017, 7, e2372. [Google Scholar] [CrossRef] [PubMed]
- Circu, M.L.; Aw, T.Y. Glutathione and Modulation of Cell Apoptosis. Biochim. Biophys. Acta BBA Mol. Cell Res. 2012, 1823, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Salbitani, G.; Perrone, A.; Rosati, L.; Laezza, C.; Carfagna, S. Sulfur Starvation in Extremophilic Microalga Galdieria sulphuraria: Can Glutathione Contribute to Stress Tolerance? Plants 2022, 11, 481. [Google Scholar] [CrossRef]
- Ghezzi, P. Role of Glutathione in Immunity and Inflammation in the Lung. Int. J. Gen. Med. 2011, 4, 105–113. [Google Scholar] [CrossRef]
- Lu, S.C. Regulation of Glutathione Synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef]
- Avci, S.; Haznedaroglu, B.Z. Pretreatment of Algal and Cyanobacterial Biomass for High Quality Phycocyanin Extraction. J. Appl. Phycol. 2022, 34, 2015–2026. [Google Scholar] [CrossRef]
- Eriksen, N.T. Production of Phycocyanin—A Pigment with Applications in Biology, Biotechnology, Foods and Medicine. Appl. Microbiol. Biotechnol. 2008, 80, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.; Hantke, A.; Eriksen, N.T. Purification of the Photosynthetic Pigment C-Phycocyanin from Heterotrophic Galdieria sulphuraria: Purification of C-Phycocyanin from Galdieria sulphuraria. J. Sci. Food Agric. 2013, 93, 2933–2938. [Google Scholar] [CrossRef] [PubMed]
- Gdara, N.B.; Belgacem, A.; Khemiri, I.; Mannai, S.; Bitri, L. Protective Effects of Phycocyanin on Ischemia/Reperfusion Liver Injuries. Biomed. Pharmacother. 2018, 102, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Rimbau, V.; Camins, A.; Romay, C.; González, R.; Pallàs, M. Protective Effects of C-Phycocyanin against Kainic Acid-Induced Neuronal Damage in Rat Hippocampus. Neurosci. Lett. 1999, 276, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Subhashini, J.; Mahipal, S.V.K.; Reddy, M.C.; Mallikarjuna Reddy, M.; Rachamallu, A.; Reddanna, P. Molecular Mechanisms in C-Phycocyanin Induced Apoptosis in Human Chronic Myeloid Leukemia Cell Line-K562. Biochem. Pharmacol. 2004, 68, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Thevarajah, B.; Nishshanka, G.K.S.H.; Premaratne, M.; Nimarshana, P.H.V.; Nagarajan, D.; Chang, J.-S.; Ariyadasa, T.U. Large-Scale Production of Spirulina-Based Proteins and c-Phycocyanin: A Biorefinery Approach. Biochem. Eng. J. 2022, 185, 108541. [Google Scholar] [CrossRef]
- Hirooka, S.; Miyagishima, S. Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs. Front. Microbiol. 2016, 7, 2022. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Zhao, H.; Guo, J.; Yan, L.; Zhang, D.; Bai, W.; Li, Y. Comparison of C-Phycocyanin from Extremophilic Galdieria sulphuraria and Spirulina platensis on Stability and Antioxidant Capacity. Algal Res. 2021, 58, 102391. [Google Scholar] [CrossRef]
- Rahman, D.Y.; Syafindra, A.M.; Rosananda, N.; Sasongko, A.; Susilaningsih, D. The Effect of Different Concentrations of Ammonium Sulfate and PH Extraction on the Production of Phycocyanin from Galdieria sp. IOP Conf. Ser. Earth Environ. Sci. 2020, 457, 012034. [Google Scholar] [CrossRef]
- Moon, M.; Mishra, S.K.; Kim, C.W.; Suh, W.I.; Park, M.S.; Yang, J.-W. Isolation and Characterization of Thermostable Phycocyanin from Galdieria sulphuraria. Korean J. Chem. Eng. 2014, 31, 490–495. [Google Scholar] [CrossRef]
- Sloth, J.K.; Wiebe, M.G.; Eriksen, N.T. Accumulation of Phycocyanin in Heterotrophic and Mixotrophic Cultures of the Acidophilic Red Alga Galdieria sulphuraria. Enzyme Microb. Technol. 2006, 38, 168–175. [Google Scholar] [CrossRef]
- Wan, M.; Wang, Z.; Zhang, Z.; Wang, J.; Li, S.; Yu, A.; Li, Y. A Novel Paradigm for the High-Efficient Production of Phycocyanin from Galdieria sulphuraria. Bioresour. Technol. 2016, 218, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-K.; Min, K.; Park, W.-K. Use of an Extremophile Red Microalga (Galdieria sulphuraria) to Produce Phycocyanin from Tangerine Peel Waste. Bioresour. Technol. Rep. 2023, 22, 101446. [Google Scholar] [CrossRef]
- Rahman, D.Y.; Sarian, F.D.; van der Maarel, M.J.E.C. Biomass and Phycocyanin Content of Heterotrophic Galdieria sulphuraria 074G under Maltodextrin and Granular Starches–Feeding Conditions. J. Appl. Phycol. 2020, 32, 51–57. [Google Scholar] [CrossRef]
- Portillo, F.V.-L.; Sierra-Ibarra, E.; Vera-Estrella, R.; Revah, S.; Ramírez, O.T.; Caspeta, L.; Martinez, A. Growth and Phycocyanin Production with Galdieria sulphuraria UTEX 2919 Using Xylose, Glucose, and Corn Stover Hydrolysates under Heterotrophy and Mixotrophy. Algal Res. 2022, 65, 102752. [Google Scholar] [CrossRef]
- Graverholt, O.S.; Eriksen, N.T. Heterotrophic High-Cell-Density Fed-Batch and Continuous-Flow Cultures of Galdieria sulphuraria and Production of Phycocyanin. Appl. Microbiol. Biotechnol. 2007, 77, 69–75. [Google Scholar] [CrossRef]
- Sloth, J.K.; Jensen, H.C.; Pleissner, D.; Eriksen, N.T. Growth and Phycocyanin Synthesis in the Heterotrophic Microalga Galdieria sulphuraria on Substrates Made of Food Waste from Restaurants and Bakeries. Bioresour. Technol. 2017, 238, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, P.S.; Del Signore, F.; Canziani, S.; Caggia, C.; Mezzanotte, V.; Ferrer-Ledo, N. Mixotrophic and Heterotrophic Growth of Galdieria sulphuraria Using Buttermilk as a Carbon Source. J. Appl. Phycol. 2023, 35, 2631–2643. [Google Scholar] [CrossRef]
- Carfagna, S.; Napolitano, G.; Barone, D.; Pinto, G.; Pollio, A.; Venditti, P. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues. Oxid. Med. Cell. Longev. 2015, 2015, 732090. [Google Scholar] [CrossRef]
- Carfagna, S.; Bottone, C.; Cataletto, P.R.; Petriccione, M.; Pinto, G.; Salbitani, G.; Vona, V.; Pollio, A.; Ciniglia, C. Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae). Plant Cell Physiol. 2016, 57, 1890–1898. [Google Scholar] [CrossRef]
- Frendo, P.; Baldacci-Cresp, F.; Benyamina, S.M.; Puppo, A. Glutathione and Plant Response to the Biotic Environment. Free Radic. Biol. Med. 2013, 65, 724–730. [Google Scholar] [CrossRef]
- Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative Damage and Antioxidative System in Algae. Toxicol. Rep. 2019, 6, 1309–1313. [Google Scholar] [CrossRef]
- Shimonaga, T.; Konishi, M.; Oyama, Y.; Fujiwara, S.; Satoh, A.; Fujita, N.; Colleoni, C.; Buléon, A.; Putaux, J.-L.; Ball, S.G.; et al. Variation in Storage α-Glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiol. 2008, 49, 103–116. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Kormpa, A.; van der Maarel, M.J.E.C. The Glycogen of Galdieria sulphuraria as Alternative to Starch for the Production of Slowly Digestible and Resistant Glucose Polymers. Carbohydr. Polym. 2017, 169, 75–82. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Stuart, M.C.A.; van der Maarel, M.J.E.C. Characterization of the Highly Branched Glycogen from the Thermoacidophilic Red Microalga Galdieria sulphuraria and Comparison with Other Glycogens. Int. J. Biol. Macromol. 2016, 89, 12–18. [Google Scholar] [CrossRef]
- Sakurai, T.; Aoki, M.; Ju, X.; Ueda, T.; Nakamura, Y.; Fujiwara, S.; Umemura, T.; Tsuzuki, M.; Minoda, A. Profiling of Lipid and Glycogen Accumulations under Different Growth Conditions in the Sulfothermophilic Red Alga Galdieria sulphuraria. Bioresour. Technol. 2016, 200, 861–866. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; van der Maarel, M.J.E.C. Floridoside Production by the Red Microalga Galdieria sulphuraria under Different Conditions of Growth and Osmotic Stress. AMB Express 2016, 6, 71. [Google Scholar] [CrossRef]
- Graziani, G.; Schiavo, S.; Nicolai, M.A.; Buono, S.; Fogliano, V.; Pinto, G.; Pollio, A. Microalgae as Human Food: Chemical and Nutritional Characteristics of the Thermo-Acidophilic Microalga Galdieria sulphuraria. Food Funct. 2013, 4, 144–152. [Google Scholar] [CrossRef]
- Abiusi, F.; Tumulero, B.; Neutsch, L.; Mathys, A. Productivity, Amino Acid Profile, and Protein Bioaccessibility in Heterotrophic Batch Cultivation of Galdieria sulphuraria. Bioresour. Technol. 2024, 399, 130628. [Google Scholar] [CrossRef]
- Abiusi, F.; Moñino Fernández, P.; Canziani, S.; Janssen, M.; Wijffels, R.H.; Barbosa, M. Mixotrophic Cultivation of Galdieria sulphuraria for C-Phycocyanin and Protein Production. Algal Res. 2022, 61, 102603. [Google Scholar] [CrossRef]
- Canelli, G.; Abiusi, F.; Vidal Garcia, A.; Canziani, S.; Mathys, A. Amino Acid Profile and Protein Bioaccessibility of Two Galdieria sulphuraria Strains Cultivated Autotrophically and Mixotrophically in Pilot-Scale Photobioreactors. Innov. Food Sci. Emerg. Technol. 2023, 84, 103287. [Google Scholar] [CrossRef]
- Montenegro-Herrera, C.A.; Vera-López Portillo, F.; Hernández-Chávez, G.T.; Martinez, A. Single-Cell Protein Production Potential with the Extremophilic Red Microalgae Galdieria sulphuraria: Growth and Biochemical Characterization. J. Appl. Phycol. 2022, 34, 1341–1352. [Google Scholar] [CrossRef]
- Kharel, H.L.; Shrestha, I.; Tan, M.; Selvaratnam, T. Removal of Cadmium and Lead from Synthetic Wastewater Using Galdieria sulphuraria. Environments 2023, 10, 174. [Google Scholar] [CrossRef]
- Tchinda, D.; Henkanatte-Gedera, S.M.; Abeysiriwardana-Arachchige, I.S.A.; Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Zhang, Y.; Nirmalakhandan, N. Single-Step Treatment of Primary Effluent by Galdieria sulphuraria: Removal of Biochemical Oxygen Demand, Nutrients, and Pathogens. Algal Res. 2019, 42, 101578. [Google Scholar] [CrossRef]
- Henkanatte-Gedera, S.M.; Selvaratnam, T.; Caskan, N.; Nirmalakhandan, N.; Van Voorhies, W.; Lammers, P.J. Algal-Based, Single-Step Treatment of Urban Wastewaters. Bioresour. Technol. 2015, 189, 273–278. [Google Scholar] [CrossRef]
- Zhu, B.; Zheng, Y.; Shen, H.; Wei, D.; Ni, L.; Wei, G. High-Efficient Removal of Ammonium and Co-Production of Protein-Rich Biomass from Ultrahigh-NH4+ Industrial Wastewater by Mixotrophic Galdieria sulphuraria. Algal Res. 2023, 71, 103060. [Google Scholar] [CrossRef]
- Pan, Y.; Ma, Z.; Shen, J.; Liang, J.; Yuan, Y.; Lian, X.; Sun, Y. Biotreatment of Swine Wastewater by Mixotrophic Galdieria sulphuraria. J. Environ. Chem. Eng. 2024, 12, 111858. [Google Scholar] [CrossRef]
- Abeysiriwardana-Arachchige, I.S.A.; Nirmalakhandan, N. Predicting Removal Kinetics of Biochemical Oxygen Demand (BOD) and Nutrients in a Pilot Scale Fed-Batch Algal Wastewater Treatment System. Algal Res. 2019, 43, 101643. [Google Scholar] [CrossRef]
- Zhu, B.; Wei, D.; Pohnert, G. The Thermoacidophilic Red Alga Galdieria sulphuraria Is a Highly Efficient Cell Factory for Ammonium Recovery from Ultrahigh-NH4+ Industrial Effluent with Co-Production of High-Protein Biomass by Photo-Fermentation. Chem. Eng. J. 2022, 438, 135598. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Pegallapati, A.; Montelya, F.; Rodriguez, G.; Nirmalakhandan, N.; Lammers, P.J.; van Voorhies, W. Feasibility of Algal Systems for Sustainable Wastewater Treatment. Renew. Energy 2015, 82, 71–76. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Pegallapati, A.K.; Montelya, F.; Rodriguez, G.; Nirmalakhandan, N.; Van Voorhies, W.; Lammers, P.J. Evaluation of a Thermo-Tolerant Acidophilic Alga, Galdieria sulphuraria, for Nutrient Removal from Urban Wastewaters. Bioresour. Technol. 2014, 156, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Henkanatte-Gedera, S.M.; Selvaratnam, T.; Karbakhshravari, M.; Myint, M.; Nirmalakhandan, N.; Van Voorhies, W.; Lammers, P.J. Removal of Dissolved Organic Carbon and Nutrients from Urban Wastewaters by Galdieria sulphuraria: Laboratory to Field Scale Demonstration. Algal Res. 2017, 24, 450–456. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, L.; Gedara, S.M.H.; Schaub, T.M.; Jarvis, J.M.; Wang, X.; Xu, X.; Nirmalakhandan, N.; Xu, P. Potable-Quality Water Recovery from Primary Effluent through a Coupled Algal-Osmosis Membrane System. Chemosphere 2020, 240, 124883. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Dixon, K.L.; Nawaz, T.; Rahman, A.; Selvaratnam, T. Evaluation of Galdieria sulphuraria for Nitrogen Removal and Biomass Production from Raw Landfill Leachate. Algal Res. 2021, 54, 102183. [Google Scholar] [CrossRef]
- Rahman, A.; Pan, S.; Houston, C.; Selvaratnam, T. Evaluation of Galdieria sulphuraria and Chlorella vulgaris for the Bioremediation of Produced Water. Water 2021, 13, 1183. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Pan, S.; Rahman, A.; Tan, M.; Kharel, H.L.; Agrawal, S.; Nawaz, T. Bioremediation of Raw Landfill Leachate Using Galdieria sulphuraria: An Algal-Based System for Landfill Leachate Treatment. Water 2022, 14, 2389. [Google Scholar] [CrossRef]
- Nirmalakhandan, N.; Selvaratnam, T.; Henkanatte-Gedera, S.M.; Tchinda, D.; Abeysiriwardana-Arachchige, I.S.A.; Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Zhang, Y.; Holguin, F.O.; Lammers, P.J. Algal Wastewater Treatment: Photoautotrophic vs. Mixotrophic Processes. Algal Res. 2019, 41, 101569. [Google Scholar] [CrossRef]
- Scherhag, P.; Ackermann, J. Removal of Sugars in Wastewater from Food Production through Heterotrophic Growth of Galdieria sulphuraria. Eng. Life Sci. 2021, 21, 233–241. [Google Scholar] [CrossRef]
- Ju, X.; Igarashi, K.; Miyashita, S.; Mitsuhashi, H.; Inagaki, K.; Fujii, S.; Sawada, H.; Kuwabara, T.; Minoda, A. Effective and Selective Recovery of Gold and Palladium Ions from Metal Wastewater Using a Sulfothermophilic Red Alga, Galdieria sulphuraria. Bioresour. Technol. 2016, 211, 759–764. [Google Scholar] [CrossRef]
- Minoda, A.; Miyashita, S.; Fujii, S.; Inagaki, K.; Takahashi, Y. Cell Population Behavior of the Unicellular Red Alga Galdieria sulphuraria during Precious Metal Biosorption. J. Hazard. Mater. 2022, 432, 128576. [Google Scholar] [CrossRef] [PubMed]
- Minoda, A.; Miyashita, S.-I.; Kondo, T.; Ogura, T.; Sun, J.; Takahashi, Y. Low-Concentration Palladium Recovery from Diluted Aqua Regia-Based Wastewater Using Lyophilized Algal Cells. Resour. Conserv. Recycl. Adv. 2023, 17, 200140. [Google Scholar] [CrossRef]
- Adams, E.; Maeda, K.; Kato, T.; Tokoro, C. Mechanism of Gold and Palladium Adsorption on Thermoacidophilic Red Alga Galdieria sulphuraria. Algal Res. 2021, 60, 102549. [Google Scholar] [CrossRef]
- Adams, E.; Maeda, K.; Kamemoto, Y.; Hirai, K.; Apdila, E.T. Contribution to a Sustainable Society: Biosorption of Precious Metals Using the Microalga Galdieria. Int. J. Mol. Sci. 2024, 25, 704. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Yamamoto, R.; Iwamoto, K.; Minoda, A. Cellular Accumulation of Cesium in the Unicellular Red Alga Galdieria sulphuraria under Mixotrophic Conditions. J. Appl. Phycol. 2018, 30, 3057–3061. [Google Scholar] [CrossRef]
- Miyashita, S.; Ogura, T.; Fujii, S.; Inagaki, K.; Takahashi, Y.; Minoda, A. Effect of Lyophilization on the Acid Resistance of a Unicellular Red Alga Galdieria sulphuraria during Platinum Recovery. J. Hazard. Mater. Adv. 2021, 3, 100015. [Google Scholar] [CrossRef]
- Ostroumov, S.A.; Shestakova, T.V.; Tropin, I.V. Biosorption of Copper by Biomass of Extremophilic Algae. Russ. J. Gen. Chem. 2015, 85, 2961–2964. [Google Scholar] [CrossRef]
- Miyashita, S.-I.; Ogura, T.; Kondo, T.; Fujii, S.-I.; Inagaki, K.; Takahashi, Y.; Minoda, A. Recovery of Au from Dilute Aqua Regia Solutions via Adsorption on the Lyophilized Cells of a Unicellular Red Alga Galdieria sulphuraria: A Mechanism Study. J. Hazard. Mater. 2022, 425, 127982. [Google Scholar] [CrossRef] [PubMed]
- Ostroumov, S.A.; Tropin, I.V.; Kiryushin, A.V. Removal of Cadmium and Other Toxic Metals from Water: Thermophiles and New Biotechnologies. Russ. J. Gen. Chem. 2018, 88, 2962–2966. [Google Scholar] [CrossRef]
- Minoda, A.; Ueda, S.; Miyashita, S.; Ogura, T.; Natori, S.; Sun, J.; Takahashi, Y. Reversible Adsorption of Iridium in Lyophilized Cells of the Unicellular Red Alga Galdieria sulphuraria. RSC Adv. 2023, 13, 14217–14223. [Google Scholar] [CrossRef]
- Jalali, F.; Fakhar, J.; Zolfaghari, A. Investigation on Biosorption of V (III), Ti(IV), and U(VI) Ions from a Contaminated Effluent by a Newly Isolated Strain of Galdieria sulphuraria. Sep. Sci. Technol. 2019, 54, 2222–2239. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, M.; Lu, T.; Ding, D.; Sun, Y.; Yuan, Y. Bio-Removal of PtCl62− Complex by Galdieria sulphuraria. Sci. Total Environ. 2021, 796, 149021. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.J.A.; Budd, K.; Lefebvre, D.D. Biotransformation of Mercury in PH-Stat Cultures of Eukaryotic Freshwater Algae. Arch. Microbiol. 2006, 187, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Minoda, A.; Sawada, H.; Suzuki, S.; Miyashita, S.; Inagaki, K.; Yamamoto, T.; Tsuzuki, M. Recovery of Rare Earth Elements from the Sulfothermophilic Red Alga Galdieria sulphuraria Using Aqueous Acid. Appl. Microbiol. Biotechnol. 2015, 99, 1513–1519. [Google Scholar] [CrossRef]
- Iovinella, M.; Lombardo, F.; Ciniglia, C.; Palmieri, M.; di Cicco, M.R.; Trifuoggi, M.; Race, M.; Manfredi, C.; Lubritto, C.; Fabbricino, M.; et al. Bioremoval of Yttrium (III), Cerium (III), Europium (III), and Terbium (III) from Single and Quaternary Aqueous Solutions Using the Extremophile Galdieria sulphuraria (Galdieriaceae, Rhodophyta). Plants 2022, 11, 1376. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Čížková, M.; Náhlík, V.; Mezricky, D.; Schild, D.; Rucki, M.; Vítová, M. Bio-Removal of Rare Earth Elements from Hazardous Industrial Waste of CFL Bulbs by the Extremophile Red Alga Galdieria sulphuraria. Front. Microbiol. 2023, 14, 1130848. [Google Scholar] [CrossRef]
- Kastenhofer, J.; Spadiut, O.; Papangelakis, V.G.; Allen, D.G. Roles of PH and Phosphate in Rare Earth Element Biosorption with Living Acidophilic Microalgae. Appl. Microbiol. Biotechnol. 2024, 108, 262. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, C.; Amoruso, A.J.; Ciniglia, C.; Iovinella, M.; Palmieri, M.; Lubritto, C.; El Hassanin, A.; Davis, S.J.; Trifuoggi, M. Selective Biosorption of Lanthanides onto Galdieria sulphuraria. Chemosphere 2023, 317, 137818. [Google Scholar] [CrossRef] [PubMed]
- Náhlík, V.; Čížková, M.; Singh, A.; Mezricky, D.; Rucki, M.; Andresen, E.; Vítová, M. Growth of the Red Alga Galdieria sulphuraria in Red Mud-Containing Medium and Accumulation of Rare Earth Elements. Waste Biomass Valorization 2023, 14, 2179–2189. [Google Scholar] [CrossRef]
- Iovinella, M.; Palmieri, M.; Papa, S.; Auciello, C.; Ventura, R.; Lombardo, F.; Race, M.; Lubritto, C.; di Cicco, M.R.; Davis, S.J.; et al. Biosorption of Rare Earth Elements from Luminophores by G. sulphuraria (Cyanidiophytina, Rhodophyta). Environ. Res. 2023, 239, 117281. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, T.; Pan, Y.; Shi, M.; Ding, D.; Ma, Z.; Liu, J.; Yuan, Y.; Fei, L.; Sun, Y. Recovering Rare Earth Elements via Immobilized Red Algae from Ammonium-Rich Wastewater. Environ. Sci. Ecotechnol. 2022, 12, 100204. [Google Scholar] [CrossRef]
- Delanka-Pedige, H.M.K.; Cheng, X.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Xu, J.; Nirmalakhandan, N.; Zhang, Y. Metagenomic Insights into Virus Removal Performance of an Algal-Based Wastewater Treatment System Utilizing Galdieria sulphuraria. Algal Res. 2020, 47, 101865. [Google Scholar] [CrossRef]
- Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Cornelius, J.; Henkanatte-Gedera, S.M.; Tchinda, D.; Zhang, Y.; Nirmalakhandan, N. Pathogen Reduction in an Algal-Based Wastewater Treatment System Employing Galdieria sulphuraria. Algal Res. 2019, 39, 101423. [Google Scholar] [CrossRef]
- Cheng, X.; Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Smith, G.B.; Nirmalakhandan, N.; Zhang, Y. Removal of Antibiotic Resistance Genes in an Algal-Based Wastewater Treatment System Employing Galdieria sulphuraria: A Comparative Study. Sci. Total Environ. 2020, 711, 134435. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, J.; Smith, G.; Nirmalakhandan, N.; Zhang, Y. Metagenomic Profiling of Antibiotic Resistance and Virulence Removal: Activated Sludge vs. Algal Wastewater Treatment System. J. Environ. Manag. 2021, 295, 113129. [Google Scholar] [CrossRef]
- Pleissner, D.; Schönfelder, S.; Händel, N.; Dalichow, J.; Ettinger, J.; Kvangarsnes, K.; Dauksas, E.; Rustad, T.; Cropotova, J. Heterotrophic Growth of Galdieria sulphuraria on Residues from Aquaculture and Fish Processing Industries. Bioresour. Technol. 2023, 384, 129281. [Google Scholar] [CrossRef]
- Ambrosino, A.; Chianese, A.; Zannella, C.; Piccolella, S.; Pacifico, S.; Giugliano, R.; Franci, G.; De Natale, A.; Pollio, A.; Pinto, G.; et al. Galdieria sulphuraria: An Extremophilic Alga as a Source of Antiviral Bioactive Compounds. Mar. Drugs 2023, 21, 383. [Google Scholar] [CrossRef] [PubMed]
- Pleissner, D.; Händel, N. Reduction of the Microbial Load of Digestate by the Cultivation of Galdieria sulphuraria Under Acidic Conditions. Waste Biomass Valorization 2023, 14, 2621–2627. [Google Scholar] [CrossRef]
- Munasinghe-Arachchige, S.P.; Delanka-Pedige, H.M.K.; Abeysiriwardana-Arachchige, I.S.A.; Zhang, Y.; Nirmalakhandan, N. Predicting Fecal Coliform Inactivation in a Mixotrophic Algal Wastewater Treatment System. Algal Res. 2019, 44, 101698. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retta, B.; Iovinella, M.; Ciniglia, C. Significance and Applications of the Thermo-Acidophilic Microalga Galdieria sulphuraria (Cyanidiophytina, Rhodophyta). Plants 2024, 13, 1786. https://doi.org/10.3390/plants13131786
Retta B, Iovinella M, Ciniglia C. Significance and Applications of the Thermo-Acidophilic Microalga Galdieria sulphuraria (Cyanidiophytina, Rhodophyta). Plants. 2024; 13(13):1786. https://doi.org/10.3390/plants13131786
Chicago/Turabian StyleRetta, Berhan, Manuela Iovinella, and Claudia Ciniglia. 2024. "Significance and Applications of the Thermo-Acidophilic Microalga Galdieria sulphuraria (Cyanidiophytina, Rhodophyta)" Plants 13, no. 13: 1786. https://doi.org/10.3390/plants13131786
APA StyleRetta, B., Iovinella, M., & Ciniglia, C. (2024). Significance and Applications of the Thermo-Acidophilic Microalga Galdieria sulphuraria (Cyanidiophytina, Rhodophyta). Plants, 13(13), 1786. https://doi.org/10.3390/plants13131786