Effects of Soil Conditioner (Volcanic Ash) on Yield Quality and Rhizosphere Soil Characteristics of Melon
Abstract
:1. Introduction
2. Results
2.1. Effect of Different Soil Conditioner Ratios on Yield of Melon
2.2. Effect of Different Soil Conditioner Ratios on Fruit Quality of Melon
2.3. Effects of Different Proportions of Soil Conditioner on Physical and Chemical Properties of Melon Rhizosphere Soil
2.3.1. Effects of Different Soil Physical and Chemical Conditioners on Soil Physical and Chemical Indicators
2.3.2. Analysis of Bacterial Composition and Relative Abundance in Rhizosphere Soil of Melon with Different Soil Conditioner Ratios
2.4. Effects of Different Soil Regulator Ratios on Soil Bacterial Flora Composition and Relative Abundance of Melon Roots
2.5. Effects of Environmental Factors on the Distribution of Bacterial Communities in the Rhizosphere Soil of Melon
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Melon Plant Samples and Rhizosphere Soil Sample Detection
4.2.2. Measurement of Yield and Quality Index
4.2.3. Soil Physical and Chemical Properties Testing
4.2.4. Sequencing Sample Preparation
DNA Extraction, PCR Amplification, and MiSeq
Data Analysis Processing
4.3. Data Processing
5. Conclusions
- The treatment of adding 15% Jiujin soil conditioner to melon soil had the best effect on yield and quality compared with the control treatment. However, a 35% supplementation resulted in a decrease of 6.24% in soluble solid content, 8.74% in vitamin C content, and 13.07% in solid acid ratio compared to the control, thereby inhibiting the enhancement of fruit quality.
- The treatment of adding 15% soil conditioner to melon soil had the best improvement effect on the soil’s physical and chemical properties and enzyme activity compared with the control. The treatment with 35% added soil conditioner significantly reduced the ammonium nitrogen content of the soil by 1.62%, as well as its sucrase and catalase activity by 7.67% and 2.09%, respectively.
- The richness, ACE, and Shannon indexes of the bacterial community in the rhizosphere soil of melon that had been treated with 15% soil conditioner were significantly higher than those of the control treatment. It also increased the relative abundance of beneficial bacteria such as Flavobacterium, Actinoplanes, Arthrobacter, Streptomyces, and Sphingomonas as well as improving the bacterial community in the rhizosphere of melon. RDA (redundancy analysis) found that the main influencing factors of soil bacterial community structure were organic matter, electrical conductivity, available phosphorus, and nitrate nitrogen in melon rhizosphere soil.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, C.; Zhang, W.; Liang, J.; Cui, L.; Cui, Z.; Wang, W.; Cheng, D.J.; Wang, X. First Report of Leaf Spot on Cucumis melon L. Plant Dis. 2024, 108, 814. [Google Scholar] [CrossRef] [PubMed]
- Zahedyan, A.; Jahromi, A.A.; Zakerin, A.; Abdossi, V.; Torkashvand, A.M. Nitroxin bio-fertilizer improves growth parameters, physiological and biochemical attributes of cantaloupe (Cucumis melo L.) under water stress conditions. Agric. Sci. 2022, 21, 8–20. [Google Scholar] [CrossRef]
- Zhang, Q.; Niu, W.; Du, Y.; Sun, J.; Cui, B.; Zhang, E.; Wang, Y.; Siddique, K.H.M. Effect of aerated drip irrigation and nitrogen doses on NO2 emissions, microbial activity, and yield of tomato and melonn under greenhouse conditions. Agric. Water Manag. 2023, 283, 108321. [Google Scholar] [CrossRef]
- Kaninga, B.; Chishala, B.H.; Maseka, K.K.; Sakala, G.M.; Young, S.D.; Lark, R.M.; Tye, A.; Hamilton, E.M.; Gardner, A.; Watts, M.J. Do soil amendments used to improve agricultural productivity have consequences for soils contaminated with heavy metals. Heliyon 2020, 6, e05502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, M.; Chen, H.; Chen, Y.; Wang, L.; Wang, R. Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil. Sustainability 2023, 15, 9602. [Google Scholar] [CrossRef]
- Mortazavizadeh, F.; Fatahi, A.; Asefpour Vakilian, K.; Pagliari, P.H.; Cerdà, A.; Mirzaei, M.; Zhang, X.; Adnan Ikram, R.M. Effects of ash derived from livestock manure and two other treatments on soil moisture content and water infiltration rate. Irrig. Drain. 2022, 71, 1024–1033. [Google Scholar] [CrossRef]
- Higashikawa, F.S.; Silva, C.A.; Carducci, C.E.; Jindo, K.; Kurtz, C.; de Araújo, E.R.; Sousa Resende, R.; Alves, D.P. Effects of the application of biochar on soil fertility status, and nutrition and yield of onion grown in a no-tillage system. Arch. Agron. Soil Sci. 2023, 69, 212–227. [Google Scholar] [CrossRef]
- Djalali Farahani-Kofoet, R.; Schneider, D.; Feller, C. Apple Growth and Yield in Replant Soils Supplemented by Organic Soil Additives. Agronomy 2024, 14, 678. [Google Scholar] [CrossRef]
- de Souza Rodrigues, T.; Arge, L.W.P.; de Freitas Guedes, F.A.; Travassos-Lins, J.; de Souza, A.P.; Cocuron, J.C.; Buckeridge, M.S.; Grossi-de-Sá, M.F.; Alves-Ferreira, M. Elevated CO2 increases biomass of Sorghum bicolor green prop roots under drought conditions via soluble sugar accumu-lation and photosynthetic activity. Physiol. Plant. 2023, 175, e13984. [Google Scholar] [CrossRef]
- Batool, A.; Taj, S.; Rashid, A.; Khalid, A.; Qadeer, S.; Saleem, A.R.; Ghufran, M.A. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Front. Plant Sci. 2015, 6, 733. [Google Scholar] [CrossRef]
- Chen, M.; Liu, D.; Shao, X.; Li, S.; Jin, X.; Qi, J.; Liu, H.; Li, C.; Li, C.; Li, C. Effect of Biochar Types and Rates on SOC and Its Active Fractions in Tropical Farmlands of China. Agronomy 2024, 14, 676. [Google Scholar] [CrossRef]
- Tang, T.; Sun, X.; Liu, Q.; Dong, Y.; Zha, M. Treatment with organic manure inoculated with a bio-control agent induces soil bacterial communities to inhibit tomato Fusarium wilt disease. Front. Microbiol. 2023, 13, 1006878. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, H.; Zhao, C.; Yang, K.; Li, Z.; Yin, K. Effects of Biochar on the Microenvironment of Saline-Sodic Soil and Maize Growth. Agronomy 2022, 12, 2859. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Cai, X.; Wang, J.; Fu, R.; Lu, D. Effect of Modified Fertilization on Rhizophere Microbial Community Structure of Chinese Cabbage. North. Hortic. 2018, 13, 108–113. [Google Scholar]
- Heuscher, S.A.; Brandt, C.C.; Jardine, P.M. Using Soil Physical and Chemical Properties to Estimate Bulk Density. Soil Sci. Soc. Am. J. 2005, 69, 51–56. [Google Scholar] [CrossRef]
- Liu, N. Effects of Lignite Soil Conditioner and Nitrogen Fertilizer on the Growth and Quality of Potted Tomato; Shanxi Agricultural Universit: Jinzhong, China, 2019. [Google Scholar]
- Wu, W.; Zhang, K.; Wang, X.; Li, Z.; Liu, H. Effects of silicon fertilizer on nutrient uptake and yield of rice. Jilin Agric. Sci. 1996, 3, 51–54. [Google Scholar]
- De Corato, U.; Cancellara, F.A.; Lacolla, G.; Caranfa, D.; Cucci, G. Short-term soil amendment by sewage sludge anaerobic digestate in a tomato monoculture suppresses Fusarium vascular wilt disease by changing the taxonomic characteristics of soil microbiota. Appl. Soil Ecol. 2023, 189, 104915. [Google Scholar] [CrossRef]
- Ogle, S.W.; Vrakas, S.C.; Wood, D.W.; E. I. du Pont de Nemours and Company. Soil Conditioner Compositions Containing Lignocellulosic Biomass Fermentation Process Syrup. U.S. Patent 9,834,483, 5 December 2017. [Google Scholar]
- Czopek, K.; Staniak, M.; Stępień-Warda, A.; Księżak, J. The effect of a superabsorbent as a soil amendment on seed yield and chemical composition of two soybean genotypes. Arch. Agron. Soil Sci. 2023, 69, 2443–2457. [Google Scholar] [CrossRef]
- Wang, X. Overview of research and utilization of soil structure improvers. Manag. Technol. Small Medium-Sized Enterp. 2009, 03, 199. [Google Scholar]
- Mulualem, T.; Adgo, E.; Meshesha, D.T.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Kebede, B.; Mamedov, A.I.; Masunaga, T.; Berihun, M.L. Examining the Impact of Polyacrylamide and Other Soil Amendments on Soil Fertility and Crop Yield in Contrasting Agroecological Environments. J. Soil Sci. Plant Nutr. 2021, 21, 1817–1830. [Google Scholar] [CrossRef]
- Li, S.; Yang, F.; Zhang, Y.; Xiang, K.; Chen, J.; Dai, W.; Wang, J.; Li, Y. Carbon Nanotubes/Polydopamine/ZSM-5 Composite Soil Conditioner with Good Controlled Release and Adsorption Properties. J. Langmuir ACS J. Surf. Colloids 2022, 38, 9928–9939. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ding, Y.; Wang, J. Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) Supramolecular Composite Hydrogels: Preparation and Application as Soil Conditioners. Nanomaterials 2019, 9, 1397. [Google Scholar] [CrossRef] [PubMed]
- Ashrit, S.; Chatti, R.V.; Sarkar, S.; Venugopal, R.; Udayabhanu, G. Potential Application of Yellow Gypsum from LD Slag as a Soil Conditioner. Curr. Sci. 2020, 118, 118–122. [Google Scholar] [CrossRef]
- Zonayet, M.; Paul, A.K.; Faisal-E-Alam, M.; Syfullah, K.; Castanho, R.A.; Meyer, D. Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato. Sustainability 2023, 15, 4832. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.H.; He, M.J.; Liu, W.X.; Lu, J.F.; Wei, S.Q. Influence of Different Soil Conditioner on the Transfer and Transformation of Cadmium and Phthalate Esters in Soil. Environ. Sci. 2021, 42, 4024–4036. [Google Scholar]
- Long, M.; Zeng, F. Research progress of polymer soil conditioner. Chin. J. Soil Sci. 2000, 31, 199–202. [Google Scholar]
- Zhang, H.; Yang, J.; Zhou, J.; Li, G.; Zhang, J. Effects of continuous application of soil conditioner on sandy tidal soil aggregate and crop yield. Plant Nutr. Fertil. J. 2021, 27, 791–801. [Google Scholar]
- Zhang, Z.; Chen, Z. Plant Physiology Experiment Technology; Jilin University Press: Changchun, China, 2008. [Google Scholar]
- Bao, S. Agrochemical Analysis of Soil; China Agriculture Press: Beijing, China, 2005. [Google Scholar]
Treatment | Single Fruit Weight (g) | Yield (kg/667 m2) |
---|---|---|
CK | 383.00 ± 4.00 bc | 2489.61 ± 19.38 bc |
KT1 | 390.00 ± 6.00 b | 2813.26 ± 24.66 a |
KT2 | 399.67 ± 5.23 a | 2893.92 ± 19.65 a |
KT3 | 390.67 ± 7.23 b | 2839.65 ± 23.67 a |
KT4 | 377.33 ± 3.67 c | 2469.87 ± 21.14 c |
KT5 | 388.33 ± 5.67 b | 2498.63 ± 16.77 b |
Treatment | Soluble Protein (mg·100 g−1) | Dissolved Solid (%) | Soluble Sugar (mg·g−1) | Vitamin C (mg·100 g−1) | Titratable Acid (%) | Dissolved Solid |
---|---|---|---|---|---|---|
CK | 1.74 ± 0.15 cd | 14.82 ± 0.35 c | 42.62 ± 1.58 bc | 12.13 ± 0.67 b | 0.67 ± 0.01 d | 21.12 ± 1.47 b |
KT1 | 1.79 ± 0.11 bc | 14.95 ± 0.16 c | 45.51 ± 1.21 ab | 12.33 ± 0.08 b | 0.71 ± 0.01 c | 21.05 ± 2.11 b |
KT2 | 1.83 ± 0.12 ab | 15.89 ± 0.57 b | 45.68 ± 0.94 a | 14.13 ± 0.23 a | 0.71 ± 0.02 c | 22.38 ± 0.98 a |
KT3 | 1.89 ± 0.05 a | 16.35 ± 0.46 a | 46.44 ± 1.27 a | 13.79 ± 0.05 a | 0.76 ± 0.01 b | 21.51 ± 0.75 b |
KT4 | 1.72 ± 0.01 d | 13.95 ± 0.31 d | 42.18 ± 0.44 c | 11.07 ± 0.93 c | 0.76 ± 0.01 b | 18.36 ± 1.14 c |
KT5 | 1.77 ± 0.02 bcd | 14.88 ± 0.26 c | 41.13 ± 1.11 c | 12.52 ± 0.25 b | 0.79 ± 0.03 a | 18.84 ± 1.26 c |
Treatment | pH | EC (ds·m−1) | Volumetric Weight (g·cm−3) | Organic Matter (g·kg−1) | Total Nitrogen (g·kg−1) | Alkaline-Hydrolyzed Nitrogen (mg·kg−1) | Nitrate Nitrogen (mg·kg−1) | Ammonium Nitrogen (mg·kg−1) | Rapidly Available Potassium (mg·kg−1) | Available Phosphorous (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
CK | 5.28 d | 0.38 a | 0.93 a | 55.31 d | 1.04 b | 222.78 b | 15.35 de | 7.52 c | 225.33 c | 96.05 bc |
KT1 | 5.46 d | 0.36 ab | 0.90 b | 61.71 bc | 1.16 ab | 245.22 ab | 16.20 c | 7.63 b | 231.67 bc | 97.25 bc |
KT2 | 5.53 c | 0.31 bc | 0.86 c | 66.81 a | 1.28 a | 276.11 a | 17.07 b | 7.76 a | 260.67 a | 112.71 a |
KT3 | 5.52 c | 0.29 c | 0.83 d | 64.49 ab | 1.19 ab | 268.34 ab | 16.00 c | 7.63 b | 243.33 b | 114.54 a |
KT4 | 5.47 b | 0.38 a | 0.80 e | 55.77 d | 1.14 b | 217.33 b | 14.92 e | 7.40 d | 221.00 c | 92.25 c |
KT5 | 5.34 a | 0.37 a | 0.78 f | 59.16 c | 1.19 ab | 226.32 ab | 15.74 cd | 7.55 c | 226.67 c | 100.56 b |
Treatments | Chao1 Index | ACE Index | Shannon Index | Simpson Index | Coverage (%) |
---|---|---|---|---|---|
CK | 6336.72 ± 109.86 bc | 6571.65 ± 248.35 c | 9.78 ± 0.33 bc | 0.99 ± 0.01 a | 98 a |
KT1 | 7793.17 ± 50.57 ab | 6727.61 ± 165.39 bc | 10.19 ± 0.17 abc | 0.99 ± 0.01 a | 98 a |
KT2 | 7915.86 ± 73.28 a | 8238.01 ± 196.99 a | 10.44 ± 0.19 a | 0.99 ± 0.00 a | 98 a |
KT3 | 6956.12 ± 97.86 abc | 8169.41 ± 159.59 ab | 10.31 ± 0.09 abc | 0.99 ± 0.00 a | 98 a |
KT4 | 5938.36 ± 36.20 c | 6146.87 ± 217.13 c | 9.66 ± 0.21 c | 0.99 ± 0.00 a | 98 a |
KT5 | 6399.07 ± 118.45 bc | 7377.01 ± 230.99 abc | 9.89 ± 0.45 bc | 0.99 ± 0.01 a | 98 a |
Factors | Explanation/% | Contribution/% | R Square | p-Value |
---|---|---|---|---|
o.m. | 20.0 | 32.9 | 16.0 | 0.001 |
EC | 7.7 | 12.7 | 2.56 | 0.027 |
SBD | 4.2 | 6.9 | 0.81 | 0.049 |
AP | 5.8 | 9.6 | 1.44 | 0.042 |
NO3−-N | 6.6 | 10.9 | 1.96 | 0.036 |
TN | 3.2 | 5.3 | 0.49 | 0.058 |
AK | 2.8 | 4.7 | 0.36 | 0.147 |
NH4+-N | 3.3 | 5.4 | 0.36 | 0.216 |
Alk-N | 5.3 | 8.7 | 1.0 | 0.374 |
pH | 1.7 | 2.8 | 0.9 | 0.417 |
Treatment | Ratio of Soil Conditioner (%) |
---|---|
CK (Pastoral soil) | 0 |
KT1 | 95% Pastoral soil + 5% volcanic ash soil conditioner |
KT2 | 85% Pastoral soil + 15% volcanic ash soil conditioner |
KT3 | 75% Pastoral soil + 25% volcanic ash soil conditioner |
KT4 | 65% Pastoral soil + 35% volcanic ash soil conditioner |
KT5 | 55% Pastoral soil + 45% volcanic ash soil conditioner |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, D.; Wang, Y.; Sun, H.; Fu, L.; Zhu, L.; Liu, J.; Zhi, Z.; He, J.; Wang, W.; Wu, C. Effects of Soil Conditioner (Volcanic Ash) on Yield Quality and Rhizosphere Soil Characteristics of Melon. Plants 2024, 13, 1787. https://doi.org/10.3390/plants13131787
Xue D, Wang Y, Sun H, Fu L, Zhu L, Liu J, Zhi Z, He J, Wang W, Wu C. Effects of Soil Conditioner (Volcanic Ash) on Yield Quality and Rhizosphere Soil Characteristics of Melon. Plants. 2024; 13(13):1787. https://doi.org/10.3390/plants13131787
Chicago/Turabian StyleXue, Dongxu, Yangyang Wang, Hong Sun, Lina Fu, Lihe Zhu, Jiaqi Liu, Zhenyi Zhi, Jiayi He, Wei Wang, and Chunyan Wu. 2024. "Effects of Soil Conditioner (Volcanic Ash) on Yield Quality and Rhizosphere Soil Characteristics of Melon" Plants 13, no. 13: 1787. https://doi.org/10.3390/plants13131787
APA StyleXue, D., Wang, Y., Sun, H., Fu, L., Zhu, L., Liu, J., Zhi, Z., He, J., Wang, W., & Wu, C. (2024). Effects of Soil Conditioner (Volcanic Ash) on Yield Quality and Rhizosphere Soil Characteristics of Melon. Plants, 13(13), 1787. https://doi.org/10.3390/plants13131787