The Influence of Climate Change on the Distribution of Hibiscus mutabilis in China: MaxEnt Model-Based Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Occurrence Data
2.1.2. Predictor Variables
2.2. Data Processing and Selection
2.2.1. Bioclimatic Variables Screening
2.2.2. Species Distribution Model Parameter Setting
2.2.3. Prediction of Potential Suitable Habitats
2.2.4. Changes in the Area and Shifts in the Distribution Center of Suitable Habitats for H. mutabilis
3. Results
3.1. Model Accuracy Evaluation
3.2. Key Environmental Factors Influencing the Distribution of Suitable Habitats for H. mutabilis
3.3. Predicting the Suitable Habitat Range of H. mutabilis under Climate Change
3.3.1. Prediction of Contemporary Potential Habitats for H. mutabilis
3.3.2. Future Potential Habitat Prediction for H. mutabilis
3.4. Spatial Pattern Changes and Distribution Center Migration Trends of H. mutabilis Habitat under Climate Change
3.4.1. Spatial Pattern Changes of H. mutabilis Habitat under Different Climate Scenarios
3.4.2. Trends in H. mutabilis Distribution Center Migration under Different Climate Scenarios
4. Discussion
4.1. Key Climatic Factors Restricting the Distribution of H. mutabilis
4.2. Spatial Pattern Changes of H. mutabilis Habitat and Distribution Center Migration
4.3. Conservation Strategies and Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McLaughlin, B.C.; Ackerly, D.D.; Klos, P.Z.; Natali, J.; Dawson, T.E.; Thompson, S.E. Hydrologic refugia, plants, and climate change. Glob. Chang. Biol. 2017, 23, 2941–2961. [Google Scholar] [CrossRef]
- Erwin, D.H. Climate as a Driver of Evolutionary Change. Curr. Biol. 2009, 19, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Leimu, R.; Vergeer, P.; Angeloni, F.; Ouborg, N.J. Habitat fragmentation, climate change, and inbreeding in plants. Ann. N. Y. Acad. Sci. 2010, 1195, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Hanley, M.E. Plants and climate change: Complexities and surprises. Ann. Bot. 2015, 116, 849–864. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, X.; Wei, H.; Wang, D.; Chen, R.; Wang, L.; Gu, W. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. Sci. Total Environ. 2021, 756, 143841. [Google Scholar] [CrossRef] [PubMed]
- Wiens, J.J.; Zelinka, J. How many species will Earth lose to climate change? Glob. Chang. Biol. 2024, 30, e17125. [Google Scholar] [CrossRef]
- Phillips, S.J.; Ik, M.D.; Schapire, R.E. A Maximum Entropy Approach to Species Distribution Modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; Association for Computing Machinery: New York, NY, USA, 2004. [Google Scholar]
- Liu, H.; Feng, C.L.; Luo, Y.B.; Chen, B.S.; Wang, Z.S.; Gu, H.Y. Potential Challenges of Climate Change to Orchid Conservation in a Wild Orchid Hotspot in Southwestern China. Bot. Rev. 2010, 76, 174–192. [Google Scholar] [CrossRef]
- Zhao, X.; Lei, M.; Wei, C.; Guo, X. Assessing the suitable regions and the key factors for three Cd-accumulating plants (Sedum alfredii, Phytolacca americana, and Hylotelephium spectabile) in China using MaxEnt model. Sci. Total Environ. 2022, 852, 158202. [Google Scholar] [CrossRef]
- Kong, F.; Tang, L.; He, H.; Yang, F.; Tao, J.; Wang, W. Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environ. Sci. Pollut. Res. 2021, 28, 34655–34663. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, H.; Li, C.; Zhu, X.; Yuan, Z.; Lai, J.; Cao, M.; Huang, Z.; Yang, Y.; Zhuo, S.; et al. Predicting the geographical distribution and niche characteristics of Cotoneaster multiflorus based on future climate change. Front. Plant Sci. 2024, 15, 1360190. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, W.J.; Zhu, Y.Z.; Cao, Y.T.; Yang, X.M.; Geng, Y.; Zhang, F.J.; Sun, R.Q.; Jia, R.W.; Yan, C.L.; et al. Impacts of Climate Changes on Geographic Distribution of Primula filchnerae, an Endangered Herb in China. Plants 2023, 12, 3561. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sheng, Q.; Zhao, R.; Zhu, Z. Differences in the Suitable Distribution Area between Northern and Southern China Landscape Plants. Plants 2023, 12, 2710. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, S.; Duan, Y.; Han, J.; Huang, D.; Zhou, J. Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecol. Evol. 2021, 11, 16099–16112. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Yang, Y.; Jiang, P.; Mou, Q.; Gou, Y.; Zhu, X.; Xu, Y.W.; Wang, R. Potential distribution of Blumea balsamifera in China using MaxEnt and the ex situ conservation based on its effective components and fresh leaf yield. Environ. Sci. Pollut. Res. 2022, 29, 44003–44019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, M.Y.; Zeng, X.M.; Jia, Y.; Jiang, B.B.; Zhou, J.; Ma, J.; Xu, Q.; Shi, X.Q.; Wang, K.L.; et al. Pollen Morphology of 19 Cultivars of Hibiscus mutabilis in Chengdu and Its Taxonomic Significance. J. Trop. Subtrop. Bot. 2021, 29, 421–429. [Google Scholar]
- Ding, N.; Zhong, Y.; Li, J.; Xiao, Q.; Zhang, S.; Xia, H. Visual preference of plant features in different living environments using eye tracking and EEG. PLoS ONE 2022, 17, e279596. [Google Scholar] [CrossRef] [PubMed]
- Shang, K.; Hu, Y.H.; Vincent, G.; Labrecque, M. Biomass and phytoextraction potential of three ornamental shrub species tested over three years on a large-scale experimental site in Shanghai, China. Int. J. Phytoremediat. 2020, 22, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Ma, M.; Su, W. Fingerprint analysis of H. mutabilis L. leaves based on ultra performance liquid chromatography with photodiode array detector combined with similarity analysis and hierarchical clustering analysis methods. Pharmacogn. Mag. 2013, 9, 238–243. [Google Scholar]
- Feng, L.P.; Huang, L.L.; Ye, L.; Hu, P.; Xiong, J.; Yan, X.; Xia, H.L. Progress in chemical composition and pharmacological effects of medicinal plants of Hibiscus spp. J. Chin. Med. Mater. 2023, 46, 1812–1822. [Google Scholar]
- Iwaoka, E.; Oku, H.; Takahashi, Y.; Ishiguro, K. Allergy-Preventive Effects of H. mutabilis ‘Versicolor’ and a Novel Allergy-Preventive Flavonoid Glycoside. Biol. Pharm. Bull. 2009, 32, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, X.; Li, M.X.; Chen, W.K. Tolerance and enrichment characteristics of Hibiscus mutabilis L. in cadmium polluted soil. Anhui J. Agric. 2023, 29, 104–108. [Google Scholar]
- Xu, Q.; Wu, M.X.; Zeng, X.M.; Jiang, B.B.; Jia, Y.; Li, M.X.; Zhang, M.Y.; Zhang, L.; Cai, L.; Huang, W.P.; et al. Response of Hibiscus mutabilis to Waterlogging Stress and Comprehensive Evaluation of Waterlogging Tolerance. J. Trop. Subtrop. Bot. 2022, 30, 202–212. [Google Scholar]
- Liu, Y.; Liu, J.; Liu, W.; Xiao, L.; Zhang, K. First Report of Alternaria alternata Causing Leaf Spot on H. mutabilis in China. Plant Dis. 2023, 107, 1631. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Yu, S.; Zhu, T.; Li, S.; Qiao, T.; Liu, Y.; Lin, T.; Yang, C. Nigrospora oryzae Causing Black Leaf Spot Disease of H. mutabilis in China. Plant Dis. 2021, 105, 2255. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Wei, C.H.; Liang, C.T.; Yu, J.H.; Wang, H.M.; Wang, W.J. Future climatic adaption of 12 dominant tree species in northeast china under 3 climatic scenarios by using MaxEnt modeling. Acta Ecol. Sin. 2022, 42, 9712–9725. [Google Scholar]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Y.; Liu, T.; Zang, G.Z.; Zheng, Y.Q. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model. J. Beijing For. Univ. 2024, 46, 91–102. [Google Scholar]
- Wu, Q.; Dong, S.B.; Yang, L.; Qi, X.J.; Zhang, Y.; Yang, M.Q.; Ren, Z.H.; Liu, Q.H.; Cheng, J. Prediction of potential distribution of Cypripedium macranthos under climate change scenarios in China. Acta Ecol. Sin. 2024, 44, 209–223. [Google Scholar]
- Jiang, Y.Q.; Wang, C.; Zhang, X.M.; Su, D.T.; Zhang, Z.G.; Xu, J. Effect of climate change on the potential habitat of Hemerocallis fulva. J. Northeast. For. 2024, 52, 59–65. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Wang, J.; Shi, T.; Wang, H.; Li, M.; Zhang, X.; Huang, L. Estimating the Amount of the Wild Artemisia annua in China Based on the MaxEnt Model and Spatio-Temporal Kriging Interpolation. Plants 2024, 13, 1050. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Valverde, A.; Lobo, J.M. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol. 2007, 31, 361–369. [Google Scholar] [CrossRef]
- Li, J.; Fan, G.; He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 2020, 698, 134141. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhong, Q.; Shao, D.; Ren, Y.; Li, Q.; Wen, J.; Li, J. Potential Suitable Habitats of Chili Pepper in China under Climate Change. Plants 2024, 13, 1027. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Yue, C.L.; Gu, Y.X.; Li, H.P.; Wang, J.; Fang, Y.Y. Traits of bacterial communities in the rhizospheres of different woody plants in simulated vertical flow constructed wetland. Ecol. Sci. 2023, 42, 116–126. [Google Scholar]
- Tong, L.L.; Wang, Z.Y.; Xu, X.G. Effects of flooding stress on morphological and physiological property of Hibiscus mutabilis. J. Beihua Univ. (Nat. Sci.) 2020, 21, 253–256. [Google Scholar]
- Yang, Y.Z.; Zeng, X.M.; Ma, J.; Shi, X.Q.; Zhu, Z.S.; Li, F.W. Effects of Different Treatments on Seed Germination Characters of the Hibiscus mutabilis L. Cultivar ‘Danbanhong’. Hunan Agric. Sci. 2020, 8, 16–20. [Google Scholar]
- Liu, X.D.; Sun, Y.R.; Tang, Y.T.; Wang, M.; Xiao, B. Adaptability of Seven Woody Plants under Water Stress. Chin. J. Trop. Agric. 2022, 42, 56–63. [Google Scholar]
- Zhang, F.; Xue, C.R.; Zhao, B. Domestication of Hibiscus mutabilis and Selection and Breeding of Cold Resistant Species. Shandong For. Technol. 2016, 46, 29–36. [Google Scholar]
- Jiang, Z.H.; Zhang, X.; Wang, J. IPCC-AR4 Model Scenario Projections of 21st Century Climate Change in China Scenario Projections of Climate Change in China in the 21st Century by IPCC-AR4 Model. Geogr. Res. 2008, 4, 787–799. [Google Scholar]
- Black, E. Global Change in Agricultural Flash Drought over the 21st Century. Adv. Atmos. Sci. 2024, 41, 209–220. [Google Scholar] [CrossRef]
- Lu, D.Y.; Zhu, X.F.; Tang, M.X.; Guo, C.H.; Liu, T.T. Assessment of drought risk changes in China under different temperature rise scenarios. Arid. Land Geogr. 2024, 47, 369–379. [Google Scholar]
- Guo, C.H.; Zhu, X.F.; Zhang, S.Z.; Tang, M.X.; Xu, K. Hazard Changes Assessment of Future High Temperature in China based on CMIP6. J. Geo-Inf. Sci. 2022, 24, 1391–1405. [Google Scholar]
- Wen, S.S.; Wang, Z.C.; Zhai, J.Q.; Jiang, F.S.; Zhou, B.; N-CMIP6-Based Future Prediction of Temperature and Precipitation in the Yangtze River Basin. Yangtze River. 2024. Available online: https://link.cnki.net/urlid/42.1202.TV.20240412.1350.002 (accessed on 15 April 2024).
- Yang, S.; Xu, L.L. Extreme Precipitation in the South China Sea and Surrounding Areas: Observation and Projection. Chin. J. Atmos. Sci. 2024, 48, 333–346. [Google Scholar]
- Hof, C.; Levinsky, I.; Araujo, M.B.; Rahbek, C. Rethinking species’ ability to cope with rapid climate change. Glob. Chang. Biol. 2011, 17, 2987–2990. [Google Scholar] [CrossRef]
- Song, F.; Hu, Y.J.; Song, W.D.; Song, L.; Ao, Q.; Deng, S.Q. Climatic suitability and zoning of pepper varieties Jiuyeqing and Dahongpao in Suiyang County. Agric. Technol. Serv. 2020, 37, 101–103. [Google Scholar]
- Li, X.N.; He, L.H.; Xu, L.Q. Spatial and temporal variability and prediction of extreme weather events and vegetation cover in Guizhou Province under climate change. Pearl River. 2024. Available online: https://link.cnki.net/urlid/44.1037.tv.20240507.1908.002 (accessed on 8 May 2024).
- He, X.; Burgess, K.S.; Gao, L.M.; Li, D.Z. Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains. Plant Divers. 2019, 41, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Li, H.; Lu, S.F.; Yin, X.J.; Li, G.; Chen, Z.; Wang, Y. Responses of cold-temperature coniferous forest to climate change in southwestern China. J. Northwest For. Univ. 2023, 38, 33–44. [Google Scholar]
- Tang, C.Q.; Matsui, T.; Ohashi, H.; Dong, Y.F.; Momohara, A.; Herrando-Moraira, S.; Qian, S.; Yang, Y.; Ohsawa, M.; Luu, H.T.; et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 2018, 9, 4488. [Google Scholar] [CrossRef]
No. | Bioclimatic Factor Variable | Contribution Rate/% | Permutation Importance |
---|---|---|---|
Bio14 | Precipitation of the driest month | 59.4 | 6.6 |
Bio12 | Annual precipitation | 22.8 | 13.1 |
Bio1 | Annual mean temperature | 3.4 | 13.1 |
Bio7 | Variation range of annual average temperature | 2.4 | 38.1 |
Bio2 | Mean diurnal range | 2.2 | 2.6 |
Bio19 | Precipitation of the coldest quarter | 2.2 | 0.9 |
Bio18 | Precipitation of the warmest quarter | 2 | 11.1 |
Bio8 | Mean temperature of the wettest quarter | 1.8 | 7.8 |
Bio3 | Isothermality | 1.4 | 2.4 |
Bio10 | Mean temperature of the warmest quarter | 1.4 | 2 |
Bio15 | Coefficient of variation of precipitation | 1.2 | 2.4 |
Climate Scenarios | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Current | 2050s | 2070s | 2090s | ||||||
SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | ||
LSDA | 48.94 | 53.85 | 58.69 | 73.28 | 62.75 | 59.67 | 57.13 | 58.92 | 53.36 | 48.42 |
MSDA | 87.02 | 87.07 | 78.93 | 88.27 | 69.76 | 78.49 | 80.27 | 82.57 | 76.06 | 88.61 |
HSDA | 71.70 | 58.64 | 64.06 | 85.99 | 66.12 | 67.60 | 75.25 | 70.97 | 76.83 | 71.59 |
TSDA | 207.66 | 199.56 | 201.68 | 247.55 | 198.63 | 205.75 | 212.65 | 212.46 | 206.25 | 208.63 |
HSDA-Current | −13.06 | −7.64 | 14.30 | −5.58 | −4.10 | 3.55 | −0.73 | 5.13 | −0.11 | |
HSDA/TSDA (%) | 0.35 | 0.29 | 0.32 | 0.35 | 0.33 | 0.33 | 0.35 | 0.33 | 0.37 | 0.34 |
TSDA-Current | −8.10 | −5.98 | 39.89 | −9.03 | −1.91 | 4.98 | 4.80 | −1.41 | 0.96 |
Climate Scenarios | |||||||||
---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | 2050s | 2070s | 2090s | ||||||
SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | |
Reserved-SDA | 197.58 | 197.85 | 205.14 | 199.85 | 202.49 | 202.54 | 202.54 | 205.92 | 204.09 |
Lost-SDA | 10.10 | 9.84 | 2.57 | 7.84 | 5.16 | 5.13 | 5.16 | 1.77 | 3.60 |
New-SDA | 1.96 | 0.89 | 7.46 | 1.77 | 3.20 | 3.69 | 4.63 | 6.71 | 4.52 |
NSDA | 754.20 | 755.27 | 748.68 | 754.38 | 752.93 | 752.47 | 751.52 | 749.42 | 751.60 |
Loss rate (%) | 4.86 | 4.74 | 1.24 | 3.77 | 2.49 | 2.47 | 2.48 | 0.85 | 1.73 |
Increasing rate (%) | 0.94 | 0.43 | 3.59 | 0.85 | 1.54 | 1.78 | 2.23 | 3.23 | 2.18 |
Retention rate (%) | 95.14 | 95.28 | 98.79 | 96.24 | 97.51 | 97.53 | 97.53 | 99.16 | 98.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Jiang, B.; Meng, Y.; Jia, Y.; Xu, Q.; Pan, Y. The Influence of Climate Change on the Distribution of Hibiscus mutabilis in China: MaxEnt Model-Based Prediction. Plants 2024, 13, 1744. https://doi.org/10.3390/plants13131744
Zhang L, Jiang B, Meng Y, Jia Y, Xu Q, Pan Y. The Influence of Climate Change on the Distribution of Hibiscus mutabilis in China: MaxEnt Model-Based Prediction. Plants. 2024; 13(13):1744. https://doi.org/10.3390/plants13131744
Chicago/Turabian StyleZhang, Lu, Beibei Jiang, Yu Meng, Yin Jia, Qian Xu, and Yuanzhi Pan. 2024. "The Influence of Climate Change on the Distribution of Hibiscus mutabilis in China: MaxEnt Model-Based Prediction" Plants 13, no. 13: 1744. https://doi.org/10.3390/plants13131744
APA StyleZhang, L., Jiang, B., Meng, Y., Jia, Y., Xu, Q., & Pan, Y. (2024). The Influence of Climate Change on the Distribution of Hibiscus mutabilis in China: MaxEnt Model-Based Prediction. Plants, 13(13), 1744. https://doi.org/10.3390/plants13131744