Transgenerational Effects of Salt Stress Imposed to Rapeseed (Brassica napus var. oleifera Del.) Plants Involve Greater Phenolic Content and Antioxidant Activity in the Edible Sprouts Obtained from Offspring Seeds
Abstract
:1. Introduction
2. Results
2.1. Seed Production and Germination, and Sprout Growth
2.2. Sprout Phenolic Content and Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Growth of Parental Plants and Seed Production
4.2. Sprouting of Offspring Seeds
4.3. Chemicals
4.4. Preparation of Extracts and Determination of Phenolic Fractions and Antioxidant Activities
4.5. UHPLC Analysis of Phenolic Acids
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pace, R.; Benincasa, P. Effect of Salinity and Low Osmotic Potential on the Germination and Seedling Growth of Rapeseed Cultivars with Different Stress Tolerance. Ital. J. Agron. 2010, 5, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Benincasa, P.; Pace, R.; Quinet, M.; Lutts, S. Effect of salinity and priming on seedling growth in rapeseed (Brassica napus var oleifera Del.). Acta Sci. Agron. 2013, 35, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Marconi, G.; Pace, R.; Traini, A.; Raggi, L.; Lutts, S.; Chiusano, M.; Guiducci, M.; Falcinelli, M.; Benincasa, P.; Albertini, E. Use of MSAP Markers to Analyse the Effects of Salt Stress on DNA Methylation in Rapeseed (Brassica napus var. oleifera). PLoS ONE 2013, 8, e75597. [Google Scholar] [CrossRef] [Green Version]
- Blödner, C.; Goebel, C.; Feussner, I.; Gatz, C.; Polle, A. Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant Cell Environ. 2007, 30, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.; Kovalchuk, I. Transgenerational response to stress in Arabidopsis thaliana. Plant Signal. Behav. 2010, 5, 995–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migicovsky, Z.; Kovalchuk, I. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana. Plant Signal. Behav. 2014, 9, e976490. [Google Scholar] [CrossRef] [Green Version]
- Suter, L.; Widmer, A. Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana. PLoS ONE 2013, 8, e60364. [Google Scholar] [CrossRef]
- Guo, J.; Du, M.; Tian, H.; Wang, B. Exposure to High Salinity During Seed Development Markedly Enhances Seedling Emergence and Fitness of the Progeny of the Extreme Halophyte Suaeda salsa. Front. Plant Sci. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Hatzig, S.V.; Nuppenau, J.-N.; Snowdon, R.J.; Schießl, S.V. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biol. 2018, 18, 1–13. [Google Scholar] [CrossRef]
- Matzrafi, M.; Osipitan, O.A.; Ohadi, S.; Mesgaran, M.B. Under pressure: Maternal effects promote drought tolerance in progeny seed of Palmer amaranth (Amaranthus palmeri). Weed Sci. 2021, 69, 31–38. [Google Scholar] [CrossRef]
- Tabassum, T.; Farooq, M.; Ahmad, R.; Zohaib, A.; Wahid, A. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiol. Biochem. 2017, 118, 362–369. [Google Scholar] [CrossRef]
- Bilichak, A.; Kovalchuk, I. Transgenerational response to stress in plants and its application for breeding. J. Exp. Bot. 2016, 67, 2081–2092. [Google Scholar] [CrossRef] [PubMed]
- Lämke, J.; Bäurle, I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017, 18, 1–11. [Google Scholar] [CrossRef]
- Molinier, J.; Ries, G.; Zipfel, C.; Hohn, B. Transgeneration memory of stress in plants. Nature 2006, 442, 1046–1049. [Google Scholar] [CrossRef] [PubMed]
- Balmer, A.; Pastor, V.; Gamir, J.; Flors, V.; Mauch-Mani, B. The ‘prime-ome’: Towards a holistic approach to priming. Trends Plant Sci. 2015, 20, 443–452. [Google Scholar] [CrossRef]
- Kissen, R.; Eberl, F.; Winge, P.; Uleberg, E.; Martinussen, I.; Bones, A.M. Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Phytochemistry 2016, 130, 106–118. [Google Scholar] [CrossRef]
- Liu, H.; Able, A.J.; Able, J.A. Transgenerational Effects of Water-Deficit and Heat Stress on Germination and Seedling Vigour—New Insights from Durum Wheat microRNAs. Plants 2020, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Galieni, A.; Falcinelli, B.; Stagnari, F.; Datti, A.; Benincasa, P. Sprouts and Microgreens: Trends, Opportunities, and Horizons for Novel Research. Agronomy 2020, 10, 1424. [Google Scholar] [CrossRef]
- Falcinelli, B.; Sileoni, V.; Marconi, O.; Perretti, G.; Quinet, M.; Lutts, S.; Benincasa, P. Germination under Moderate Salinity Increases Phenolic Content and Antioxidant Activity in Rapeseed (Brassica napus var oleifera Del.) Sprouts. Molecules 2017, 22, 1377. [Google Scholar] [CrossRef] [Green Version]
- Pace, R.; Benincasa, P.; Ghanem, M.E.; Quinet, M.; Lutts, S. Germination of untreated and primed seeds in rapeseed (brassica napus var oleifera del.) Under salinity and low matric potential. Exp. Agric. 2012, 48, 238–251. [Google Scholar] [CrossRef]
- D’Hooghe, P.; Picot, D.; Brunel-Muguet, S.; Kopriva, S.; Avice, J.-C.; Trouverie, J. Germinative and Post-Germinative Behaviours of Brassica napus Seeds Are Impacted by the Severity of S Limitation Applied to the Parent Plants. Plants 2019, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, R.; Ashraf, M.A.; Parveen, S.; Iqbal, M.; Hussain, I. Effect of Salt Stress on Different Growth and Biochemical Attributes in Two Canola (Brassica napusL.) Cultivars. Commun. Soil Sci. Plant Anal. 2014, 45, 669–679. [Google Scholar] [CrossRef]
- Falcinelli, B.; Benincasa, P.; Calzuola, I.; Gigliarelli, L.; Lutts, S.; Marsili, V. Phenolic Content and Antioxidant Activity in Raw and Denatured Aqueous Extracts from Sprouts and Wheatgrass of Einkorn and Emmer Obtained under Salinity. Molecules 2017, 22, 2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltabayeva, A.; Ongaltay, A.; Omondi, J.; Srivastava, S. Morphological, Physiological and Molecular Markers for Salt-Stressed Plants. Plants 2021, 10, 243. [Google Scholar] [CrossRef]
- Bravi, E.; Francesco, G.; Sileoni, V.; Perretti, G.; Galgano, F.; Marconi, O. Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation. Antioxidants 2021, 10, 165. [Google Scholar] [CrossRef]
- Jayakannan, M.; Bose, J.; Babourina, O.; Rengel, Z.; Shabala, S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 2015, 76, 25–40. [Google Scholar] [CrossRef]
- Ravi, S.; Young, T.; Macinnis-Ng, C.; Nyugen, T.V.; Duxbury, M.; Alfaro, A.C.; Leuzinger, S. Untargeted metabolomics in halophytes: The role of different metabolites in New Zealand mangroves under multi-factorial abiotic stress conditions. Environ. Exp. Bot. 2020, 173, 103993. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Mota, T.R.; Salatta, F.V.; Sinzker, R.C.; Končitíková, R.; Kopečný, D.; Simister, R.; Silva, M.; Goeminne, G.; Morreel, K.; et al. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant Cell Environ. 2020, 43, 2172–2191. [Google Scholar] [CrossRef]
- Yan, K.; Zhao, S.; Bian, L.; Chen, X. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress. Plant Physiol. Biochem. 2017, 112, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Minh, L.T.; Khang, D.T.; Ha, P.T.T.; Tuyen, P.T.; Minh, T.N.; Van Quan, N.; Xuan, T.D. Effects of Salinity Stress on Growth and Phenolics of Rice (Oryza sativa L.). Int. Lett. Nat. Sci. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Gupta, P.; De, B. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signal. Behav. 2017, 12, e1335845. [Google Scholar] [CrossRef]
- Legaz, M.E.; De Armas, R.; Piñón, D.; Vicente, C. Relationships between phenolics-conjugated polyamines and sensitivity of sugarcane to smut (Ustilago scitaminea). J. Exp. Bot. 1998, 49, 1723–1728. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Germanò, M.; D’Angelo, V.; Biasini, T.; Sanogo, R.; De Pasquale, R.; Catania, S. Evaluation of the antioxidant properties and bioavailability of free and bound phenolic acids from Trichilia emetica Vahl. J. Ethnopharmacol. 2006, 105, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J.-D. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. J. Agric. Food Chem. 2020, 68, 3330–3343. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, P.; Tosti, G.; Farneselli, M.; Maranghi, S.; Bravi, E.; Marconi, O.; Falcinelli, B.; Guiducci, M. Phenolic content and antioxidant activity of einkorn and emmer sprouts and wheatgrass obtained under different radiation wavelengths. Ann. Agric. Sci. 2020, 65, 68–76. [Google Scholar] [CrossRef]
Seed Yield Per Plant (g) | Individual Seed Weight (mg) | |||
---|---|---|---|---|
Mean | SE | Mean | SE | |
S0 | 3.72 | 0.138 | 3.81 | 0.013 |
S100 | 2.42 | 0.161 | 3.49 | 0.008 |
S200 | 1.56 | 0.215 | 3.59 | 0.015 |
F test | ||||
Significance | ** | ** | ||
LSD | 0.557 | 0.039 |
Salinity Treatment for the Sprouting of the Progeny (mM NaCl) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 400 | |||||||||
G | MGT | SE | G | MGT | SE | G | MGT | SE | G | MGT | SE | |
% | d | d | % | d | d | % | d | d | % | d | d | |
S0 | 98 | 1.7 | 0.00 | 100 | 2.0 | 0.01 | 96 | 2.2 | 0.04 | 0 | - | - |
S100 | 98 | 1.5 | 0.02 | 98 | 1.9 | 0.03 | 98 | 2.1 | 0.01 | 4 | 5.0 | 0.00 |
S200 | 99 | 1.2 | 0.00 | 100 | 1.6 | 0.01 | 95 | 1.9 | 0.04 | 17 | 3.2 | 0.22 |
F test | ||||||||||||
Significance | - | ** | - | ** | - | * | - | - | ||||
LSD | - | 0.054 | - | 0.096 | - | 0.157 | - | - |
Treatment | Shoot Length | Root Length | FW Tot | DW Tot | ||||
---|---|---|---|---|---|---|---|---|
mm | mm | mg | mg | |||||
Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
S0 | 10.5 | 0.35 | 71.3 | 2.05 | 40.3 | 3.25 | 4.01 | 0.119 |
S100 | 11.2 | 0.50 | 79.1 | 4.25 | 43.7 | 1.02 | 4.09 | 0.064 |
S200 | 13.5 | 0.90 | 80.9 | 0.60 | 48.8 | 2.25 | 4.28 | 0.104 |
F test | ||||||||
Significance | n.s. | n.s. | n.s. | n.s. | ||||
LSD | 2.826 | 12.360 | 10.610 | 0.443 |
Treatments | Polyphenols | Tannins | Flavonoids | |||
---|---|---|---|---|---|---|
Mean | Δ % | Mean | Δ % | Mean | Δ % | |
Free | ||||||
0–0 | 15.1 | 8.3 | 9.0 | |||
100–0 | 16.8 | 11 | 10.0 | 21 | 10.0 | 10 |
200–0 | 28.0 | 85 | 16.4 | 98 | 14.3 | 59 |
F test | ||||||
Significance | n.s. | n.s. | n.s. | |||
LSD | 12.01 | 11.98 | 7.17 | |||
Bound | ||||||
0–0 | 1.6 | 0.3 | 1.1 | |||
100–0 | 1.3 | −20 | 0.6 | 121 | 0.5 | −59 |
200–0 | 2.9 | 83 | 1.0 | 262 | 1.2 | 7 |
F test | ||||||
Significance | * | n.s. | n.s. | |||
LSD | 0.96 | 0.58 | 1.22 | |||
Total | ||||||
0–0 | 16.7 | 8.6 | 10.1 | |||
100–0 | 18.1 | 8 | 10.6 | 24 | 10.4 | 3 |
200–0 | 30.9 | 85 | 17.4 | 103 | 15.5 | 53 |
F test | ||||||
Significance | n.s. | n.s. | n.s. | |||
LSD | 12.96 | 12.19 | 8.38 |
Treatment | Phenolic Acids (µg/g DW) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydroxybenzoic Acids | Hydroxycinnamic Acids | Total PAs | ||||||||||||||||||||
α-Resorcylic | p-Coumaric | p-Hydroxyb. | Gentisic | ∑ | Chlorogenic | Ferulic | Salicylic | Sinapic | ∑ | |||||||||||||
Mean | Δ % | Mean | Δ % | Mean | Δ % | Mean | Δ % | Mean | Δ % | Mean | Δ % | Mean | Δ % | Mean | Δ % | Mean | Δ % | Mean | Δ % | Mean | Δ % | |
FREE | ||||||||||||||||||||||
0–0 | 648 | 1400 | N.D. | N.D. | 2048 | 44 | 55 | 1187 | 202 | 1488 | 3536 | |||||||||||
100–0 | 888 | 37 | 3582 | 156 | 71 | - | N.D. | - | 4541 | 122 | 145 | 228 | N.Q. | - | 3728 | 214 | 1014 | 402 | 4887 | 228 | 9428 | 167 |
200–0 | 920 | 42 | 1793 | 28 | 117 | - | N.D. | - | 2831 | 38 | 44 | - | N.Q. | - | 1851 | 56 | 777 | 284 | 2672 | 80 | 5503 | 56 |
F Test | ||||||||||||||||||||||
Significance | * | ** | ** | - | ** | ** | ** | ** | ** | ** | ** | |||||||||||
LSD | 123 | 245 | 11 | - | 361 | 36 | 4 | 132 | 111 | 153 | 471 | |||||||||||
BOUND | ||||||||||||||||||||||
0–0 | N.D. | 13 | N.D. | 84 | 97 | N.D. | 67 | 136 | 368 | 571 | 668 | |||||||||||
100–0 | 77 | - | 22 | 63 | N.Q. | - | 88 | 5 | 187 | 93 | N.D. | - | 80 | 19 | 219 | 61 | 522 | 42 | 820 | 44 | 1007 | 51 |
200–0 | 97 | - | 28 | 115 | N.D. | - | 38 | −54 | 164 | 69 | N.D. | - | 129 | 93 | 424 | 212 | 2026 | 450 | 2578 | 352 | 2742 | 311 |
F Test | ||||||||||||||||||||||
Significance | ** | n.s. | − | ** | * | − | n.s. | ** | ** | ** | ** | |||||||||||
LSD | 21 | 13 | − | 22 | 52 | − | 79 | 52 | 146 | 186 | 183 | |||||||||||
TOTAL | ||||||||||||||||||||||
0–0 | 648 | 1413 | N.D. | 84 | 2145 | 44 | 122 | 1323 | 570 | 2059 | 4204 | |||||||||||
100–0 | 965 | 49 | 3604 | 155 | 71 | - | 88 | 5 | 4728 | 120 | 145 | 228 | 80 | −35 | 3946 | 198 | 1536 | 169 | 5707 | 177 | 10435 | 148 |
200–0 | 1017 | 57 | 1822 | 29 | 117 | - | 38 | −54 | 2994 | 40 | 44 | 0 | 129 | 6 | 2275 | 72 | 2803 | 391 | 5250 | 155 | 8245 | 96 |
F Test | ||||||||||||||||||||||
Significance | ** | ** | ** | ** | ** | ** | n.s. | ** | ** | ** | ** | |||||||||||
LSD | 132 | 240 | 11 | 22 | 363 | 36 | 82 | 147 | 164 | 201 | 319 |
Treatment | DPPH | FRAP | ABTS | |||
---|---|---|---|---|---|---|
Mean | Δ % | Mean | Δ % | Mean | Δ % | |
Free fraction | ||||||
0–0 | 34.8 | 80.5 | 71.7 | |||
100–0 | 63.2 | 81 | 82.7 | 3 | 105.8 | 48 |
200–0 | 74.8 | 115 | 188.5 | 134 | 170.9 | 138 |
F test | ||||||
Significance | ** | * | ** | |||
LSD | 14.044 | 88.105 | 37.508 | |||
Bound fraction | ||||||
0–0 | 4.4 | 1.0 | 6.3 | |||
100–0 | 36.8 | 739 | 3.1 | 201 | 31.0 | 393 |
200–0 | 44.9 | 925 | 13.3 | 1200 | 40.7 | 546 |
F test | ||||||
Significance | ** | ** | ** | |||
LSD | 3.761 | 4.603 | 4.882 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benincasa, P.; Bravi, E.; Marconi, O.; Lutts, S.; Tosti, G.; Falcinelli, B. Transgenerational Effects of Salt Stress Imposed to Rapeseed (Brassica napus var. oleifera Del.) Plants Involve Greater Phenolic Content and Antioxidant Activity in the Edible Sprouts Obtained from Offspring Seeds. Plants 2021, 10, 932. https://doi.org/10.3390/plants10050932
Benincasa P, Bravi E, Marconi O, Lutts S, Tosti G, Falcinelli B. Transgenerational Effects of Salt Stress Imposed to Rapeseed (Brassica napus var. oleifera Del.) Plants Involve Greater Phenolic Content and Antioxidant Activity in the Edible Sprouts Obtained from Offspring Seeds. Plants. 2021; 10(5):932. https://doi.org/10.3390/plants10050932
Chicago/Turabian StyleBenincasa, Paolo, Elisabetta Bravi, Ombretta Marconi, Stanley Lutts, Giacomo Tosti, and Beatrice Falcinelli. 2021. "Transgenerational Effects of Salt Stress Imposed to Rapeseed (Brassica napus var. oleifera Del.) Plants Involve Greater Phenolic Content and Antioxidant Activity in the Edible Sprouts Obtained from Offspring Seeds" Plants 10, no. 5: 932. https://doi.org/10.3390/plants10050932
APA StyleBenincasa, P., Bravi, E., Marconi, O., Lutts, S., Tosti, G., & Falcinelli, B. (2021). Transgenerational Effects of Salt Stress Imposed to Rapeseed (Brassica napus var. oleifera Del.) Plants Involve Greater Phenolic Content and Antioxidant Activity in the Edible Sprouts Obtained from Offspring Seeds. Plants, 10(5), 932. https://doi.org/10.3390/plants10050932