Spectroscopic and Molecular Methods to Differentiate Gender in Immature Date Palm (Phoenix dactylifera L.)
Abstract
1. Introduction
2. Results and Discussion
2.1. NIRS Based Discrimination in Sex of Date Palm
2.2. FT-IR Based Discrimination Date Palm Sex
2.3. NMR Based Validation of Sex Differentiation in Date Palms
2.4. Molecular Marker Analysis of Sex-Specific Traits in Date Palms
3. Materials and Methods
3.1. Plant Collection and Sampling
3.2. Spectral Analysis using NIRS, FTIR, and NMR
3.3. Multivariate Data Analysis
3.4. PCR, RT-PCR, and qPCR-Based Analyses of Selected Genes/Molecular Markers
3.5. Genetic Analysis
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charlesworth, B.; Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 1978, 112, 975–997. [Google Scholar] [CrossRef]
- Kersten, B.; Pakull, B.; Fladung, M. Genomics of sex determination in dioecious trees and woody plants. Trees 2017, 31, 1113–1125. [Google Scholar] [CrossRef]
- Dhawan, C.; Kharb, P.; Sharma, R.; Uppal, S.; Aggarwal, R.K. Development of male-specific SCAR marker in date palm (Phoenix dactylifera L.). Tree Genet. Genomes 2013, 9, 1143–1150. [Google Scholar] [CrossRef]
- Lemaitre, C.; Braga, M.D.V.; Gautier, C.; Sagot, M.-F.; Tannier, E.; Marais, G.A.B. Footprints of inversions at present and past pseudoautosomal boundaries in human sex chromosomes. Genome Biol. Evol. 2009, 1, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, D.; Charlesworth, B.; Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity 2005, 95, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Terauchi, R.; Kahl, G. Mapping of the Dioscorea tokoro genome: AFLP markers linked to sex. Genome 1999, 42, 752–762. [Google Scholar] [CrossRef]
- Parasnis, A.S.; Ramakrishna, W.; Chowdari, K.V.; Gupta, V.S.; Ranjekar, P.K. Microsatellite (GATA)n reveals sex-specific differences in Papaya. Theor. Appl. Genet. 1999, 99, 1047–1052. [Google Scholar] [CrossRef]
- Spada, A.; Caporali, E.; Marziani, G.; Portaluppi, P.; Restivo, F.M.; Tassi, F.; Falavigna, A. A genetic map of Asparagus officinalis based on integrated RFLP, RAPD and AFLP molecular markers. Theor. Appl. Genet. 1998, 97, 1083–1089. [Google Scholar] [CrossRef]
- Daher, A. Cell cycle arrest characterizes the transition from a bisexual floral bud to a unisexual flower in Phoenix dactylifera. Ann. Bot. 2010, 106, 255–266. [Google Scholar] [CrossRef]
- Billotte, N.; Marseillac, N.; Brottier, P.; Noyer, J.-L.; Jacquemoud-Collet, J.-P.; Moreau, C.; Couvreur, T.; Chevallier, M.-H.; Pintaud, J.-C.; Risterucci, A.-M. Nuclear microsatellite markers for the date palm (Phoenix dactylifera L.): Characterization and utility across the genus Phoenix and in other palm genera. Mol. Ecol. Resour. 2004, 4, 256–258. [Google Scholar] [CrossRef]
- Younis, R.A.; Ismail, O.M.; Soliman, S.S. Identification of sex-specific DNA markers for date palm (Phoenix dactylifera L.) using RAPD and ISSR techniques. Res. J. Agric. Biol. Sci. 2008, 4, 278–284. [Google Scholar]
- Al-Dous, E.K.; George, B.; E Al-Mahmoud, M.; Al-Jaber, M.Y.; Wang, H.; Salameh, Y.M.; Al-Azwani, E.K.; Chaluvadi, S.R.; Pontaroli, A.C.; DeBarry, J.; et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat. Biotechnol. 2011, 29, 521–527. [Google Scholar] [CrossRef]
- Yaish, M.W.; Kumar, P.P. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Bekheet, S.A.; Hanafy, M.S. Towards sex determination of date palm. In Date Palm Biotechnology; Springer: New York, NY, USA, 2011. [Google Scholar]
- Al-Mahmoud, M.E.; Al-Dous, E.K.; Al-Azwani, E.K.; Malek, J.A. DNA-based assays to distinguish date palm (Arecaceae) gender. Am. J. Bot. 2012, 99, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Elmeer, K.; Mattat, I. Marker-assisted sex differentiation in date palm using simple sequence repeats. 3 Biotech 2012, 2, 241–247. [Google Scholar] [CrossRef][Green Version]
- Zhao, Y.; Williams, R.; Prakash, C.S.; He, G. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.). BMC Plant Biol. 2012, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Zehdi-Azouzi, S.; Cherif, E.; Guenni, K.; Ben Abdelkrim, A.; Bermil, A.; Rhouma, S.; Ben Salah, M.; Santoni, S.; Pintaud, J.C.; Aberlenc-Bertossi, F.; et al. Endemic insular and coastal Tunisian date palm genetic diversity. Genetica 2016, 144, 181–190. [Google Scholar] [CrossRef] [PubMed]
- El-Yazal, S.S.; Alharby, H.; El-Yazal, M.S.; Hassan, G.; Rady, M. Molecular identification of some seedling of date palm (Phoenix dactylifera L.) Males’ trees. J. Anim. Plant Sci. 2017, 27, 1287–1294. [Google Scholar]
- Cherif, E.; Zehdi, S.; Castillo, K.; Chabrillange, N.; Abdoulkader, S.; Pintaud, J.-C.; Santoni, S.; Salhi-Hannachi, A.; Glémin, S.; Aberlenc-Bertossi, F. Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytol. 2013, 197, 409–415. [Google Scholar] [CrossRef]
- Cao, D.; Lutz, A.; Hill, C.B.; Callahan, D.L.; Roessner, U. A quantitative profiling method of phytohormones and other metabolites applied to barley roots subjected to salinity stress. Front. Plant Sci. 2017, 7, 2070. [Google Scholar] [CrossRef]
- Marden, J.H.; Mangan, S.A.; Peterson, M.P.; Wafula, E.; Fescemyer, H.W.; Der, J.P.; Depamphilis, C.W.; Comita, L.S. Ecological genomics of tropical trees: How local population size and allelic diversity of resistance genes relate to immune responses, susceptibility to pathogens, and negative density dependence. Mol. Ecol. 2017, 26, 2498–2513. [Google Scholar] [CrossRef]
- Cozzolino, D. Near infrared spectroscopy in natural products analysis. Planta Med. 2009, 75, 746–756. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Warton, D.I.; Blanchet, F.G.; O’Hara, R.B.; Ovaskainen, O.; Taskinen, S.; Walker, S.C.; Hui, F.K. So many variables: Joint modeling in community ecology. Trends Ecol. Evol. 2015, 30, 766–779. [Google Scholar] [CrossRef]
- Chan, K.L.; Ho, C.L.; Namasivayam, P.; Napis, S. A simple and rapid method for RNA isolation from plant tissues with high phenolic compounds and polysaccharides. Nat. Protocol 2007, 184. [Google Scholar] [CrossRef]
- Rehman, N.U.; Ali, L.; Al-Harrasi, A.; Mabood, F.; Al-Broumi, M.; Khan, A.L.; Hussain, H.; Hussain, J.; Csuk, R. Quantification of AKBA in Boswellia sacra Using NIRS Coupled with PLSR as an Alternative Method and Cross-Validation by HPLC. Phytochem. Anal. 2018, 29, 137–143. [Google Scholar] [CrossRef]
- Agelet, L.E.; Hurburgh, C.R. Limitations and current applications of Near Infrared Spectroscopy for single seed analysis. Talanta 2014, 121, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Min, T.G.; Kang, W.S. Nondestructive separation of viable and nonviable gourd (Lagenaria siceraria) seeds using single seed near infrared spectroscopy. Hortic. Environ. Biotechnol. 2003, 44, 545–548. [Google Scholar]
- Olesen, M.H.; Carstensen, J.M.; Boelt, B. Multispectral imaging as a potential tool for seed health testing of spinach (Spinacia oleracea L.). Seed Sci. Technol. 2011, 39, 140–150. [Google Scholar] [CrossRef]
- Wang, L.; Lee, F.S.; Wang, X.; He, Y. Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR. Food Chem. 2006, 95, 529–536. [Google Scholar] [CrossRef]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdisciplinary Reviews. Comput. Stat 2010, 2, 97–106. [Google Scholar]
- Tigabu, M.; Fjellström, J.; Odén, P.C.; Teketay, D. Germination of Juniperus procera seeds in response to stratification and smoke treatments, and detection of insect-damaged seeds with VIS+ NIR spectroscopy. New For. 2007, 33, 155–169. [Google Scholar] [CrossRef]
- Lang, C.; Costa, F.R.C.; Camargo, J.L.C.; Durgante, F.M.; Vicentini, A. Near infrared spectroscopy facilitates rapid identification of both young and mature Amazonian tree species. PLoS ONE 2015, 10, e0134521. [Google Scholar] [CrossRef]
- Carrascal, L.M.; Galván, I.; Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 2009, 118, 681–690. [Google Scholar] [CrossRef]
- Ohsowski, B.M.; Dunfield, K.E.; Klironomos, J.N.; Hart, M.M. Improving plant biomass estimation in the field using partial least squares regression and ridge regression. Botany 2016, 94, 501–508. [Google Scholar] [CrossRef]
- Tormena, C.D.; Pauli, E.D.; Marcheafave, G.G.; Scheel, G.L.; Rakocevic, M.; Bruns, R.E.; Scarminio, I.S. FT-IR biomarkers of sexual dimorphism in yerba-mate plants: Seasonal and light accessibility effects. Microchem. J. 2020, 158, 105329. [Google Scholar] [CrossRef]
- Gurdeniz, G.; Ozen, B. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem. 2009, 116, 519–525. [Google Scholar] [CrossRef]
- Martelo-Vidal, M.J.; Vázquez, M. Determination of polyphenolic compounds of red wines by UV–VIS–NIR spectroscopy and chemometrics tools. Food Chem. 2014, 158, 28–34. [Google Scholar] [CrossRef]
- Zheng, H.; Yde, C.C.; Arnberg, K.; Mølgaard, C.; Michaelsen, K.F.; Larnkjær, A.; Bertram, H.C. NMR-based metabolomic profiling of overweight adolescents: An elucidation of the effects of inter-/intraindividual differences, gender, and pubertal development. BioMed Res. Int. 2014, 2014, 537157. [Google Scholar] [CrossRef]
- Das, K.; Ganie, S.H.; Mangla, Y.; Dar, T.-U.-H.; Chaudhary, M.; Thakur, R.K.; Raina, S.N.; Goel, S.; Tandon, R. ISSR markers for gender identification and genetic diagnosis of Hippophae rhamnoides ssp. turkestanica growing at high altitudes in Ladakh region (Jammu and Kashmir). Protoplasma 2017, 254, 1063–1077. [Google Scholar] [CrossRef]
- Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Resour. 2006, 6, 288–295. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.L.; Al-Harrasi, A.; Numan, M.; AbdulKareem, N.M.; Mabood, F.; Al-Rawahi, A. Spectroscopic and Molecular Methods to Differentiate Gender in Immature Date Palm (Phoenix dactylifera L.). Plants 2021, 10, 536. https://doi.org/10.3390/plants10030536
Khan AL, Al-Harrasi A, Numan M, AbdulKareem NM, Mabood F, Al-Rawahi A. Spectroscopic and Molecular Methods to Differentiate Gender in Immature Date Palm (Phoenix dactylifera L.). Plants. 2021; 10(3):536. https://doi.org/10.3390/plants10030536
Chicago/Turabian StyleKhan, Abdul Latif, Ahmed Al-Harrasi, Muhammad Numan, Noor Mazin AbdulKareem, Fazal Mabood, and Ahmed Al-Rawahi. 2021. "Spectroscopic and Molecular Methods to Differentiate Gender in Immature Date Palm (Phoenix dactylifera L.)" Plants 10, no. 3: 536. https://doi.org/10.3390/plants10030536
APA StyleKhan, A. L., Al-Harrasi, A., Numan, M., AbdulKareem, N. M., Mabood, F., & Al-Rawahi, A. (2021). Spectroscopic and Molecular Methods to Differentiate Gender in Immature Date Palm (Phoenix dactylifera L.). Plants, 10(3), 536. https://doi.org/10.3390/plants10030536