DNA Barcoding of Two Thymelaeaceae Species: Daphne mucronata Royle and Thymelaea hirsuta (L.) Endl
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
>seq1 [organism= Daphne mucronata] matK gene, partial cds, GenBank Accession Number = MZ851783. | ||||||
GATGCCTCTT | TTTTGCATTT | ATTACGGCTT | CTTTTTTTCT | ACGAGTATTT | AAATTTGAAG | 60 |
AGTCTTAGTA | CTTCACAGAA | ATGCATTTCT | ATTTTGAATC | CAAGATTCTT | CTTGTTCCTA | 120 |
TATAATTCTC | ATATATGTGA | ATGCAAATTC | ATTTTCCTTT | TTCTCCGTAA | TCAGTCCTAT | 180 |
CATTTACGAT | CAATATCTTA | TGTAATCTTT | CTTGAACGAA | TCTATTTCTA | TGAAAAAATC | 240 |
AAACATCTTG | TAGAAGTCTC | TTCAAATGAT | TTTCAGAACA | ACCTATGTTT | GTTCAAGGAT | 300 |
CCCTTCATAC | ATTTTGTTAG | ATATCAAGGA | AAATGGATTC | TCGCTTCAAA | GGATACGCCT | 360 |
CTTCTGATGA | ATAAGTGGAA | ATATTACTTT | ATAAATTTAT | GGCAATATCA | TTTTTACGTA | 420 |
TGGTCTCAAT | CAGGAAGGGT | CCGTATAAAG | CAATTATGCA | AATATTCTCT | TGACTTTGTA | 480 |
GGCTATCTTT | CAGATGTGCA | ATTAAATCCT | TCCGTGGTAC | GGAGTCAAAT | GCTAGAAAAC | 540 |
TTATTTCTAA | TAGATAATAC | TATCAAGAAG | TTGGATACAA | AAATTCCAAT | TATTTCTATG | 600 |
ATTGGATCAT | TGTCGAAAGC | GAATTTTTGT | AACGCATCAG | GACATCCCAT | TAGTAAGCCA | 660 |
ACCTGGGTTG | ATTTGCCAGA | TTCGGATATA | ATCGACCGAT | TTGTGCGTAT | ATACAGAATC | 720 |
TTCT | ||||||
>seq2 [organism= Daphne mucronata] rbcL gene, partial cds, GenBank Accession Number = OK188786. | ||||||
AATTGACTTA | TTATACTCCT | GAATATGAAA | CCAAAGATAC | TGATATCTTG | GCAGCGTTCC | 60 |
GAGTAACTCC | TCAACCAGGA | GTTCCGCCTG | AGGAAGCAGG | GGCCGCGGTA | GCTGCTGAAT | 120 |
CTTCTACTGG | TACATGGACA | ACTGTGTGGA | CCGACGGGCT | TACCAGCCTT | GATCGTTACA | 180 |
AAGGGCGATG | CTACCACATC | GAGCCCGTTC | CTGGGGAAGA | AAATCAATAT | ATATGTTATG | 240 |
TAGCTTACCC | CTTAGACCTT | TTTGAAGAAG | GTTCTGTTAC | TAACATGTTT | ACTTCCATTG | 300 |
TTGGTAATGT | ATTTGGGTTC | AAAGCTCTGC | GCGCTCTACG | TCTAGAGGAT | CTGCGAATCC | 360 |
CTACTGCTTA | TGTTAAAACT | TTCCAAGGTC | CGCCCCATGG | CATCCAAGTT | GAAAGAGATC | 420 |
AATTGAACAA | GTACGGCCGT | CCCCTTTTGG | GATGTACTAT | TAAACCTAAA | TTGGGGTTAT | 480 |
CCGCTAAGAA | CTACGGTAGA | GCGGTTTATG | AATGTCTACG | TGGTGGACTT | GATTTTACCA | 540 |
>seq3 [organism=Thymelaea hirsuta] matK gene, partial cds, GenBank Accession Number =OK040774. | ||||||
CTACGAGTAT | TTTAATTTGA | AGAGTCTTAG | TACTTCACAA | AAATGCATTT | CGATTTTGAA | 60 |
TCCAAGATTC | TTCTTGTTCT | TATATAATTC | TCATATATGG | GAATGCAAAT | TCATTTTCCT | 120 |
TTTTCTCCGT | AATAAGTCCT | ATCATTTACG | ATCAATATCT | TATGCAATCT | TTCTTGAACG | 180 |
AATCCATTTG | TATGAAAAAA | TCAAACATCT | TGTAGAAGTC | TCTTCGAATG | ATTTTCAGAA | 240 |
CAACCTCTGC | TTGTTCAAGG | ATCCCTTCAT | ACATTTTGTT | AGATATCAAG | GAAAATGGAT | 300 |
TCTTGCTTCA | AAAGATACGC | CTCTTCTGAT | GAATAAGTGG | AAATTTTACT | TTATAAATTT | 360 |
ATGGCAATAT | CATTTTTATG | TATGGTCTCA | ATCAGGAAGG | GTCCGTATAA | AGCAATTATG | 420 |
CAAAAATTCT | CTTGACTTTT | TAGGCTATCT | TTCAAATGTG | CAATTAAATC | CTTCCGTGGT | 480 |
ACGGAATCAA | ATGCTAGAAA | ACTTATTTCT | CATAGATACT | ACTATCAAGA | AGTTGGATAC | 540 |
AAAAATTCCA | ATTATTTATA | TAATTGGATC | ATTGTCGAAA | GCTAATTTTT | GTAACGTATC | 600 |
AGGACATCCT | ATTAGTAAGC | CAACCTGGGT | TGATTTGCCA | GATTCGGATA | TTATCGACCG | 660 |
ATTTGTGCGT | ATATACAGAA | TTTTT | 685 | |||
>seq4 [organism=Thymelaea hirsuta] rbcL gene, partial cds, GenBank Accession Number =OK040775. | ||||||
AGAGTATAAA | TTGACTTATT | ATACTCCTGA | ATATGAAACC | AAAGATACTG | ATATCTTGGC | 60 |
AGCGTTCCGA | GTAACCCCTC | AACCAGGAGT | TCCGCCTGAG | GAAGCAGGGG | CCGCAGTAGC | 120 |
TGCTGAATCT | TCTACTGGTA | CATGGACAAC | TGTGTGGACC | GACGGGCTTA | CCAGCCTTGA | 180 |
TCGTTACAAA | GGGCGATGCT | ACCACATCGA | GCCCGTTCCT | GGGGAAGAAA | ATCAATATAT | 240 |
ATGTTATGTA | GCTTACCCCT | TAGACCTTTT | TGAAGAAGGT | TCTGTTACTA | ACATGTTTAC | 300 |
TTCCATTGTT | GGTAATGTAT | TTGGGTTCAA | AGCTCTGCGC | GCTCTACGTC | TAGAGGATCT | 360 |
GCGAATCCCT | ACTGCTTATG | TTAAAACTTT | CCAAGGTCCG | CCTCATGGCA | TCCAAGTTGA | 420 |
AAGAGATAAA | TTGAACAAGT | ACGGCCGTCC | CCTATTGGGA | TGTACTATTA | AACCTAAATT | 480 |
GGGGTTATCC | GCTAAGAACT | ACGGTAGAGC | GGTTTATGAA | TGTCTACGTG | GTGGACTTGA | 540 |
TTTTACCAAA | GATGATGAGA | ATGTGAACTC | CCAACCATTT | ATGCGTTGGA | GAGACCGTTT | 600 |
CTTATTTTGT | GCCGAAGCAA | TTTATAAAGC | ACAGGCTGAA | ACAGGTGAAA | TCAAAGGGCA | 660 |
TTACTTGAAT | GCTACTGCAG | GA | ||||
>seq5 [organism=Thymelaea hirsuta] rpoC1 gene, partial cds, GenBank Accession Number =OK040776. | ||||||
GATCATACGG | GCGTTCTGTC | ATTGTTGTTG | GCCCCTCACT | TTCATTACAT | CGCTGTGGGT | 60 |
TGCCTCGCGA | AATAGCAATA | GAGCTTTTCC | AGACATTTGT | AATTCGCGGT | CTAATTAGAC | 120 |
AACATCTTGC | TTCGAACATA | GGAGTTGCTA | AGAGTAAAAT | TCGCGAAAAG | GGGCCGATTG | 180 |
TATGGCAAAT | ACTTCAAGAA | GTTATGCAGG | GGCATCCTGT | ATTGCTGAAT | AGAGCGCCTA | 240 |
CTCTGCATAG | ATTAGGGATA | CAGGCATTCG | AGCCCATTTT | AGTGGAAGGG | CGTGCTATTT | 300 |
GTTTACATCC | ATTGGTTTGT | AAGGGATTTA | ATGCAGACTT | TGATGGGGAT | CAAATGGCTG | 360 |
TTCATGTACC | TTTGTCTTTA | GAGGCTCAAG | CAGAGGCTCG | TTTACTTATG | TTTTCTCATA | 420 |
TGAATCTCTT | GTCTCCAGCT | ATTGGGGATC | CTATTTCTGT | ACCAACTCAA | GATAAGCGC | 479 |
References
- Rogers, Z. A World Checklist of Thymelaeaceae (Version 1); Missouri Botanical Garden: St. Louis, MO, USA, 2009; Available online: http://www.tropicos.org/project/thymelaeaceae (accessed on 9 July 2021).
- Herber, B. Thymelaeaceae: 373–396. In The Families and Genera of Vascular Plants. IV. Flowering Plants. Dicotyledons. Malvales, Capparales and Non-betalain Caryophyllales; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Zaidi, A.; Bukhari, S.M.; Khan, F.A.; Noor, T.; Iqbal, N. Ethnobotanical, phytochemical and pharmacological aspects of Daphne mucronata (Thymeleaceae). Trop. J. Pharm. Res. 2015, 14, 1517–1523. [Google Scholar] [CrossRef]
- Royle, J.F. Illustrations of the Botany and Other Branches of the Natural History of the Himalayan Mountains (etc.); Allen: Lawrence, KS, USA, 1839; Volume 1. [Google Scholar]
- eflora.org. Available online: http://www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=250062927 (accessed on 7 July 2021).
- Kupchan, S.M.; Baxter, R.L. Mezerein: Antileukemic principle isolated from Daphne mezereum L. Science 1975, 187, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Rasool, M.A.; Imran, M.; Nawaz, H.; Malik, A.; Kazmi, S.U. Phytochemical studies on Daphne mucronata. J. Chem. Soc. Pak. 2009, 31, 845–850. [Google Scholar]
- Moshiashvili, G.; Tabatadze, N.; Mshvildadze, V. The genus Daphne: A review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2020, 143, 104540. [Google Scholar] [CrossRef] [PubMed]
- Amir, G.Z.; Miri, R.; Javidnia, K.; Davoudi, M. Study of cytotoxic activity of Daphne mucronata Royle grown in Iran. Iran. J. Med. Sci. 2001, 26, 146–151. [Google Scholar]
- Al-Snafi, A.E. Therapeutic and biological activities of Daphne mucronata—A review. Indo Am. J. Pharm. Sci. 2017, 4, 235–240. [Google Scholar]
- Fazal, N.; Khawaja, H.; Naseer, N.; Khan, A.J.; Latief, N. Daphne mucronata enhances cell proliferation and protects human adipose stem cells against monosodium iodoacetate induced oxidative stress in vitro. Adipocyte 2020, 9, 495–508. [Google Scholar] [CrossRef]
- Ashraf, I.; Zubair, M.; Rizwan, K.; Rasool, N.; Jamil, M.; Khan, S.A.; Tareen, R.B.; Ahmad, V.U.; Mahmood, A.; Riaz, M. Chemical composition, antioxidant and antimicrobial potential of essential oils from different parts of Daphne mucronata Royle. Chem. Cent. J. 2018, 12, 1–8. [Google Scholar] [CrossRef]
- Lutfullah, G.; Shah, A.; Ahmad, K.; Haider, J. Phytochemical screening, antioxidant and antibacterial properties of Daphne mucronata. J. Tradit. Chin. Med. 2019, 39, 764–771. [Google Scholar]
- Javidnia, K.; Miri, R.; Bahri, N.R.; Khademzadeh, J.N. A preliminary study on the biological activity of Daphne mucronata Royle. DARU J. Pharm. Sci. 2003, 11, 28–31. [Google Scholar]
- Karamolah, K.S.; Mousavi, F.; Mahmoudi, H. Antimicrobial inhibitory activity of aqueous, hydroalcoholic and alcoholic extracts of leaves and stem of Daphne mucronata on growth of oral bacteria. GMS Hyg. Infect. Control 2017, 12. [Google Scholar] [CrossRef]
- KEW. Plants of the World Online. Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:832995-1 (accessed on 7 July 2021).
- Bailey, C.; Danin, A. Bedouin plant utilization in Sinai and the Negev. Econ. Bot. 1981, 35, 145–162. [Google Scholar] [CrossRef]
- Schmidt, J.; Stavisky, N. Uses ofThymelaea hirsuta (Mitnan) with emphasis on hand papermaking. Econ. Bot. 1983, 37, 310–321. [Google Scholar] [CrossRef]
- Badawy, A.M. Review article on Chemical constituents and Biological activity of Thymelaea hirsuta. Rec. Pharm. Biomed. Sci. 2019, 3, 28–32. [Google Scholar] [CrossRef][Green Version]
- Amari, N.O.; Bouzouina, M.; Berkani, A.; Lotmani, B. Phytochemical screening and antioxidant capacity of the aerial parts of Thymelaea hirsuta L. Asian Pac. J. Trop. Dis. 2014, 4, 104–109. [Google Scholar] [CrossRef]
- Bnouham, M.; Benalla, W.; Bellahcen, S.; Hakkou, Z.; Ziyyat, A.; Mekhfi, H.; Aziz, M.; Legssyer, A. Antidiabetic and antihypertensive effect of a polyphenol-rich fraction of Thymelaea hirsuta L. in a model of neonatal streptozotocin-diabetic and NG-nitro-l-arginine methyl ester-hypertensive rats. J. Diabetes 2012, 4, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Akrout, A.; Gonzalez, L.A.; El Jani, H.; Madrid, P.C. Antioxidant and antitumor activities of Artemisia campestris and Thymelaea hirsuta from southern Tunisia. Food Chem. Toxicol. 2011, 49, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Trigui, M.; Hsouna, A.B.; Tounsi, S.; Jaoua, S. Chemical composition and evaluation of antioxidant and antimicrobial activities of Tunisian Thymelaea hirsuta with special reference to its mode of action. Ind. Crop. Prod. 2013, 41, 150–157. [Google Scholar] [CrossRef]
- El Amrani, F.; Rhallab, A.; Alaoui, T.; El Badaoui, K.; Chakir, S. Hypoglycaemic effect of Thymelaea hirsuta in normal and streptozotocin-induced diabetic rats. J. Med. Plants Res. 2009, 3, 625–629. [Google Scholar]
- Azza, Z.; Oudghiri, M. In vivo anti-inflammatory and antiarthritic activities of aqueous extracts from Thymelaea hirsuta. Pharmacogn. Res. 2015, 7, 213. [Google Scholar]
- Amari, N.O.; Razafimandimby, B.; Auberon, F.; Azoulay, S.; Fernandez, X.; Berkani, A.; Bouchara, J.-P.; Landreau, A. Antifungal and Antiaging Evaluation of Aerial Part Extracts of Thymelaea hirsuta (L.) Endl. Nat. Prod. Commun. 2021, 16, 1934578X20987932. [Google Scholar]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. Soc. 2015, 90, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Gesto-Borroto, R.; Medina-Jiménez, K.; Lorence, A.; Villarreal, M.L. Application of DNA barcoding for quality control of herbal drugs and their phytopharmaceuticals. Rev. Bras. Farmacogn. 2021, 1–15. [Google Scholar]
- Raupach, M.J.; Barco, A.; Steinke, D.; Beermann, J.; Laakmann, S.; Mohrbeck, I.; Neumann, H.; Kihara, T.C.; Pointner, K.; Radulovici, A. The application of DNA barcodes for the identification of marine crustaceans from the North Sea and adjacent regions. PLoS ONE 2015, 10, e0139421. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, A.; Labra, M.; Sandionigi, A.; Bruno, A.; Mezzasalma, V.; De Mattia, F. DNA barcoding for minor crops and food traceability. Adv. Agric. 2014, 2014, 831875. [Google Scholar] [CrossRef]
- Khaksar, R.; Carlson, T.; Schaffner, D.W.; Ghorashi, M.; Best, D.; Jandhyala, S.; Traverso, J.; Amini, S. Unmasking seafood mislabeling in US markets: DNA barcoding as a unique technology for food authentication and quality control. Food Control 2015, 56, 71–76. [Google Scholar] [CrossRef]
- GenBank [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. 2013. Available online: https://www.ncbi.nlm.nih.gov/genbank/ (accessed on 7 July 2021).
- Taifour, H.; El-Oqlah, A.; Ghazanfar, S. The Plants of Jordan: An Annotated Checklist; Kew Publishing: London, UK, 2017. [Google Scholar]
- Oran, S.; Al-Eisawi, D. Check-list of medicinal plants in Jordan. Dirasat 1998, 25, 84–112. [Google Scholar]
- Oran, S.A. The status of medicinal plants in Jordan. J. Agric. Sci. Technol. A 2014, 4, 461–467. [Google Scholar]
- Zohary, M. Flora Palaestina; Israel Academy of Sciences and Humanities: Jerusalem, Israel, 1966. [Google Scholar]
- Taifour, H.; El-Oqlah, A. Jordan Plant Red List; Royal Botanic Garden: Amman, Jordan, 2015; Volume 1. [Google Scholar]
- NCBI. 2021. Available online: https://www.ncbi.nlm.nih.gov/nuccore/?term=Thymelaea+hirsuta (accessed on 7 July 2021).
- Kress, W.J.; Erickson, D.L. DNA barcodes: Genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. USA 2008, 105, 2761–2762. [Google Scholar] [CrossRef]
- Van der Bank, M.; Fay, M.F.; Chase, M.W. Molecular phylogenetics of Thymelaeaceae with particular reference to African and Australian genera. Taxon 2002, 51, 329–339. [Google Scholar] [CrossRef]
- Fay, M.F.; Bayer, C.; Alverson, W.S.; de Bruijn, A.Y.; Chase, M.W. Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 1998, 47, 43–50. [Google Scholar] [CrossRef]
- Beaumont, A.J.; Edwards, T.J.; Manning, J.; Maurin, O.; Rautenbach, M.; Motsi, M.C.; Fay, M.F.; Chase, M.W.; Van Der Bank, M. Gnidia (Thymelaeaceae) is not monophyletic: Taxonomic implications for Thymelaeoideae and a partial new generic taxonomy for Gnidia. Bot. J. Linn. Soc. 2009, 160, 402–417. [Google Scholar] [CrossRef]
- Kolter, A.; Gemeinholzer, B. Plant DNA barcoding necessitates marker-specific efforts to establish more comprehensive reference databases. Genome 2021, 64, 265–298. [Google Scholar] [CrossRef]
- Yu, J.; Xue, J.H.; Zhou, S.L. New universal matK primers for DNA barcoding angiosperms. J. Syst. Evol. 2011, 49, 176–181. [Google Scholar] [CrossRef]
- Fay, M.F.; Swensen, S.M.; Chase, M.W. Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew Bull. 1997, 52, 111–120. [Google Scholar] [CrossRef]
- Sass, C.; Little, D.P.; Stevenson, D.W.; Specht, C.D. DNA barcoding in the cycadales: Testing the potential of proposed barcoding markers for species identification of cycads. PLoS ONE 2007, 2, e1154. [Google Scholar] [CrossRef]
- FinchTV 1.4.0; Geospiza, Inc.: Seattle, WA, USA, 2006; Available online: http://www.geospiza.com (accessed on 7 July 2021).
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Awad, M.; Fahmy, R.M.; Mosa, K.A.; Helmy, M.; El-Feky, F.A. Identification of effective DNA barcodes for Triticum plants through chloroplast genome-wide analysis. Comput. Biol. Chem. 2017, 71, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
Plant Species | Sequences Length (bp) | ||
---|---|---|---|
matK | rbcL | rpoC1 | |
Daphne mucronata | 724 | 540 | -* |
Available GenBank accession number | N/A ** | N/A | N/A |
Deposited accession number at GenBank | MZ851783 | OK188786 | - |
Thymelaea hirsuta | 685 | 682 | 479 |
Available GenBank accession number | EU002191.1 | KY656740.1 | N/A |
Deposited accession number at GenBank | OK040774 | OK040775 | OK040776 |
Plant Species | Gene | Related Species | QC | E-Value | Identity | Accession |
---|---|---|---|---|---|---|
Daphne mucronata | matk | Daphne longilobata | 98% | 0 | 99.16% | MF786979.1 |
matk | Daphne tangutica | 98% | 0 | 99.16% | MH659257.1 | |
matk | Daphne laureola | 99% | 0 | 98.33% | JN894978.1 | |
matk | Daphne retusa | 95% | 0 | 98.85% | MH116619.1 | |
matk | Daphne giraldii | 98% | 0 | 98.04% | MH659842.1 | |
Daphne mucronata | rbcL | Daphne mezereum | 100% | 0 | 99.44% | KM360750.1 |
rbcL | Daphne laureola | 100% | 0 | 99.44% | HM849946.1 | |
rbcL | Thymelaea hirsuta | 100% | 0 | 99.07% | Y15151.1 | |
rbcL | Wikstroemia pampaninii | 100% | 0 | 99.07% | MN722329.1 | |
rbcL | Dirca occidentalis | 100% | 0 | 98.52% | MF963193.1 | |
Thymelaea hirsuta | matk | Thymelaea hirsuta | 100% | 0 | 97.96% | EU002191.1 |
matk | Daphne laureola | 100% | 0 | 96.21% | JN894952.1 | |
matk | Daphne tangutica | 100% | 0 | 96.36% | MH659257.1 | |
matk | Daphne longilobata | 100% | 0 | 96.36% | MF786979.1 | |
matk | Daphne mezereum | 100% | 0 | 95.77% | JN894977.1 | |
Thymelaea hirsuta | rbcL | Thymelaea hirsuta | 99% | 0 | 100.00% | KY656740.1 |
rbcL | Daphne laureola | 99% | 0 | 99.41% | HM849946.1 | |
rbcL | Daphne mezereum | 99% | 0 | 99.62% | KM360750.1 | |
rbcL | Stellera chamaejasme | 99% | 0 | 99.62% | AJ295262.1 | |
rbcL | Wikstroemia monnula | 99% | 0 | 99.62% | KX527076.1 | |
Thymelaea hirsuta | rpoC1 * | Daphne giraldii | 97% | 0 | 99.15% | NC_044085.1 |
rpoC1 * | Daphne tangutica | 97% | 0 | 99.15% | NC_042950.1 | |
rpoC1 * | Stellera chamaejasme | 97% | 0 | 99.15% | NC_042714.1 | |
rpoC1 * | Daphne kiusiana | 97% | 0 | 99.15% | KY991380.1 | |
rpoC1 * | Daphne depauperate | 97% | 0 | 99.15% | MW245833.1 |
Sequence (Organism) | Taxonomy | Number of Hits | Number of Organisms |
---|---|---|---|
matK (Daphne Mucronata) | Thymelaeaceae | 104 | 32 |
rbcL (Daphne Mucronata) | Thymelaeaceae | 119 | 66 |
matK (Thymelaea hirsuta) | Thymelaeaceae | 105 | 32 |
rbcL (Thymelaea hirsuta) | Thymelaeaceae | 118 | 66 |
rpoC1 (Thymelaea hirsuta) | Thymelaeaceae | 101 | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkaraki, A.K.; Aldmoor, M.A.; Lahham, J.N.; Awad, M. DNA Barcoding of Two Thymelaeaceae Species: Daphne mucronata Royle and Thymelaea hirsuta (L.) Endl. Plants 2021, 10, 2199. https://doi.org/10.3390/plants10102199
Alkaraki AK, Aldmoor MA, Lahham JN, Awad M. DNA Barcoding of Two Thymelaeaceae Species: Daphne mucronata Royle and Thymelaea hirsuta (L.) Endl. Plants. 2021; 10(10):2199. https://doi.org/10.3390/plants10102199
Chicago/Turabian StyleAlkaraki, Almuthanna K., Maisam A. Aldmoor, Jamil N. Lahham, and Mohammed Awad. 2021. "DNA Barcoding of Two Thymelaeaceae Species: Daphne mucronata Royle and Thymelaea hirsuta (L.) Endl" Plants 10, no. 10: 2199. https://doi.org/10.3390/plants10102199
APA StyleAlkaraki, A. K., Aldmoor, M. A., Lahham, J. N., & Awad, M. (2021). DNA Barcoding of Two Thymelaeaceae Species: Daphne mucronata Royle and Thymelaea hirsuta (L.) Endl. Plants, 10(10), 2199. https://doi.org/10.3390/plants10102199