STS: Spatial–Temporal–Semantic Personalized Location Recommendation
Abstract
:1. Introduction
2. Related Work
2.1. Geographical Influence
2.2. Temporal Influence
2.3. Semantic Influence
2.4. Heterogeneous Check-In Behaviors
3. Check-In Data Analysis
3.1. Heterogeneous Mobility Patterns
3.2. Temporal Influence
4. STS: Spatial–Temporal–Semantic Location Recommendation
4.1. Displacement Prediction
4.1.1. Mean Function and Covariance Function
4.1.2. Model Fitting
4.2. Semantic-Aware Enhancement
4.3. A Unified Recommendation Framework
5. Evaluation and Discussion
5.1. Experimental Settings
5.1.1. Datasets
5.1.2. Baselines
5.1.3. Metrics
5.2. Experimental Results
5.2.1. Effect of Data Sparsity
5.2.2. Effect of Temporal Information
5.2.3. Effect of Category Information
5.2.4. Comparison Studies
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, H.; Tang, J.; Hu, X.; Liu, H. Exploring temporal effects for location recommendation on location-based social networks. In Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 12–16 October 2013; pp. 93–100. [Google Scholar]
- Liu, X.; Liu, Y.; Li, X. Exploring the Context of Locations for Personalized Location Recommendations. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 1188–1194. [Google Scholar]
- Gao, R.; Li, J.; Li, X.; Song, C.; Chang, J.; Liu, D.; Wang, C. STSCR: Exploring spatial-temporal sequential influence and social information for location recommendation. Neurocomputing 2018, 319, 118–133. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Liu, C.; Qiu, A.; Zhang, F. Exploiting Two-Dimensional Geographical and Synthetic Social Influences for Location Recommendation. ISPRS Int. J. Geo-Inf. 2020, 9, 285. [Google Scholar] [CrossRef]
- Zhang, J.D.; Chow, C.Y. iGSLR: Personalized geo-social location recommendation: A kernel density estimation approach. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Orlando, FL, USA, 5–8 November 2013; pp. 334–343. [Google Scholar]
- Yang, D.; Zhang, D.; Yu, Z.; Wang, Z. A sentiment-enhanced personalized location recommendation system. In Proceedings of the 24th ACM Conference on Hypertext and Social Media, Paris, France, 1–3 May 2013; pp. 119–128. [Google Scholar]
- Kurashima, T.; Iwata, T.; Hoshide, T.; Takaya, N.; Fujimura, K. Geo topic model: Joint modeling of user’s activity area and interests for location recommendation. In Proceedings of the 6th ACM International Conference on Web Search and Data Mining, Rome, Italy, 4–8 February 2013; pp. 375–384. [Google Scholar]
- Khazaei, E.; Alimohammadi, A. Context-Aware Group-Oriented Location Recommendation in Location-Based Social Networks. ISPRS Int. J. Geo-Inf. 2019, 8, 406. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Wang, H.; Mamoulis, N.; Tu, W.; Cheung, D.W. Personalized location recommendation by aggregating multiple recommenders in diversity. GeoInformatica 2017, 21, 459–484. [Google Scholar] [CrossRef]
- Cho, E.; Myers, S.A.; Leskovec, J. Friendship and mobility: User movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 1082–1090. [Google Scholar]
- Lian, D.; Zhao, C.; Xie, X.; Sun, G.; Chen, E.; Rui, Y. GeoMF: Joint geographical modeling and matrix factorization for point-of-interest recommendation. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 831–840. [Google Scholar]
- Ye, M.; Yin, P.; Lee, W.C.; Lee, D.L. Exploiting Geographical Influence for Collaborative Point-of-interest Recommendation. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 25–29 July 2011; pp. 325–334. [Google Scholar]
- Noulas, A.; Scellato, S.; Lathia, N.; Mascolo, C. Mining user mobility features for next place prediction in location-based services. In Proceedings of the 12th IEEE International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 1038–1043. [Google Scholar]
- Cheng, C.; Yang, H.; King, I.; Lyu, M.R. Fused matrix factorization with geographical and social influence in location-based social networks. In Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012; pp. 17–23. [Google Scholar]
- Yuan, Q.; Cong, G.; Ma, Z.; Sun, A.; Thalmann, N.M. Time-aware point-of-interest recommendation. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 28 July–1 August 2013; pp. 363–372. [Google Scholar]
- Yan, C.; Tu, Y.; Wang, X.; Zhang, Y.; Hao, X.; Zhang, Y.; Dai, Q. STAT: Spatial-temporal attention mechanism for video captioning. IEEE Trans. Multimed. 2019, 22, 229–241. [Google Scholar] [CrossRef]
- Hu, B.; Ester, M. Spatial topic modeling in online social media for location recommendation. In Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 12–16 October 2013; pp. 25–32. [Google Scholar]
- Liu, B.; Fu, Y.; Yao, Z.; Xiong, H. Learning geographical preferences for point-of-interest recommendation. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 1043–1051. [Google Scholar]
- Zhao, S.; Zhao, T.; King, I.; Lyu, M.R. Geo-teaser: Geo-temporal sequential embedding rank for point-of-interest recommendation. In Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Australia, 3–7 April 2017; pp. 153–162. [Google Scholar]
- Liu, T.; Liao, J.; Wu, Z.; Wang, Y.; Wang, J. Exploiting geographical-temporal awareness attention for next point-of-interest recommendation. Neurocomputing 2020, 400, 227–237. [Google Scholar] [CrossRef]
- Wang, H.; Shen, H.; Ouyang, W.; Cheng, X. Exploiting POI-Specific Geographical Influence for Point-of-Interest Recommendation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3877–3883. [Google Scholar]
- Cai, L.; Xu, J.; Liu, J.; Pei, T. Integrating spatial and temporal contexts into a factorization model for POI recommendation. Int. J. Geogr. Inf. Sci. 2018, 32, 524–546. [Google Scholar]
- Li, H.; Hong, R.; Wu, Z.; Ge, Y. A spatial-temporal probabilistic matrix factorization model for point-of-interest recommendation. In Proceedings of the 2016 SIAM International Conference on data Mining, Miami, FL, USA, 5–7 May 2016; pp. 117–125. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Clauset, A.; Shalizi, C.R.; Newman, M.E. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cong, G.; Li, X.L.; Pham, T.A.N.; Krishnaswamy, S. Rank-geofm: A ranking based geographical factorization method for point of interest recommendation. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015; pp. 433–442. [Google Scholar]
- Ma, C.; Zhang, Y.; Wang, Q.; Liu, X. Point-of-interest recommendation: Exploiting self-attentive autoencoders with neighbor-aware influence. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018; pp. 697–706. [Google Scholar]
- Ying, H.; Chen, L.; Xiong, Y.; Wu, J. PGRank: Personalized geographical ranking for point-of-interest recommendation. In Proceedings of the 25th International Conference Companion on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 137–138. [Google Scholar]
- Liu, C.; Liu, J.; Xu, S.; Wang, J.; Liu, C.; Chen, T.; Jiang, T. A Spatiotemporal Dilated Convolutional Generative Network for Point-Of-Interest Recommendation. ISPRS Int. J. Geo-Inf. 2020, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Ying, Y.; Chen, L.; Chen, G. A temporal-aware POI recommendation system using context-aware tensor decomposition and weighted HITS. Neurocomputing 2017, 242, 195–205. [Google Scholar] [CrossRef]
- Aliannejadi, M.; Rafailidis, D.; Crestani, F. A joint two-phase time-sensitive regularized collaborative ranking model for point of interest recommendation. IEEE Trans. Knowl. Data Eng. 2019, 32, 1050–1063. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z. Exploiting human mobility patterns for point-of-interest recommendation. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, USA, 5–9 February 2018; pp. 757–758. [Google Scholar]
- Chang, B.; Park, Y.; Park, D.; Kim, S.; Kang, J. Content-Aware Hierarchical Point-of-Interest Embedding Model for Successive POI Recommendation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3301–3307. [Google Scholar]
- Liu, B.; Xiong, H. Point-of-interest recommendation in location based social networks with topic and location awareness. In Proceedings of the 13th SIAM International Conference on Data Mining, Austin, TX, USA, 2–4 May 2013; pp. 396–404. [Google Scholar]
- Yin, Z.; Cao, L.; Han, J.; Zhai, C.; Huang, T. Geographical topic discovery and comparison. In Proceedings of the 20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 247–256. [Google Scholar]
- Liu, X.; Liu, Y.; Aberer, K.; Miao, C. Personalized Point-of-interest Recommendation by Mining Users’ Preference Transition. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, San Francisco, CA, USA, 27 October–10 November 2013; pp. 733–738. [Google Scholar]
- Hao, P.Y.; Cheang, W.H.; Chiang, J.H. Real-time event embedding for POI recommendation. Neurocomputing 2019, 349, 1–11. [Google Scholar] [CrossRef]
- Lian, D.; Ge, Y.; Zhang, F.; Yuan, N.J.; Xie, X.; Zhou, T.; Rui, Y. Scalable content-aware collaborative filtering for location recommendation. IEEE Trans. Knowl. Data Eng. 2018, 30, 1122–1135. [Google Scholar] [CrossRef]
- Zhang, J.D.; Chow, C.Y.; Zheng, Y. ORec: An opinion-based point-of-interest recommendation framework. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 19–23 October 2015; pp. 1641–1650. [Google Scholar]
- Zhou, X.; Mascolo, C.; Zhao, Z. Topic-enhanced memory networks for personalised point-of-interest recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 3018–3028. [Google Scholar]
- Yin, H.; Wang, W.; Wang, H.; Chen, L.; Zhou, X. Spatial-aware hierarchical collaborative deep learning for POI recommendation. IEEE Trans. Knowl. Data Eng. 2017, 29, 2537–2551. [Google Scholar] [CrossRef]
- Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. In Proceedings of the 21st International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–11 December 2008; pp. 1257–1264. [Google Scholar]
- Cui, Q.; Tang, Y.; Wu, S.; Wang, L. Distance2Pre: Personalized Spatial Preference for Next Point-of-Interest Prediction. In Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, Macau, China, 14–17 April 2019; pp. 289–301. [Google Scholar]
- Feng, S.; Cong, G.; An, B.; Chee, Y.M. Poi2vec: Geographical latent representation for predicting future visitors. In Proceedings of the 31st t AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–10 February 2017; pp. 102–108. [Google Scholar]
- Coppersmith, D.; Winograd, S. Matrix multiplication via arithmetic progressions. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New York, NY, USA, 25–27 May 1987; pp. 1–6. [Google Scholar]
- Fox, C.W.; Roberts, S.J. A tutorial on variational Bayesian inference. Artif. Intell. Rev. 2012, 38, 85–95. [Google Scholar] [CrossRef]
Austin | 24,070 | 51,118 | 1,935,677 | 21.95 | 46.62 |
Chicago | 13,845 | 37,050 | 486,558 | 7.53 | 20.16 |
Houston | 11,138 | 29,383 | 512,977 | 9.89 | 26.08 |
L.A. | 21,633 | 75,301 | 1,296,953 | 10.06 | 35.02 |
S.F. | 21,585 | 64,758 | 1,542,133 | 13.76 | 41.29 |
x% For Training | Houston | Chicago | Los Angeles | San Francisco | Austin | |||||
---|---|---|---|---|---|---|---|---|---|---|
Precision | MRR | Precision | MRR | Precision | MRR | Precision | MRR | Precision | MRR | |
25% | 0.0421 | 0.0452 | 0.0456 | 0.0362 | 0.0241 | 0.0285 | 0.0172 | 0.0168 | 0.0220 | 0.0625 |
50% | 0.0522 | 0.0567 | 0.0502 | 0.0421 | 0.0299 | 0.0336 | 0.0228 | 0.0209 | 0.0251 | 0.0701 |
60% | 0.0581 | 0.0611 | 0.0583 | 0.0465 | 0.0312 | 0.0366 | 0.0248 | 0.0232 | 0.0267 | 0.0751 |
70% | 0.0605 | 0.0650 | 0.0606 | 0.0503 | 0.0337 | 0.0381 | 0.0264 | 0.0253 | 0.0281 | 0.0786 |
80% | 0.0618 | 0.0665 | 0.0618 | 0.0515 | 0.0349 | 0.0395 | 0.0275 | 0.0268 | 0.0295 | 0.0795 |
Houston | Chicago | Los Angeles | San Francisco | Austin | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Precision | MRR | Precision | MRR | Precision | MRR | Precision | MRR | Precision | MRR | |
STS | 0.0605 | 0.0650 | 0.0606 | 0.0503 | 0.0337 | 0.0381 | 0.0264 | 0.0253 | 0.0281 | 0.0786 |
BaseMF | 0.0118 | 0.0135 | 0.0122 | 0.0102 | 0.0110 | 0.0121 | 0.0098 | 0.0091 | 0.0092 | 0.0318 |
GeoCF | 0.0231 | 0.0298 | 0.0321 | 0.0305 | 0.0219 | 0.0235 | 0.0179 | 0.0166 | 0.0172 | 0.0551 |
PTMF | 0.0392 | 0.0421 | 0.0410 | 0.0380 | 0.0289 | 0.0300 | 0.0221 | 0.0203 | 0.0210 | 0.0604 |
iGSLR | 0.0238 | 0.0388 | 0.0325 | 0.0311 | 0.0240 | 0.0267 | 0.0185 | 0.0166 | 0.0181 | 0.0560 |
TempMF | 0.0320 | 0.0365 | 0.0338 | 0.0295 | 0.0223 | 0.0264 | 0.0198 | 0.0185 | 0.0207 | 0.0552 |
POI2Vec | 0.0344 | 0.0416 | 0.0355 | 0.0348 | 0.0266 | 0.0286 | 0.0205 | 0.0191 | 0.0211 | 0.0592 |
Distance2Pre | 0.0428 | 0.0445 | 0.0451 | 0.0398 | 0.0295 | 0.0311 | 0.0230 | 0.0216 | 0.0229 | 0.0645 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liu, X.; Yan, C.; Ding, G.; Sun, Y.; Zhang, J. STS: Spatial–Temporal–Semantic Personalized Location Recommendation. ISPRS Int. J. Geo-Inf. 2020, 9, 538. https://doi.org/10.3390/ijgi9090538
Li W, Liu X, Yan C, Ding G, Sun Y, Zhang J. STS: Spatial–Temporal–Semantic Personalized Location Recommendation. ISPRS International Journal of Geo-Information. 2020; 9(9):538. https://doi.org/10.3390/ijgi9090538
Chicago/Turabian StyleLi, Wenchao, Xin Liu, Chenggang Yan, Guiguang Ding, Yaoqi Sun, and Jiyong Zhang. 2020. "STS: Spatial–Temporal–Semantic Personalized Location Recommendation" ISPRS International Journal of Geo-Information 9, no. 9: 538. https://doi.org/10.3390/ijgi9090538
APA StyleLi, W., Liu, X., Yan, C., Ding, G., Sun, Y., & Zhang, J. (2020). STS: Spatial–Temporal–Semantic Personalized Location Recommendation. ISPRS International Journal of Geo-Information, 9(9), 538. https://doi.org/10.3390/ijgi9090538