# Disdyakis Triacontahedron DGGS

^{*}

## Abstract

**:**

## 1. Introduction

- Initial Polyhedron: The coarsest discretization of the Earth into cells
- Projection: A mapping between each point on the Earth and a corresponding point on the polyhedron (see Figure 1)
- Indexing: Assigning a unique identifier to each cell
- Refinement: A way to hierarchically subdivide coarse cells into finer ones creating multi-resolution cells

## 2. Related Work

#### 2.1. Initial Polyhedron

#### 2.2. Projection

#### 2.3. Refinement and Cell Types

#### 2.4. Indexing

#### 2.5. DGGS

## 3. Creating DT DGGS

#### 3.1. Initial Polyhedron

#### 3.2. Equal Area Projection

#### 3.3. Slice and Dice Area Preserving Projection

#### 3.4. Inverse Projection for the DT

#### 3.5. Refinement and Indexing

## 4. Connectivity and Location

#### 4.1. Neighborhood Queries

#### 4.2. Hierarchical Queries

#### 4.3. Point-to-Cell Query

## 5. Results

## 6. Conclusions

#### Future Work

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

DE | Digital Earth |

DGGS | Discrete Global Grid System |

DT | Disdyakis Triacontahedron |

RT | Rhombic Triacontahedron |

## References

- Yao, X.; Li, G.; Xia, J.; Ben, J.; Cao, Q.; Zhao, L.; Yue, M.; Zhang, L.; Zhu, D. Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges. Remote Sens.
**2019**, 12, 62. [Google Scholar] [CrossRef] [Green Version] - Mahdavi-Amiri, A.; Alderson, T.; Samavati, F. A Survey of Digital Earth. Comput. Graph.
**2015**, 53, 95–117. [Google Scholar] [CrossRef] - Goodchild, M.F. Reimagining the history of GIS. Ann. Gis
**2018**, 24, 1–8. [Google Scholar] [CrossRef] - Tomlinson, R. Environmental Information Systems. In Proceedings of the UNESCO/IGU First Symposium on Geographical Information Systems, Ottawa, ON, Canada, 28 September–2 October 1970. [Google Scholar]
- Gauss, K.F. General Investigations of Curved Surfaces of 1827 and 1825. Nature
**2012**, 66, 316–317. [Google Scholar] [CrossRef] [Green Version] - Soliman, Y.; Slepčev, D.; Crane, K. Optimal Cone Singularities for Conformal Flattening. ACM Trans. Graph.
**2018**, 37, 4. [Google Scholar] [CrossRef] - Kimerling, J.; Sahr, K.; White, D.; Song, L. Comparing Geometrical Properties of Global Grids. Cartogr. Geogr. Inf. Sci.
**2013**, 26, 271–288. [Google Scholar] [CrossRef] - Purss, M.; Gibb, R.; Samavati, F.; Peterson, P.; Andrew Rogers, J.; Ben, J.; Dow, C. OGC Discrete Global Grid System (DGGS) Core Standard; Open Geospatial Consortium: Wayland, MA, USA, 2017. [Google Scholar]
- Harrison, E.; Mahdavi-Amiri, A.; Samavati, F. Analysis of Inverse Snyder Optimizations. In Transactions on Computational Science XVI; Gavrilova, M., Tan, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7380, pp. 134–148. [Google Scholar]
- Harrison, E.; Mahdavi-Amiri, A.; Samavati, F. Optimization of Inverse Snyder Polyhedral Projection. In Proceedings of the 2011 International Conference on Cyberworlds (CW), Calgary, AB, Canada, 4–6 October 2011; pp. 136–143. [Google Scholar]
- PYXIS Innovation. How PYXIS Works. Available online: http://www.pyxisinnovation.com/pyxwiki/index.php?title=How_PYXIS_Works (accessed on 1 April 2020).
- Peterson, P.R. Geodesic Grid ISEA3H Illustrated. Available online: https://en.wikipedia.org/wiki/File:Geodesic_Grid_(ISEA3H)_illustrated.png (accessed on 7 May 2020).
- Snyder, J. An Equal-Area Map Projection For Polyhedral Globes. Cartographica
**1992**, 29, 10–21. [Google Scholar] [CrossRef] - Leeuwen, D.; Strebe, D. A “Slice-and-Dice” Approach to Area Equivalence in Polyhedral Map Projections. Cartogr. Geogr. Inf. Sci.
**2006**, 33, 269–286. [Google Scholar] [CrossRef] - Lee, S.; Mortari, D. Quasi-equal area subdivision algorithm for uniform points on a sphere with application to any geographical data distribution. Comput. Geosci.
**2017**, 103, 142–151. [Google Scholar] [CrossRef] - Mahdavi-Amiri, A.; Harrison, E.; Samavati, F. Hexagonal Connectivity Maps for Digital Earth. Int. J. Digit. Earth
**2014**, 8, 750–769. [Google Scholar] [CrossRef] - Huang, S.; Shibasaki, R.; Kasuya, M.; Takagi, M. Comparative study on spherical tessellation schemes for global GIS. Geocarto Int.
**1998**, 13, 3–14. [Google Scholar] [CrossRef] - Alderson, T.; Purss, M.; Xiaoping, D.; Mahdavi-Amiriand, A.; Samavati, F. Digital Earth Platforms. In Manual of Digital Earth; Springer: Singapore, 2019; pp. 25–54. [Google Scholar]
- Brooks, D. Grid Systems for Earth Radiation Budget Experiment Applications; NASA Technical Memorandum: Hampton, VA, USA, 1981.
- Crittenden, R.; Turok, N. Exactly Azimuthal Pixelizations of the Sky. arXiv
**1998**, arXiv:0712.0157. [Google Scholar] - Leopardi, P. A partition of the unit sphere into regions of equal area and small diameter. ETNA Electron. Trans. Numer. Anal.
**2006**, 25, 309–327. [Google Scholar] - Song, L.; Kimerling, A.; Sahr, K. Developing an Equal Area Global Grid by Small Circle Subdivision; National Center for Geographic Information and Analysis: Santa Barbara, CA, USA, 2002. [Google Scholar]
- Dutton, G. Encoding and Handling Geospatial Data with Hierarchical Triangular Meshes. In Proceedings of the 7th Symposium on Spatial Data Handling, Delft, The Netherlands, 12–16 August 1996; pp. 505–518. [Google Scholar]
- Szalay, A.S.; Gray, J.; Fekete, G.; Kunszt, P.Z.; Kukol, P.Z.; Thakar, A. Indexing the Sphere with the Hierarchical Triangular Mesh; Microsoft Research: Redmond, WA, USA, 2005. [Google Scholar]
- Massey, N. Feature tracking on the hierarchical equal area triangular mesh. Comput. Geosci.
**2012**, 44, 42–51. [Google Scholar] [CrossRef] - Gorski, K.; Hivon, E.; Banday, A.; Wandelt, B.; Hansen, F.; Reinecke, M.; Bartelman, M. HEALPix: A Framework for High Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. Astrophys. J.
**2005**, 622, 759–771. [Google Scholar] [CrossRef] - Dürer, A. Unterweisung der Messung mit dem Zirkel und Richtscheit: Faksimiledruck nach der Urausgabe vom Jahre 1525; Stocker-Schmid, University of Michigan: Detroit, MI, USA, 1966. [Google Scholar]
- Bradley, A.D. Equal-Area Projection on the Icosahedron. Geogr. Rev.
**1946**, 36, 101–104. [Google Scholar] [CrossRef] - Ben, J.; Tong, X.; Zhou, C.; Zhang, K. Construction Algorithm of Octahedron Based Hexagon Grid Systems. J. Geo-Inf. Sci.
**2015**, 17, 789–797. [Google Scholar] - Roşca, D.; Plonka, G. Uniform spherical grids via equal area projection from the cube to the sphere. J. Comput. Appl. Math.
**2011**, 236, 1033–1041. [Google Scholar] [CrossRef] [Green Version] - Roşca, D.; Plonka, G. An Area Preserving Projection from the Regular Octahedron to the Sphere. Results Math.
**2012**, 62, 429–444. [Google Scholar] [CrossRef] [Green Version] - Amiri, A.M.; Bhojani, F.; Samavati, F. One-to-Two Digital Earth. In Advances in Visual Computing; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Li, B., Porikli, F., Zordan, V., Klosowski, J., Coquillart, S., Luo, X., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 681–692. [Google Scholar]
- Snyder, J.; Mitchell, D. Sampling-Efficient Mapping of Spherical Images; Microsoft Research: Redmond, WA, USA, 2001. [Google Scholar]
- Dutton, G. A Hierarchical Coordinate System for Geoprocessing and Cartography; Lecture Notes in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 1999; Volume 79. [Google Scholar]
- Goodchild, M.F.; Shiren, Y. A hierarchical spatial data structure for global geographic information systems. Cvgip Graph. Model. Image Process.
**1992**, 54, 31–44. [Google Scholar] [CrossRef] [Green Version] - Mahdavi-Amiri, A.; Samavati, F.; Peterson, P. Categorization And Conversions For Indexing Methods Of Discrete Global Grid Systems. Isprs Int. J. Geo-Inf.
**2015**, 4, 320–336. [Google Scholar] [CrossRef] - Zhou, L.; Lian, W.; Lv, G.; Zhu, A.X.; Lin, B. Efficient encoding and decoding algorithm for triangular discrete global grid based on Hybrid Transformation Strategy. Comput. Environ. Urban Syst.
**2018**, 68, 110–120. [Google Scholar] [CrossRef] - Bohm, C.; Perdacher, M.; Plant, C. A Novel Hilbert Curve for Cache-locality Preserving Loops. IEEE Trans. Big Data
**2018**, PP, 1. [Google Scholar] [CrossRef] [Green Version] - Sahr, K.; White, D.; Kimerling, A. Discrete Global Grid System. Cartogr. Geogr. Inf. Sci.
**2003**, 30, 121–134. [Google Scholar] [CrossRef] [Green Version] - Alborzi, H.; Samet, H. Augmenting SAND with a Spherical Data Model. In Proceedings of the International Conference on Discrete Global Grids, Santa Barbara, CA, USA, 26–28 March 2000. [Google Scholar]
- White, R.A.; Stemwedel, S.W. The Quadrilateralized Spherical Cube and Quad-Tree For All Sky Data. Astron. Data Anal. Softw. Syst.
**1992**, 25, 379. [Google Scholar] - White, D. Global Grids From Recursive Diamond Subdivisions of the Surface of an Octahedron or Icosahedron. Environ. Monit. Assess.
**2000**, 64, 93–103. [Google Scholar] [CrossRef] - White, D.; Kimerling, A.; Sahr, K.; Song, L. Comparing Area and Shape Distortion on Polyhedral-Based Recursive Partitions of the Sphere. Int. J. Geogr. Inf. Sci.
**1998**, 12, 805–827. [Google Scholar] [CrossRef] - Sadourny, R.; Arakawa, A.; Mintz, Y. Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Am. Meteorol. Soc.
**1968**. [Google Scholar] [CrossRef] - Baumgardner, J.R.; Frederickson, P.O. Icosahedral Discretization of the Two-Sphere. Siam J. Numer. Anal.
**1985**, 22, 1107–1115. [Google Scholar] [CrossRef] - Fekete, G.; Treinish, L. Sphere quadtrees: A new data structure to support the visualization of spherically distributed data. In Proceedings of the Electronic Imaging: Advanced Devices and Systems, Santa Clara, CA, USA, 11–16 February 1990. [Google Scholar]
- Shoemake, K. Animating Rotation with Quaternion Curves. SIGGRAPH Comput. Graph.
**1985**, 19, 245–254. [Google Scholar] [CrossRef] - Kettner, L. CGAL User and Reference Manual 5.0.2. Available online: https://doc.cgal.org/latest/Manual/index.html (accessed on 7 May 2020).

**Figure 1.**Projection between the polyhedron and the Earth. Mirror symmetry is present along the edges of all adjacent triangles in the Disdyakis Triacontahedron (DT).

**Figure 3.**From left to right, Hilbert, Peano, Sierpinski and Morton space filling curves. The order that the curve visits the cells determines the indexing. Images taken from [36], licensed under Creative Commons BY 4.0.

**Figure 4.**A Bipyramid with 64 faces. All faces are identical and mirror images of each other along the adjoining edge but as we increase the number of faces the compactness of the triangles reduces creating longer and skinnier triangles.

**Figure 5.**Point P cuts spherical triangle $ABC$ into two parts with a great circle arc emanating from vertex B. Point ${P}^{\prime}$ within a given planar triangle ${A}^{\prime}{B}^{\prime}{C}^{\prime}$ is solved for such that the relationship in equation 1 holds.

**Figure 6.**Notice that regions $BDC$ and $BPE$ are both portions of a spherical cap. The area of a spherical cap is proportionate to the angle that it subtends so the area of $BDC$ is proportionate to $1-cos(x+y)$ and the area of $BPE$ is proportionate to $1-cos\left(x\right)$. Also notice that regions ${B}^{\prime}{D}^{\prime}{C}^{\prime}$ and ${B}^{\prime}{P}^{\prime}{E}^{\prime}$ are similar triangles. The area of similar planar triangles is proportionate to the square of their side length so the area of the triangle ${B}^{\prime}{D}^{\prime}{C}^{\prime}$ is proportionate to ${({x}^{\prime}+{y}^{\prime})}^{2}$ and the area of ${B}^{\prime}{P}^{\prime}{E}^{\prime}$ is proportionate to ${x}^{\prime 2}$.

**Figure 7.**Common refinement of triangles includes (

**a**) 1:2 (

**b**) 1:3 and (

**c**) 1:4. Shown in (

**d**), a 1:4 composite refinement scheme can also be created by two applications of 1:2 refinement in (

**a**).

**Figure 8.**The rhombic triacontahedron (RT) is a subset of the vertices and edges of the DT. Two of the rhombic faces and the rhombus indexing are shown in red. The black indexing corresponds to rhombuses in Figure 10.

**Figure 9.**(

**a**) Connectivity maps can be assigned to two adjacent triangles to form a quadrilateral domain parameterized by u and v ranging from 0 to 1. (

**b**) Applying traditional 1:4 refinement twice on a triangular connectivity map produces small quad domains within the connectivity map that can be indexed by parameters u and v.

**Figure 10.**An example of the indexing scheme at resolutions 1, 2 and 3 from left to right. Note that this is duplicated for every rhombus in RT. These Z shaped patterns within small rhombuses are repeated along rows and columns of small rhombuses in row major order. We index small rhombuses row by row, most evident in resolution level 3 on the right.

**Figure 11.**Cell indices of two adjacent base rhombuses. Notice that for any cell c in the small rhombus indicated in red, two neighbours are at indices $c\oplus 1$ and $c\oplus 2$. This is true of any index in any small rhombus. The final neighbour depends on if we are on a boundary between rhombuses or not.

**Figure 12.**The rhombus highlighted in red will become a parent rhombus when we decrease subdivision levels. Rows are divided with a blue line—columns with a red line. The green indices are the start of two consecutive blocks of indices within the red rhombus. Specific indices become part of specific parents as seen in Figure 13.

**Figure 13.**Parent cells are highlighted in blue and red. Note that 16 child cells make up the four parents in the rhombus.

**Figure 14.**A DT with great circle arcs (longitude) between the North and South pole highlighted in red. The region between these arcs contains 12 base triangles. A point P on the Earth can be quickly checked to see if it lies within the partition created by the red arcs by simply checking its longitude. The dashed lines represent the next subdivision level. The barycentric coordinates of the point within the base triangle determines which child cell P lies in.

**Figure 15.**Circles on the spherical face of a DT shown in blue are projected to ellipses on the planar face of a DT shown in green. We can see that the angular distortion is minor because the major and minor axis of the ellipses are close to the same.

**Figure 16.**(

**a**) Angular distortion mapped to a greyscale value across a face of an icosahedron. (

**b**) Angular distortion mapped to a greyscale value across a face of a DT. Black is low distortion and white is high distortion. We have used the same greyscale mapping for both for direct comparison.

**Figure 18.**Temperature data interpolated across the DT Discrete Global Grid System (DGGS). Cold areas are blue and red areas are hot. This data can be queried and visualized across the Earth in real time.

**Table 1.**Mean and standard deviation of angular distortion (in radians) of the projection to the icosahedron and the DT. The mean for the DT is approximately four times less and the standard deviation is lower showing that projection to the DT has significantly reduced angular distortion.

Mean Angular Distortion (Radians) | Standard Deviation | |
---|---|---|

Icosahedron | 0.144 | 0.027 |

Disdyakis Triacontahedron | 0.039 | 0.016 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hall, J.; Wecker, L.; Ulmer, B.; Samavati, F.
Disdyakis Triacontahedron DGGS. *ISPRS Int. J. Geo-Inf.* **2020**, *9*, 315.
https://doi.org/10.3390/ijgi9050315

**AMA Style**

Hall J, Wecker L, Ulmer B, Samavati F.
Disdyakis Triacontahedron DGGS. *ISPRS International Journal of Geo-Information*. 2020; 9(5):315.
https://doi.org/10.3390/ijgi9050315

**Chicago/Turabian Style**

Hall, John, Lakin Wecker, Benjamin Ulmer, and Faramarz Samavati.
2020. "Disdyakis Triacontahedron DGGS" *ISPRS International Journal of Geo-Information* 9, no. 5: 315.
https://doi.org/10.3390/ijgi9050315