Next Article in Journal
GIS and Transport Modeling—Strengthening the Spatial Perspective
Next Article in Special Issue
Morphological Operations to Extract Urban Curbs in 3D MLS Point Clouds
Previous Article in Journal
A High-Efficiency Method of Mobile Positioning Based on Commercial Vehicle Operation Data
Previous Article in Special Issue
An Efficient Parallel Algorithm for Multi-Scale Analysis of Connected Components in Gigapixel Images
Article

Morphological Principal Component Analysis for Hyperspectral Image Analysis †

by *,‡ and
MINES ParisTech, PSL-Research University, CMM-Centre de Morphologie Mathématique, 35 rue Saint-Honor7305 Fontainebleau, France
*
Author to whom correspondence should be addressed.
This paper is an extended version of our paper published in G. Franchi, J. Angulo, Comparative Study on Morphological Principal Component Analysis of Hyperspectral Images. In Proceedings of the 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS’14), Lausannne, Switzerland, 24–27 June 2014.
These authors contributed equally to this work.
Academic Editors: Beatriz Marcotegui and Wolfgang Kainz
ISPRS Int. J. Geo-Inf. 2016, 5(6), 83; https://doi.org/10.3390/ijgi5060083
Received: 17 December 2015 / Revised: 10 May 2016 / Accepted: 11 May 2016 / Published: 3 June 2016
(This article belongs to the Special Issue Mathematical Morphology in Geoinformatics)
This article deals with the issue of reducing the spectral dimension of a hyperspectral image using principal component analysis (PCA). To perform this dimensionality reduction, we propose the addition of spatial information in order to improve the features that are extracted. Several approaches proposed to add spatial information are discussed in this article. They are based on mathematical morphology operators. These morphological operators are the area opening/closing, granulometries and grey-scale distance function. We name the proposed family of techniques the Morphological Principal Component Analysis (MorphPCA). Present approaches provide new feature spaces able to jointly handle the spatial and spectral information of hyperspectral images. They are computationally simple since the key element is the computation of an empirical covariance matrix which integrates simultaneously both spatial and spectral information. The performance of the different feature spaces is assessed for different tasks in order to prove their practical interest. View Full-Text
Keywords: spatial machine learning; hyperspectral images; dimensionality reduction; mathematical morphology spatial machine learning; hyperspectral images; dimensionality reduction; mathematical morphology
Show Figures

Figure 1

MDPI and ACS Style

Franchi, G.; Angulo, J. Morphological Principal Component Analysis for Hyperspectral Image Analysis. ISPRS Int. J. Geo-Inf. 2016, 5, 83. https://doi.org/10.3390/ijgi5060083

AMA Style

Franchi G, Angulo J. Morphological Principal Component Analysis for Hyperspectral Image Analysis. ISPRS International Journal of Geo-Information. 2016; 5(6):83. https://doi.org/10.3390/ijgi5060083

Chicago/Turabian Style

Franchi, Gianni, and Jesús Angulo. 2016. "Morphological Principal Component Analysis for Hyperspectral Image Analysis" ISPRS International Journal of Geo-Information 5, no. 6: 83. https://doi.org/10.3390/ijgi5060083

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop