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Abstract: This article deals with the issue of reducing the spectral dimension of a hyperspectral
image using principal component analysis (PCA). To perform this dimensionality reduction, we
propose the addition of spatial information in order to improve the features that are extracted.
Several approaches proposed to add spatial information are discussed in this article. They are
based on mathematical morphology operators. These morphological operators are the area
opening/closing, granulometries and grey-scale distance function. We name the proposed
family of techniques the Morphological Principal Component Analysis (MorphPCA). Present
approaches provide new feature spaces able to jointly handle the spatial and spectral information
of hyperspectral images. They are computationally simple since the key element is the computation
of an empirical covariance matrix which integrates simultaneously both spatial and spectral
information. The performance of the different feature spaces is assessed for different tasks in order
to prove their practical interest.

Keywords: spatial machine learning; hyperspectral images; dimensionality reduction;
mathematical morphology

1. Introduction

Hyperspectral images allow us to reconstruct the spectral profiles of objects imaged by the
acquisition of several tens or hundreds of narrow spectral bands. Conventionally, in many
applications hyperspectral images are reduced in the spectral dimension before any processing. Most
hyperspectral image reduction methods are linear and are not concerned with the multiple sources
of nonlinearity present in this kind of image [1]. Nonlinear reduction techniques are nowadays
widely used on data reduction, and some of them have been used for hyperspectral images [2].
Nevertheless, most of these techniques present some disadvantages [3] in comparison to the canonical
linear principal component analysis (PCA). That is the rationale behind our choice of PCA as
starting point. In particular, one major drawback of those nonlinear techniques is that they are
computationally too complex in comparison to PCA. Hence most of the time, they cannot be applied
on real full resolution images. Another common disadvantage of both classical linear and nonlinear
dimensionality reduction techniques is that they consider a hyperspectral image as a set of vectors.
They are appropriate when the data do not present useful spatial information, and therefore they are
not totally adapted to images.
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As mentioned above, dimensionality reduction in hyperspectral images is usually considered as
a preprocessing step for supervised pixel classification as well as for other hyperspectral image tasks
such as unmixing, target detection, etc. Hence, our goal is to incorporate spatial information into the
dimensionality reduction (DR).

The contribution of our approach can be summarized as follows. We propose to add spatial
information on the estimation of the covariance matrix used for PCA computation. This is done by
means of morphological image representations, which involve a nonlinear embedding of the original
hyperspectral image into a morphological feature space.

Many previous works have considered how to introduce spatial information into hyperspectral
dimensionality image reduction. We can divide these techniques into different fields. The first family
of techniques is close to our paradigm since they are based on mathematical morphology [4–8]. Other
approaches are founded on Markov random field image representation such as [9,10]. Another
family of techniques uses kernel methods, where kernels for spatial information and kernels for
spectral information are combined together [11–14]. Techniques based on tensor representation of
hyperspectral images [15,16] have been successfully considered. Finally, wavelet representation and
image extracted features have also been used to add spatial information [17].

The rest of the paper is organized as follows. Section 2 provides a remind on the mathematical
morphology multi-scale representation tools used in our approach. Section 3 introduces in detail our
approach named morphological principal component analysis (MorphPCA). In order to justify our
framework, a summary of the classical theory underlying the standard PCA is provided as well as the
notion of Pearson image correlation. Then, the four variants of MorphPCA are discussed, including
an analysis of their corresponding covariance matrix meaning. The application of MorphPCA to
hyperspectral dimensionality image reduction is considered in Section 4. That involves an assessment
of the different variants according to different criteria. For some of the criteria, new techniques
to evaluate the quality of dimensionality reduction techniques on image processing are introduced.
Techniques arising from manifold learning are also considered in the comparaison. Finally, Section 5
closes the paper with the conclusions.

We note that this paper is an extended and improved version of the conference contribution [18].
Besides a more detailed discussion on the techniques, a larger set of hyperspectral images is used
in the assessment of the different approaches. The first one which was acquired over the city of
Pavia (Italy), is a hyperspectral image of spatial size : 610 × 340 pixels, with 103 spectral bands.
The second image, which represents the University of Houston, is a hyperspectral image of spatial
size 349 × 1905 pixels and with 144 spectral bands [19]. The last one called Indian Pines is a
hyperspectral image of spatial size 145 × 145 pixels, and with 224 spectral bands. Moreover, on this
extended version new measures of comparison have been introduced.

2. Basics on Morphological Image Representation

The goal of this section is to introduce a short background on morphological operators and
transforms used in the sequel. Notation considered in the rest of this paper is also stated.

2.1. Notation

Let E be a subset of the discrete space Z2, which represents the support space of a 2D image and
F ⊆ RD be a set of pixel values in dimension D. Hence, it is assumed in our case that the value of
a pixel x ∈ E is represented by a vector v ∈ F of dimension D, where discrete space E has a size of
n1 × n2 pixels. This vector v represents the spectrum at position x. Additionally, we will write higher
order tensors by calligraphic upper-case letters (I ,S , . . .). The order of tensor I ∈ Rn1×n2×...×nJ is J.
Moreover, if I ∈ Rn1×n2×n3 , for all i ∈ [1, n3] I:,:,i represents a matrix of size n1 × n2 where the
third component is equal to i. In our case we can also associate a tensor to the hyperspectral image
F ∈ Rn1×n2×D.
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2.2. Nonlinear Scale-Spaces and Morphological Decomposition

Mathematical morphology is a well known nonlinear image processing methodology based on
the application of complete lattice theory to spatial structures. Let f : E → Z be a grey-scale image.
Area openings γa

sl
( f ) (resp. area closings φa

sl
( f )) are morphological filters that remove from the image

f the bright (resp. dark) connected components having a surface area smaller than the parameter
sl ∈ N [20]:

γa
sl
( f ) =

∨
i
{γBi ( f )|Bi is connected and card(Bi) = sl} (1)

φa
sl
( f ) =

∧
i
{φBi ( f )|Bi is connected and card(Bi) = sl} (2)

where γB( f ) and φB( f ) represent respectively the morphological flat opening and closing according
to structuring element B [21]. We note that these connected filters can be implemented as binary filters
on the stack decomposition of f into upper level sets. Figure 1 illustrates how area opening and area
closing modify a simple image f . The image f in this toy example is composed of one black triangle of
area equal to 30, 2 diamonds, one black and one white of area equal to 15. Finally the last connected
components are 4 white circles and 5 black ones of area equal to 5. When an area opening is used
(respectively closing) of threshold sl = 7, just the white (respectively black) circles are removed.

Figure 1. Illustration of an area opening γa
sl

and an area closing φa
sl

of image f , with sl = 7 pixels.
We can see that the connected components removed by the opening operator are the white circles
since their area is 5, so below 7, and similarly for the black circles in the closed image.

Area opening and area closing are very relevant to simplify images, without deforming the
contours of the objects remaining. In addition, area opening and closing can be used to produce a
multi-scale decomposition of an image. The notion of morphological decomposition is related to the
granulometry axiomatic [21]. Let us consider {γa

sl
}, 1 ≤ l ≤ S and {φa

sl
}, 1 ≤ l ≤ S, two indexed

families of area openings and closings respectively. Typically, the index l is associated to scale, or more
precisely to the surface area. Namely, we have on the one hand:

f =
S

∑
l=1

(γa
sl−1

( f )− γa
sl
( f )) + γa

sS
( f ) (3)

f = φa
sS
( f )−

S

∑
l=1

(φa
sl
( f )− φa

sl−1
( f )) (4)

On the other hand, we can rewrite the decomposition [15]:

f = 1/2

(
(γsS( f ) + φsS( f )) +

S

∑
l=1

(γa
sl−1

( f )− γa
sl
( f ))−

S

∑
l=1

(φa
sl
( f )− φa

sl−1
( f ))

)
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Therefore we have an additive decomposition of the initial image f into S scales, together
with the average largest area opening and closing. We remark that the residue (γa

sl−1
( f ) − γa

sl
( f ))

represents bright details between levels sl and sl−1. Similarly, (φa
sl
( f ) − φa

sl−1
( f )) stands for dark

details between levels sl and sl−1. At this point, some issues must be taken into account. First, after
decomposing an image into S scales, we have now to deal with an image representation of higher
dimensionality. Second, the decomposition may not be optimal since it depends on the discretization
of S scales, i.e., size of each scale. In order to illustrate that issue, we have represented in Figure 2a
a channel of Pavia hyperspectral image and in Figure 2b its morphological decomposition by area
openings that we have over-estimated. As it may be noticed from Figure 2b, the choice of the scales
is fundamental in order to avoid a redundant decomposition.

(a)

(b)

Figure 2. (a) Channel number 50 of Pavia hyperspectral image and (b) its morphological
decomposition by area openings γa

sl
, sl = {0.5 × 102, 1 × 102, 5 × 102, 7 × 102, 1 × 103, 2 × 103, 5 ×

103, 7× 103, 1× 104, 1.2× 104, 1.5× 104, 2.5× 104}. Last image in (b) corresponds to γa
sS

, sS = 2.5× 104;
the other images in (b) are (γa

sl−1
( f )− γa

sl
( f )). Note that the contrast of images has been enhanced to

improve visualization.
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In order to deal with the problem of scale discretization, we propose to use the pattern spectrum
that provides information about the image component size distribution. We can also notice another
technique to find the optimal discretization [22].

2.3. Pattern Spectrum

The notion of pattern spectrum (PS) [23] corresponds to the probability density function
(pdf) underlying a granulometric decomposition by morphological openings and closings [21,24].
The area-based PS of f at size sl is given by

PSa( f , l) =
[
Mes(γa

sl
( f )− γa

sl+1
( f ))

]
/Mes( f ) (5)

PSa( f ,−l) =
[
Mes(φa

sl+1
( f )− φa

sl
( f ))

]
/Mes( f ) (6)

where Mes represents here the integral of the grey-scale image. Two images having the same
pattern spectrum have the same morphological distribution according to the choice of the family
of openings/closings. Since our goal is to have a non-redundant multi-scale representation with the
same morphological representation than the original image, then by sampling the PS and choosing
the scales of the distribution which keep it as similar as possible to the image PS, we can expect
to find the appropriate discretization of scales. However, one can see in Figure 3, the PS is not a
smooth function, and consequently, sampling it with a limited number of scales would not lead to a
good result.

(a) (b)

Figure 3. The pattern spectrum (PS) by area openings of a grey-scale image using 100 scales in (a);
In (b), in blue, its corresponding cumulative pattern spectrum (CPS); in red, its approximation with
S = 8 scales.

Based on the analogy between the PS and probability density function, we can compute its
corresponding cumulative pattern spectrum (CPS) for both sides l ≥ 0 and l ≤ 0. Naturally, this
function is smoother than the PS. In order to select the appropriate scales, the CPS for openings and
closings are sampled, where the number of samples is fixed and is equal to S, under the constraint
that the sampled function must be as similar as possible to the original function.

An example of such sampling is given in Figure 3, where the approximation of the CPS is
depicted in red and the CPS of the original image in blue. It is well known in probability that
two distributions that have the same cumulative distribution function have the same probability
distribution function. Based on this property, we can expect that the discretization from the CPS
approximates the original PS of the image and consequently, the selected scales properly represent
the size distribution of the image.
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2.4. Grey-Scale Distance Function

Let X be the closed set associated to a binary image. The distance function corresponding to set
X gives at each point x ∈ X a positive number that depends on the position of x with respect to X
and is given by [25]:

dist(X)(x) = min{d(x, y) : y ∈ Xc} (7)

where d(x, y) is the Euclidean distance between points x and y, and where Xc is the complement of
set X. This well known transform is very useful in image processing [25].

Distance function of binary images can be extended to grey-scale images f by considering its
representation into upper level sets {Xh( f )}a≤h≤b, where

Xh( f ) = {x ∈ E : f (x) ≥ h}

such that a = min{ f (x), x ∈ E}, and b = max{ f (x), x ∈ E}. Then, the so-called the grey-scale
distance transform of f is defined as [26]:

dist( f )(x) = (b − a)−1
b

∑
h=a

dist (Xh( f )) (x) (8)

That is, the grey-scale distance transform of f is equal to the sum of the distance functions from
its upper level sets.

3. Morphological Principal Component Analysis

We introduce in this section the notion of Morphological Principal Component Analysis
(MorphPCA) and its variants. Before that, a mathematical background on PCA and covariance/
correlation matrix is provided in order to state the rationale behind MorphPCA.

3.1. Remind on Classical PCA

Principal Component Analysis (PCA), also known as Karhunen-Loève transform, Hotelling
transform, SVD transform, etc., is without any doubt the most useful technique for data
dimensionality reduction.

Let us start with a set of vectors {vi} ∈ RD, 1 ≤ i ≤ n, where n represents the number of
vectors; in our case it corresponds to the number of image pixels, i.e., n = n1n2 since n1 and n2 are the
two spatial dimensions. The goal of the PCA is to reduce the dimension of this vector space thanks to
a projection on the principal component space, namely

F = {vi}n
i=1 −→ F′ = {v′i}n

i=1 (9)

with v′i ∈ Rd, where d ≪ D. In our case, dataset F ∈ Mn,D(R) represents the hyperspectral image
F , where each column Fk ∈ Rn, 1 ≤ k ≤ D corresponds to a vectorized spectral band. PCA should
find a projective space such that the mean squared distance between the original vectors and their
projections is as small as possible. As we just show, this is equivalent to find the projection that
maximizes the variance.

Let us call wj ∈ RD, where j are the principal components. The aim of PCA is to find the set of
vectors {wj, 1 ≤ j ≤ D} such as

arg min
wj

[
n−1

n

∑
i=1

∥vi− < vi, wj > wj∥2

]
, ∀1 ≤ j ≤ D (10)
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Developing now the distance we have:

∥vi− < vi, wj > wj∥ = ∥vi∥2 − 2 < vi, wj >
2 + < vi, wj >

2 ·∥wj∥2

then, by adding the additional constraint that ∥wj∥2 = 1, replacing in Equation (10), and keeping
only terms that depend on wj, we obtain the following new objective function:

arg max
wj ,∥wj∥2=1

n−1
n

∑
i=1

< vi, wj >
2, ∀1 ≤ j ≤ D (11)

Since

var(< vi, wj >) = n−1
n

∑
i=1

(< vi, wj >)2 − (n−1
n

∑
i
(< vi, wj >))2

if we consider that the dataset F has been column-centered, which means that ∑n
i=1 vi = 0, then

var(< vi, wj >) = n−1 ∑n
i=1(< vi, wj >)2. Thus we can see that the PCA aims at finding principal

components that maximize the variance. The problem can be rewritten in a matrix way using
the development:

n−1
n

∑
i=1

< vi, wj >
2 = n−1(Fwj)

T(Fwj)

= wT
j (n

−1(FT F))wj = wT
j Vwj

where V = n−1(FT F), V ∈ MD,D(R), is the covariance matrix of F. Hence the problem to be
optimized is written as

arg max
wj ,∥wj∥2=1

wT
j Vwj, ∀1 ≤ j ≤ D (12)

Thanks to Lagrange multiplier theorem, we can rewrite the objective function Equation (12) as:

L(wj, λ) = wT
j Vwj − λ(wT

j wj − 1) (13)

where λ ∈ R. Since one should maximize this function, we had to derive it and to make it equal to
zero, i.e.,

∂L
∂wj

(wj, λ) = 2Vwj − 2λwj = 0

Finally, we obtain the solution:

Vwj = λwj (14)

Thus, the principal component wj that satisfies the objective function is an eigenvector of the
covariance matrix V, and the one maximizing L(wj, λ) is the one with the largest eigenvalue. Then
we can have all the wj by simply computing the SVD of V.

There are different approaches to choose the reduced dimension d, that is the number of the
principal component to be kept. The underlying assumption is the following: if the intrinsic
dimension of the data is d, then the remaining d − D eigenvalues, corresponding to the eigenvectors
that are discarded, should be significantly small. This principle is expressed using Prop =

∑d
j=1 λj/ ∑D

j=1 λj, which is equal to the proportion of the original variance kept. Typically, in all our
examples we fix Prop = 0.9.
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3.2. Covariance Matrix and Pearson Correlation Matrix

The covariance between two channels (or spectral bands) of an hyperspectral image F is
computed as

Covar
(
F:,:,k,F:,:,k′

)
=

1
n

n1

∑
i=1

n2

∑
j=1

[
Fi,j,k −E(F )

] [
Fi,j,k′ −E(F )

]
(15)

where E(F ) is the mean of the hyperspectral image. The covariance is very meaningful; however,
this is not a similarity measure [27], in the sense of a metric, since it is not range limited. In order to
fulfill this requirement, a solution consists in normalizing the covariance, which leads to the notion
of Pearson correlation:

Corr
(
F:,:,k,F:,:,k′

)
=

n1

∑
i=1

n2

∑
j=1

[
Fi,j,k −E(F )

σk

] [
Fi,j,k′ −E(F )

σ′
k

]
(16)

where σk =

[
1
n ∑n1

i=1 ∑n2
j=1

(
Fi,j,k −E(F )

)2
]1/2

The correlation coefficient varies between +1 and −1,

such that Corr
(
F:,:,k,F:,:,k′

)
= 1 involves that F:,:,k and F:,:,k′ perfectly coincide. It has been proved

that the best fitting case corresponds to [28]:

Fi,j,k = Corr
(
F:,:,k,F:,:,k′

) σk
σ′

k
(Fi,j,k′ −E(F )) +E(F ) (17)

Therefore, from Equation (17), we can see that the correlation is a linear coefficient between
Fi,j,k and Fi,j,k′ . This means that Pearson correlation is a similarity criterion which depends on the
intensities of the images and their linear relations.

3.3. MorphPCA and Its Variants

The fundamental idea of MorphPCA consists in replacing the covariance matrix V of PCA, which
represents the statistical interaction of spectral bands, by a covariance matrix VMorpho computed from
a morphological representation of the bands. Therefore, mathematical morphology is fully integrated
in the dimensionality reduction problem by standard SVD computation to solve

VMorphowj = λjwj

The corresponding principal components wj provide the projection space for the hyperspectral
image F . This principle is illustrated in the diagram of Figure 4.
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Figure 4. Global process of MorphPCA.

We propose three variants of MorphPCA which are summarized in the flowchart of Figures 5–7.
An example of three different bands embedded in the space produced by these MorphPCA techniques
is depicted in Figure 8.

Figure 5. Process of scale-space decomposition Morphological Principal Component Analysis
(MorphPCA).
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Figure 6. Process of pattern spectrum MorphPCA.

Figure 7. Process of distance function MorphPCA.
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Figure 8. Top, three examples of spectral bands of Pavia image: (a) ♯1; (b) ♯50; (c) ♯100; middle;
(d–f) pattern spectrum (PS) of corresponding spectral bands; (g–i) Molchanov distance functions of
corresponding spectral bands.

3.3.1. Scale-Space Decomposition MorphPCA

In the first variant, we just use the area-based nonlinear scale-space discussed in the previous
section. So the grey-scale image of each spectral band F:,:,k is decomposed into residues of area
openings and area closings according to the discretization into S scales for each operator, i.e.,
rl(F:,:,k) = γa

sl−1
(F:,:,k) − γa

sl
(F:,:,k) and r−l(F:,:,k) = φa

sl
(F:,:,k) − φa

sl−1
(F:,:,k), 1 ≤ l ≤ S. Thus

we have increased the dimensionality of the initial dataset from a tensor (n1, n2, D) to a tensor
(n1, n2, D, 2S + 1). As discussed in [15], this tensor can be reduced using high order-SVD techniques.
We propose here to simply compute a covariance matrix as the sum of the covariance matrices from
the various scales. More precisely, we introduce VMorpho-1 ∈ MD,D(R) with :

VMorpho-1 =
S

∑
l=1

(V(l)) +
S

∑
l=1

(V(−l)) (18)

where the covariance matrices at each scale l is obtained as

V(l)k,k′ = Covar
(
rl(F:,:,k), rl(F:,:,k′)

)
, 1 ≤ k, k′ ≤ D

We note that it involves an assumption of independence of the various scales. We remark also
that this technique is different from the classical approaches of differential profiles as [5] where the
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morphological decomposition is applied after computing the spectral PCA (i.e., morphology plays
a role in spatial/spectral classification but not for spatial/spectral dimensionality reduction as in
our case).

3.3.2. Pattern Spectrum MorphPCA

In the second variant, we can consider a very compact representation of the morphological
information associated to the area-based nonlinear scale-space of each spectral band. It simply
involves considering the area-based PS of each spectral band as the variable to be used to find
statistical redundancy on the data. In other words, the corresponding covariance matrix VMorpho-2 ∈
MD,D(R) is defined as :

VMorpho-2 k,k′ = Covar
(

PSa(F:,:,k, l), PSa(F:,:,k′ , l)
)

(19)

with 1 ≤ k, k′ ≤ D and where PSa(F:,:,k, l), −S ≤ l ≤ S, is the area-based pattern spectrum obtained
by area-openings and area-closings. We note that the pattern spectrum can be seen as a kind of pdf of
image structures. Consequently the MorphPCA associated to it explores the intrinsic dimensionality
of sets of distributions instead of sets of vectors. For illustrating the information carried out by
the PS, we have provided in Figure 8 the pattern spectra computed from three different bands of
a hyperspectral image.

In order to better understand the interest of VMorpho-2, we propose an analysis based on its
Pearson correlation counterpart. Once the correlation of PS distribution is calculated, we have a linear
coefficient between PSa(F:,:,k, l) and PSa(F:,:,k′ , l). However, since the PS is the result of nonlinear
operations, the underlying extracted features are naturally nonlinear.

Let us consider the two binary images of Figure 9a, which represent two objects having exactly
the same size. If the correlations are calculated, we have:

Corr (image1, image2) = 0

Corr (PSa(image1), PSa(image2)) = 1

(a)

(b)

Figure 9. (a) Example of a pair of binary images for pattern spectrum correlation discussion;
(b) Example of triplet of binary images for distance function correlation discussion.
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Hence, we can see that the morphological distribution being the same, the PS correlation is
maximal. In a certain way, we observe that this transform builds size-invariants from the images
and consequently it is robust to some groups of transforms and deformations. For instance, it is
invariant to rotation and to translation.

Classical PCA on the spectral bands and the MorphPCA based on the PS can be compared by
the corresponding correlation matrices from a hyperspectral image, such as the example plotted in
Figure 10a,b. From this visualization, we already observe that the bands are better discriminated
between them.
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Figure 10. Visualization of the correlation matrix of (a) the spectral bands of Pavia hyperspectral
image; (b) the PS of its spectral bands; (c) the distance function of its spectral bands.

3.3.3. Distance Function MorphPCA

Classical PCA for hyperspectral images is based on exploring covariances between spectral
intensities. The previous MorphPCA involves changing the covariance into a morphological
scale-space representation of the images. An alternative is founded when transforming each spectral
band from an intensity based map to a metric based map where at each pixel the value is associated to
both the initial intensity and the spatial relationships between the image structures. This objective can
be achieved using the Molchanov grey-scale distance function [26] for each spectral band dist(F:,:,k).
The new covariance matrix VMorpho-3 ∈ MD,D(R) is now defined as:

VMorpho-3 k,k′ = Covar
(
dist(F:,:,k), dist(F:,:,k′)

)
(20)

with 1 ≤ k, k′ ≤ D. Figure 8 depicts the corresponding grey-scale distance function from three
spectral band of a hyperspectral image. We note that this function carries out simultaneously both
intensity and shape information from the image.

Let consider in detail the expression of the covariance of distance functions:

Covar
(
dist(F:,:,k), dist(F:,:,k′)

)
=

Covar

 max(F:,:,k)

∑
h=min(F:,:,k)

d(Xs(F:,:,k)),
max(F:,:,k)

∑
h′=min(F:,:,k)

d(Xh′(F:,:,k′))

 =

max(F:,:,k)

∑
h=min(F:,:,k)

max(F:,:,k)

∑
h′=min(F:,:,k)

Covar
(
d(Xh(F:,:,k)), d(Xh′(F:,:,k′))

)
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where Xh(F:,:,k) denotes an upper level set at threshold h. The central term is the covariance between
two binary distance functions and can be developed as follows:

Covar
(
d(Xh(F:,:,k)), d(Xh′(F:,:,k′))

)
=

E
(
d(Xh(F:,:,k)), d(Xh′(F:,:,k′))

)
−E (d(Xh(F:,:,k)))E

(
d(Xh′(F:,:,k′))

)
=

n−1 < d(Xh(F:,:,k)), d(Xh′(F:,:,k′)) >L2 −E (d(Xh(F:,:,k)))E
(
d(Xh′(F:,:,k′))

)
where < ·, · >L2 denotes the L2 inner product. Using the classical relationship:

∥A − B∥2
L2 = ∥A∥2

L2 + ∥B∥2
L2 − 2 < A, B >L2 , ∀A, B ∈ Rn

we finally obtain that:

Covar
(
d(Xh(F:,:,k)), d(Xh′(F:,:,k′))

)
= (2n)−1(∥d(Xh(F:,:,k))∥2

L2 + ∥d(Xh′(F:,:,k′))∥2
L2)

−(2n)−1∥d(Xh(F:,:,k))− d(Xh′(F:,:,k′))∥2
L2 − n−1∥d(Xh(F:,:,k))∥2

L2∥d(Xh′(F:,:,k′))∥2
L2

From this latter expression, the term

∥d(Xh(F:,:,k))− d(Xh′(F:,:,k′))∥2
L2

can be identified as the Baddeley distance [29] used in shape analysis. This distance is somehow
equivalent to the most classical Hausdorff distance between the upper level sets h of spectral band
k and h′ of spectral band k′. Thus, the underlying similarity from this covariance compares the
shape of the spectral channels, and extracts a richer description than Pearson correlation from the
spectral channels themselves. We note that the use of Hausdorff distance between upper level sets of
hyperspectral bands was previously used in [30].

Finally, to illustrate qualitatively the behavior of the distance function correlation, let us consider
this time the three binary images depicted in Figure 9b, where image 2 and image 3 represent the same
object placed at a different location on the image. One has:

Corr (image1, image2) = Corr (image1, image3)

Corr (dist(image1), dist(image2)) ̸= Corr (dist(image1), dist(image3))

That is, this similarity criterion related to the use of distance function is more discriminative to
the relative position of the objects on the image than the classical Pearson Correlation.

From Figure 10c, one can compare now the correlation matrix using the grey-scale distance
function with the usual correlation matrix Figure 10a. We note that this matrix provided also a better
discrimination of bands cluster than the Pearson correlation matrix used in standard PCA.

3.3.4. Spatial/Spectral MorphPCA

As we have discussed, VMorpho-2 represents a compact morphological representation of the
image; however, the spectral intensity information is also important for dimensionality reduction.
To come with a last variant of MorphPCA, we build another covariance matrix VMorpho-4 that
represents the spectral and spatial information without increasing the dimensionality by the sum
of two covariance matrices:

VMorpho-4 β = (1 − β)V + βVMorpho-2 (21)

with β ∈ [0, 1], and where obviously Vk,k′ = Covar
(
F:,:,k,F:,:,k′

)
and β stands for a regularization

term that balances the spatial over the spectral information. This kind of linear combination of
covariance matrices is similar to the one used in the combination of kernels, where kernels providing
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different information sources are combined to have a new kernel which integrates the various
contributions [12].

4. MorphPCA Applied to Hyperspectral Images

4.1. Criteria to Evaluate PCA vs. MorphPCA

We can now use PCA and the four variants of MorphPCA to achieve dimensionality reduction
(DR) of hyperspectral images. In order to evaluate the interest for such a purpose, it is necessary to
establish quantitative criteria that should be assessed. These criteria will evaluate both locally and
globally the effectiveness of the dimension reduction techniques.

• Local criteria.

Criterion 1 (C1) The reconstructed hyperspectral image F̃ using the first d principal
components should be a regularized version of F in order to be more spatially sparse.

Criterion 2 (C2) The reconstructed hyperspectral image F̃ using the first d principal
components should preserve local homogeneity and be coherent with the original
hyperspectral image F .

Criterion 3 (C3) The manifold of variables (i.e., intrinsic geometry) from the reconstructed
hyperspectral image F̃ should be as similar as possible to the manifold from original
hyperspectral image F .

• Global criteria.

Criterion 4 (C4) The number of bands d of the reduced hyperspectral image should be
reduced as much as possible. It means that a spectrally sparse image is obtained.

Criterion 5 (C5) The reconstructed hyperspectral image F̃ using the first d principal
components should preserve the global similarity with the original hyperspectral image
F . Or in other words, it should be a good noise-free approximation.

Criterion 6 (C6) Separability of spectral classes should be improved in the dimensionality
reduced space. That involves in particular a better pixel classification.

These criteria are used to analyze the effectiveness of the DR methods studying locally and
globally their ability to remove redundancy and to preserve the fully richness of the spectral and
spatial information.

In order to assess C1, we compute the watershed transform [25] on each channel Fk of the
hyperspectral image. Watershed transform is a morphological image segmentation approach which
in a certain way can be seen as an unsupervised classification technique. The advantage of using the
watershed is that it allows us to cluster the image according to the local homogeneity; thus, an image
with less details will have less spatial classes than an image with many insignificant details. Then, the
number of clusters ∥Nk∥ of Fk is considered as an estimation of the image complexity. To evaluate the
complexity of the reconstructed hyperspectral image, the number of spatial classes is counted after
having done a watershed on each band. Finally, the mean of the number of spatial classes is taken, i.e.,

Errorsparse spatially = (D−1)
D

∑
k=1

∥Nk∥

Assessment of C2, which involves image homogeneity, is based on a partition of the image into
homogenous regions. Let us first remind the definition of a α-flat zones [31], used for such a purpose.
Given a distance d : RD ×RD −→ R, two pixels ( f (x), f (y)) ∈ (RD)2, from a vector-valued image
f , belong to the same α-flat zone of f if and only if there is a path (p0, . . . , pn) ∈ En such as p0 = x
and pn = y and ∀i ∈ [1, n − 1], d ( f (pi), f (pi+1)) ≤ α, with α ∈ R+. Computing the α-flat zones for
a given value of α produces therefore a spatial partition of the image into classes such that in each
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connected class the image values are linked by paths of local bounded variation. Working on the d
eigenvectors, the image partition πα associated to the α-flat zones quantize spatially and spectrally an
hyperspectral image, see example given in Figure 11. The goal of simultaneous spatial and spectral
quantization of a hyperspectral image has been studied in [32], where we have studied in detail the
dependency on the distance. Moreover, we have shown that in high dimensional spaces quantization
results are generally not good. For the case considered here, we propose to use the Euclidean distance
on the reduced space by PCA or MorphPCA. The choice of α is done in order to guarantee a number
C of α-flat zones similar for all the compared approaches. We can expect that, by fixing the number
of zones in the partition, the difference between a partition and another one depends exclusively
on the homogeneity of the image. Now, using the partition πα, the spectral mean value of pixels
from the original image F in each spatial zone is computed. This quantization produces a simplified
hyperspectral image, denoted Fπα . Finally, we assess how far pixels of the original image from each
α-flat zone are from their mean; which involves computing the following error

ErrorHomg =
D

∑
k=1

n1,n2

∑
i,j=1

|Fi,j,k −Fπα
i,j,k|2

This criterion can consequently be seen as a way to see the trustworthiness of the DR technique,
since it measures if the homogeneous partition of the reduced hyperspectral image corresponds to
the homogeneous zone of the original image.

(a) (b)

Figure 11. (a) A 3-variate image (first three eigenimages after PCA on Pavia hyperspectral image) and
(b) its corresponding α-flat zone partition into 84931 spatial classes using the Euclidean distance.

C3 has been evaluated by means of two manifold learning criteria called the K-intrusion and
K-extrusion [33]. They are based on other criteria called continuity and trustworthiness [34]. These
criteria reveal DR behavior in terms of its ability to preserve the data manifold structure. We have first
sampled randomly 10 thousands spectra from our hyperspectral images, where each spectrum is a
vector of dimension D. Then we have modelled the manifold by a graph where each node is a vector
and each edge is the pairwise distance. We used the Euclidean distance as the pairwise distance. For
the rest of the paragraph we note by xi a point from the original manifold, νK

i its neighborhood of size
K, x̃i the same point from the manifold after a DR and ν̃K

i its corresponding neighborhood of size K. A
neighborhood of size K at point xi is composed of the K closest points to xi according to used metric.
More precisely, the goal of K-extrusion is to measure how the points that were in the K-neighborhood
of xi are not preserved in the K-neighborhood of x̃i after DR. The K-intrusion evaluates if points on
the K-neighborhood of x̃i on the DR manifold were in the K-neighborhood of xi, i.e.,

Mintrusion(K) = 1 − 2
G(K)

×
n

∑
i=1

∑
j∈ν̃K

i \νK
i

r(i, j)− K (22)
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Mextrusion(K) = 1 − 2
G(K)

×
n

∑
i=1

∑
j∈νK

i \ν̃K
i

˜r(i, j)− K (23)

where r(i, j) is the rank of the data xj in the ordering according to the distance from xi, and
respectively ˜r(i, j) the rank of x̃j in the ordering according to the distance from x̃i, and the term GK
scales the measure to be between zero and one, i.e.,

G(K) =

{
NK(2N − 3K − 1) if K < N \ 2

N(N − K)(N − K − 1) if K ≥ N \ 2
(24)

For a better understanding of these formulae, see [35]. An important point is the dependence
of these parameters on the size of the neighborhood. From Equations (22) and (23), the following
parameters are computed [35]:

Q(K) =
Mextrusion(K) + Mintrusion(K)

2
(25)

B(K) = Mintrusion(K)− Mextrusion(K) (26)

The interest of Q(K) is that it estimates in average the quality of a DR technique, whereas B(K)
reveals its behavior as being more intrusive or extrusive.

In order to assess C4, as classically done, the fraction of explained covariance is fixed. Then,
the number of principal components needed is counted. The rationale is based on the fact that a good
DR technique should reduce the number of dimensions and extract a limited number of features
that would explain most of the image. However, since this criterion is linked to a sparsity criterion,
we would like to add a distortion criterion, C5.

The evaluation of C5 is founded on computing a pattern spectrum of both the original
hyperspectral image and the DR image. An important point is that the pattern spectrum will be
computed by openings on the hyperspectral image viewed as a 3D image. By doing such assumption,
the 3D openings are decomposing in a simultaneous way the spatial/spectral object of the image and
the corresponding curves of the PS will represent the distribution of both the spatial and the spectral
objects. Two hyperspectral images are similar if they have the same spectral/spatial size distribution.
As discussed in Section 2, we prefer to use the cumulative PS in order to obtain a smoother
curve. Normally we cannot deal with both spatial/spectral distortions with the reconstruction
error of the two images. However we will also assess the SNR of the reconstruction error as an
additional parameter.

Finally, C6 is related to supervised pixel classification of the hyperspectral image. We have
considered the least square SVM algorithm [11] as a learning technique, with a linear kernel or RBF
kernel, where the RBF kernel is initialized for each DR technique using cross validation. For each
supervised classification run, we used for the AVIRIS Indian Pine Image 5% of the available data as
a training set and the remaining 95% to validate. For the ROSIS Pavia University image we use a
subset of 50 spectra (about 1% of the available data) per class as a training set and the remaining
spectra to validate.

4.2. Evaluation of Algorithms

The studied DR techniques presented are listed and compared upon three mathematical and
computing properties in Table 1. These properties were also considered in the excellent comparative
review [3]. For comparison, we have also included in the table the Kernel-PCA (KPCA), which is a
powerful generalization of PCA allowing integrating morphological and spatial features into DR.

The first one is the number of free parameters to be chosen. The interest of having these free
parameters is that it provides more flexibility to the techniques, whereas the related inconvenient is
the difficulty for properly tuning the right parameter. We notice that KPCA provides good flexibility
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thanks to the choice of any possible kernel which fits the data geometry. The most simple algorithms
are the PCA, and the distance function MorphPCA. Then, we have the scale-space decomposition
MorphPCA, and finally the pattern spectrum MorphPCA. The second issue analyzed is the
computational complexity, and the third one is the memory requirements. From a computational
viewpoint, the most demanding step in the PCA is the SVD, which can be done in O(D3). PCA is
the technique with the smallest computational need. On the contrary, the computational requirement
of KPCA is O(n3); since n ≫ D, this kind of algorithm seems infeasible in standard hyperspectral
images. That is the reason why most of hyperspectral KPCA techniques use tricks to be able to
deal with the high number of spectra [13,36,37]. All these techniques lead to a spatial distortion,
which is not avoidable by the need of a sampling procedure aiming at reducing the number of
spectra. Between the complexity of PCA and KPCA, we have our proposed MorphPCA algorithms.
Regarding MorphPCA, the computationally demanding step is the computation of the morphological
representation used in the corresponding covariance matrix. The complexity estimation has been
carried out each time in the worse case; however, efficient morphological algorithms can improve
this part. Distance function MorphPCA is last demanding, then the scale-space decomposition
MorphPCA and finally the pattern spectrum MorphPCA. Regarding memory needs, for the PCA,
the pattern spectrum MorphPCA, and the distance function MorphPCA, the steps requiring more
memory is the storage of the covariance matrix, just of O(D2). The Spatial/Spectral MorphPCA needs
to store 2 covariance matrices then its memory need is O(2D2); similarly the scale-space MorphPCA
needs to store 2S + 1 covariance matrices, then its required memory is O((2S + 1)D2). Note that
KPCA uses a Gram matrix of size (n × n).

Table 1. Comparison of the properties of dimensionality reduction algorithms for
hyperspectral images.

Technique Parameter Computational Memory
(1) (2) (3)

PCA Prop O(D3) O(D2)
MorphPCA Morpho-1 Prop, S O(DnSS(2S + 1)) O(D2(2S + 1))
MorphPCA Morpho-2 Prop O(DnSS(2S + 1)) O(D2)
MorphPCA Morpho- 3 Prop O(Dn(b − a)) O(D2)
MorphPCA Morpho-4 β Prop, β O(DnSS(2S + 1)) O(2D2)

KPCA Prop, K O(n3) O(n2)

4.3. Evaluation on Hyperspectral Images

The assessment of the performance of PCA and MorphPCA has been carried out on three
hyperspectral images. The first image was acquired over the city of Pavia (Italy) and it represents
the university campus. The dimensions of the image are 610 × 340 pixels, with D = 103 spectral
bands and its geometrical resolution is of 1.3 m. We also used a second hyperspectral image which
represents the University of Houston campus and the neighboring urban area at the spatial resolution
of 2.5 m and which dimensions are 349 × 1905 pixels and D = 144 spectral bands [19]. The third
image, acquired over the region of the Indian Pines test site in North-western Indiana, is composed for
two-thirds of agriculture, and one-third of forest. The dimensions of this image are 145 × 145 pixels,
D = 224 spectral bands and its geometrical resolution is of 3.7 m.

We have applied classical PCA and the different variants of MorphPCA to Pavia hyperspectral
image. Figure 12 shows the first three eigenimages, visualized as a RGB false color. We note that
the pattern spectrum MorphPCA requires d = 5 to represent 92% of the variance whereas the other
approaches only impose d = 3. An interesting aspect observed on the projection of the 103 spectral
channels of Pavia hyperspectral image into the first two eigenvectors is how PCA and the scale-space
decomposition MorphPCA cluster the bands linearly, see Figure 13a,b. Bands close in the projection
are also near in the spectral domain, whereas the pattern spectrum MorphPCA, Figure 13c, and
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distance function MorphPCA, Figure 13d, tend to cluster spectral bands which are not necessary
spectrally contiguous. This can be explained thanks to Figure 10, where the MorphPCA correlation
matrices are different from the classical PCA one.

(a) (b)

(c) (d)

Figure 12. RGB false color visualization of first three eigenimages from Pavia hyperspectral image:
(a) classical PCA on spectral bands; (b) scale-decomposition MorphPCA; (c) pattern spectrum
MorphPCA; (d) distance function MorphPCA.

It can be noticed that in classical manifold learning techniques, the goal is to decrease the
dimension of the data while keeping some properties on the data manifold. We work here on the
manifold of the channels. This manifold is easier to use, but finding the good β in VMorpho-4 β that
would maintain some properties of the manifold is not always easy, since we had to deal with a
double optimization problem, i.e., β and d.

From a quantitative viewpoint, one can see in Table 2 that globally MorphPCA produces a
more homogenous regularization of the image than classical PCA, especially the distance function
MorphPCA and Spatial/Spectral MorphPCA with an appropriate β = 0.2, which gives the lowest
values of ErrorHomg. We noted that Errorsparse spatially follows a different ranking. A good method
is the one with a good trade-off between both criteria, since one wants a DR to be trustworthy,
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which is evaluated thanks to ErrorHomg. However, if the signal is too noisy, one may prefer a
sparser representation. According to these criteria, the distance function MorphPCA and the pattern
spectrum MorphPCA seem to have the best result. We can also note that if we use manifold learning
parameters for criterion C3, see Figure 14, the pattern spectrum MorphPCA has the best results.
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Figure 13. Hyperspectral band projection into the first two eigenvectors (i.e., image manifold) from
Pavia hyperspectral image: (a) classical PCA on spectral bands; (b) scale-decomposition MorphPCA;
(c) pattern spectrum MorphPCA; (d) distance function MorphPCA.
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Figure 14. Intrusion/Extrusion parameters for PCA and the different variants of MorphPCA from
Pavia hyperspectral image: (a) Q(K); (b) B(K).
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Table 2. Comparison of PCA and MorphPCA analysis using criteria C1 and C2: (a) for Pavia
hyperspectral image; (b) for Houston hyperspectral image; (c) for Indian Pines hyperspectral image.
The values have been normalized to the worst case, which gives 100.

(a)

V VMorpho-1 VMorpho-2 VMorpho-3

ErrorHomg 100 100 95.9 79.3
Errorsparse spatially 99.8 99.7 100 88.3

VMorpho-4 β VMorpho-4 β VMorpho-4 β

β = 0.8 β = 0.2 β = 0.5

ErrorHomg 93.2 83.9 88.3
Errorsparse spatially 93.3 96.7 98.6

(b)

V VMorpho-1 VMorpho-2 VMorpho-3

ErrorHomg 100 90.4 35.3 38.3
Errorsparse spatially 97.7 97.6 100 89

(c)

V VMorpho-1 VMorpho-2 VMorpho-3

ErrorHomg 98.1 100 96.5 97.8
Errorsparse spatially 91 100 91.2 82.7

With respect to criterion C5, we have computed the 3D pattern spectrum distribution of Pavia
hyperspectral image and of the different reduced images into d components, see Figure 15. From
this result, we can see that both PCA and scale-space decomposition MorphPCA follow very well the
hyperspectral image, since their spatial and spectral cumulative distributions are similar. However,
if one would like to denoise the hyperspectral image thanks to a DR technique, these results are
not always positive. If we compare the spatial and spectral cumulative distribution of the distance
function MorphPCA and the one of the hyperspectral image, we notice that for small 3D size (i.e.,
small spatial/spectral variations) that can be considered as noise, there are differences between
these two distributions. However, when the size increases, the distribution of the the distance
function MorphPCA tends to the hyperspectral image one. So it seems that the distance function
MorphPCA simplifies the spectral/spatial noise, considered as the small 3D objects, but keeps the
objects of interest.
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Figure 15. (a) 3D pattern spectrum distribution of Pavia hyperspectral image and of the different
reduced images into d components; (b) Corresponding 3D cumulative pattern spectrum distributions.
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Finally, Table 3 summarizes the results of supervised classification of respectively Pavia and
Indian Pine hyperspectral images. We note that results for Pavia image are quite similar in all the cases
even if MorphPCA seems to be better than PCA. Therefore, we have chosen to focus on the Indian
Pine image, which is more challenging for supervised classification benchmark, see also Figures 16
and 17. We note that MorphPCA improves the results, especially the scale-space decomposition
MorphPCA. To evaluate the classification results, first we fixed the dimension d of the reduce image.
We have chosen d = 5. Then, we used the least square SVM, which is a multi-class classification
technique, contrary to classical two-class SVM. We also used two simple kernels: the linear one, which
is the simplest one, and the RBF one, which is appropriate for hyperspectral images since we can
assume that these data follow Gaussian distribution. Finally, we study the influence of dimension d
and of the size of the training set on the different DR techniques over the classification results. For this
purpose we have depicted in Figures 18 and 19 the evolution of the kappa statistics. From the latter
plot we can see that the PCA and the pattern spectrum PCA have the worst results. By combining
the spectral and the spatial information, a better classification can be achieved. This is the case of the
distance function MorphPCA, the scale-space decomposition MorphPCA, and the Spatial-Spectral
MorphPCA for β = 0.2.

Ground truth PCA, OA : 43.9 Morpho-1, OA : 50.5

Morpho-2, OA : 41.5 Morpho-3, OA : 51.3 Morpho-4 β=0.2, OA : 43.5

Morpho-4 β=0.5, OA : 43.1 Morpho-4 β=0.8, OA : 43

Figure 16. Results of supervised classification using least square SVM with a linear kernel on Indian
Pines hyperspectral image. Note the OA is the overall accuracy.
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Table 3. Comparison of hyperspectral supervised classification on PCA and MorphPCA spaces using
least square SVM algorithm and different kernels: (a) Pavia hyperspectral image; (b) Indian Pines
hyperspectral image.

(a) Pavia Image

Overall Accuracy Overall Accuracy Kappa Statistic
with Linear Kernel with RBF Kernel with RBF Kernel

V 51.51 ± 0.9 84.9 ± 3.1 0.84 ± 1 × 10−4

VMorpho-1 59.6 ± 2.2 85.8 ± 2.6 0.84 ± 1 × 10−4

VMorpho-2 56.99 ± 1.1 85.2 ± 2.1 0.84 ± 1 × 10−4

VMorpho-3 59.9 ± 2.5 86.0 ± 1.9 0.84 ± 1 × 10−4

VMorpho-4 β, β = 0.2 61.0 ± 1.73 85.2 ± 1.1 0.83 ± 1 × 10−4

VMorpho-4 β, β = 0.5 59.9 ± 1.5 84.6 ± 1.0 0.83 ± 1 × 10−4

VMorpho-4 β, β = 0.8 57.87 ± 3 84.7 ± 2.5 0.83 ± 2 × 10−4

(b) Indian Pine image

Overall Accuracy Overall Accuracy Kappa Statistic
with Linear Kernel with RBF Kernel with RBF Kernel

V 43.9 ± 3.6 75.2 ± 3.7 0.73 ± 4.3 × 10−4

VMorpho-1 50.5 ± 3.8 79.6 ± 3.7 0.78 ± 4 × 10−4

VMorpho-2 41.5 ± 3.8 66.6 ± 4.6 0.63 ± 4.5 × 10−4

VMorpho-3 51.3 ± 3.2 79.1 ± 3.2 0.77 ± 3.7 × 10−4

VMorpho-4 β, β = 0.2 43.5 ± 3.3 75.1 ± 2.3 0.72 ± 2.6 × 10−4

VMorpho-4 β, β = 0.5 43.1 ± 2.9 71.2 ± 2.6 0.68 ± 3 × 10−4

VMorpho-4 β, β = 0.8 43.0 ± 2.2 69.7 ± 3.3 0.67 ± 3.9 × 10−4

Ground truth PCA, OA : 75.2 Morpho-1, OA : 79.6

Morpho-2, OA : 66.6 Morpho-3, OA : 79.1 Morpho-4 β=0.2, OA : 75.1

Morpho-4 β=0.5, OA :71.2 Morpho-4 β=0.8, OA : 69.7

Figure 17. Results of supervised classification using least square SVM with a RBF kernel on Indian
Pines hyperspectral image. Note the OA is the overall accuracy.
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Figure 18. Results of kappa statistic for the least square SVM with a RBF kernel and different number
of dimensions on Indian Pines hyperspectral image, the size of training set is equal to 5%.

Figure 19. Results of kappa statistic for the least square SVM with a RBF kernel and different
percentage of training set on Indian Pines hyperspectral image, the dimension of the reduced space is
equal to 5.

5. Conclusions

We have shown in this paper how to introduce spatial information in the process of
dimensionality reduction thanks to mathematical morphology operators. The representation
techniques that we introduced in the paper are based on the notion the MorphPCA. As we said in
the introduction, it might be possible to consider for such purpose a Kernel Principal Component
Analysis (KPCA), where the kernel handles jointly spatial and spectral information. However, as
discussed in Section 4.2, KPCA needs a Gram matrix of size n × n, where n is the number of pixels.
It is impossible to manipulate such a matrix with our test images on a standard computer. That is why
there are some works trying to approximate the gram matrix in order to perform the KPCA. Some of
them consider a small subset of the data which can be chosen randomly or according to some spatial
information. This kind of approach has been used with hyperspectral images for spectral-spatial
processing. However, these kind of works approximate the kernel, to perform dimensionality
reduction on the considered Hilbert space. Here dimensionality reduction is done on the space of
the data without any approximation on the morphological covariance VMorpho.

That is why we proposed techniques that are simple in computation and in memory storage and
that can reduce the dimension while considering the spatial information. To assess these techniques
we used typical criteria of dimensionality reduction which evaluate the fact that some properties are
kept on the manifold of data after the dimensionality reduction. Moreover, we also proposed some
criteria to evaluate the quality of the image after the dimensionality reduction. Some of them are
based on mathematical morphology, namely the 3D pattern spectrum and the α-flat zone to check
that the reconstructed image preserves global and local similarity to the original hyperspectral image.
Finally, we also perform a classification of the reduced data with different techniques. According to
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the entire set of criteria, adding spatial information improves the dimensionality reduction. However,
as we can see a good dimensionality reduction is obtained when we combine spatial and spectral
feature space. A technique that seems to fulfil this optimum is the MorphPCA based on the
distance function.

Finally, PCA has multiple applications on image processing; typically one can use the PCA to
perform denoising. For example in the case of multiple images representing the same scene but
corrupted by a Gaussian noise (like on multi-temporal images), it is possible to use the PCA to
reduce the dimension of the temporal data and then to project the data back on the high dimensional
space, so that we reduce the influence of the noise. This process can be done with MorphPCA.
Moreover, another case would be to use MorphPCA on fusion of information techniques like
pansharpening, which consists of increasing the spatial resolution of a multispectral or hyperspectral
image thanks to a grey scale image at high resolution. Some techniques for pansharpening are
based on PCA. In summary, MorphPCA can be an appropiate alternative to PCA in different image
processing applications.
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