Improving Inland Water Quality Monitoring through Remote Sensing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Dataset
2.2.1. Limnological Dataset
2.2.2. Remote Sensing Products
2.3. Ocean Color Algorithms Evaluation
2.3.1. Algorithms Used for Evaluation
Algorithm | Reference | Functional Form |
---|---|---|
OC3M | [31] | |
GSM | [32] | |
GIOP | [33] |
2.3.2. Level 0 MODIS data (L0_LAC)
2.4. Algorithm Development
2.4.1. Band Selection
2.4.2. Model Evaluation
Estimator | Formulas |
---|---|
Bias | |
NBias | |
RMSE | |
NRMSE |
3. Results and Discussion
3.1. Environmental Characteristics
Inlet | Middle | Outlet | |
---|---|---|---|
Mean ± SD (Min–Max) | Mean ± SD (Min–Max) | Mean ± SD (Min–Max) | |
chl-a | 15.37 ± 25.91 (0.3–163.54) | 146.48 ± 57.45 (4.4–373.8) | 154.68 ± 61.30 (2.2–339.4) |
TN | 1051.07 ± 429.80 (31–3010) | 2675.10 ± 1,215.92 (843–9300) | 2785.69 ± 1,342.21 (978–9159) |
TP | 535.04 ± 263.48 (58–1994) | 302.96 ± 158.46 (47–1030) | 329.20 ± 171.93 (40–1204) |
TN:TP | 1.96 ± 1.15 (0.61–7.21) | 8.82 ± 4.25 (0.10–23.51) | 8.46 ± 4.32 (2.45–22.26) |
3.2. Ocean Color Algorithms Performances
3.3. Locally-Tuned Algorithm
3.3.1. Band Selection
JFM | AMJ | JAS | OND | |
---|---|---|---|---|
Band 1 (620–670 nm) | 0.07 | 0.67 | 0.00 | 0.00 |
Band 2 (841–876 nm) | 0.00 | 0.71 | 0.01 | 0.01 |
Band 3 (459–479 nm) | 0.15 | 0.62 | 0.01 | 0.00 |
Band 4 (545–565 nm) | 0.25 | 0.58 | 0.00 | 0.00 |
Band 5 (1230–1250 nm) | 0.03 | 0.67 | 0.00 | 0.01 |
Band 6 (1628–1652 nm) | 0.02 | 0.70 | 0.00 | 0.00 |
Band 7 (2105–2155 nm) | 0.01 | 0.71 | 0.00 | 0.01 |
3.3.2. Calibration and Validation
R2 | Slope | Intercept | p-Value | |
---|---|---|---|---|
JFM | 0.53 | −426.81 | 144.78 | 0.003 |
AMJ | 0.56 | −289.51 | 137.72 | 0.008 |
JAS | 0.67 | 357.46 | 137.18 | 0.012 |
OND | 0.06 | −148.15 | 125.87 | 0.440 |
JFM | AMJ | JAS | OND | |
---|---|---|---|---|
Bias | 38.58 | 91.46 | 52.94 | 25.53 |
NBias | 0.23 | 0.27 | 0.46 | 1.74 |
RMSE | 45.2 | 112.08 | 62.02 | 27.16 |
NRMSE | 0.27 | 0.34 | 0.54 | 1.85 |
3.4. Possible Applications
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 1–14. [Google Scholar]
- Pitois, S.; Jackson, M.H.; Wood, B.J. Sources of the eutrophication problems associated with toxic algae: An overview. J. Environ. Health 2001, 64, 25–32. [Google Scholar] [PubMed]
- Mudroch, A. (Ed.) Planning and Management of Lakes and Reservoirs, An Integrated Approach to Eutrophication; UNEP International Environmental Technology Centre: Osaka, Japan, 1999.
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Kotak, B.G.; Zurawell, R.W. Cyanobacterial toxins in Canadian freshwaters: A review. Lake Reserv. Manag. 2007, 23, 109–122. [Google Scholar] [CrossRef]
- Fleming, L.E.; Rivero, C.; Burns, J.; Williams, C.; Bean, J.A.; Shea, K.A.; Stinn, J. Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae 2002, 1, 157–168. [Google Scholar] [CrossRef]
- Francis, G. Poisonous Australian Lake. Nature 1878. [Google Scholar] [CrossRef]
- Azevedo, S.M.F.O.; Carmichael, W.W.; Jochimsen, E.M.; Rinehart, K.L.; Lau, S.; Shaw, G.R.; Eaglesham, G.K. Human intoxication by microcystins during renal dialysis treatment in Caruaru—Brazil. Toxicology 2002, 181–182, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Recreational Water—Associated Disease Outbreaks—United States, 2009–2010. Available online: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6301a2.htm?s_cid=mm6301a2_w (accessed on 8 May 2014).
- Jogensen, S.E.; Bendoricchio, G. Fundamentals of Ecological Modeling, 3rd ed.; Elsevier: New York, NY, USA, 2001. [Google Scholar]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens. Environ. 2005, 96, 176–187. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Clayton, C. Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data. Environ. Monit. Assess. 2009, 159, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Ogashawara, I.; Alcântara, E.H.; Curtarelli, M.P.; Adami, M.; Nascimento, R.F.F.; Souza, A.F.; Stech, J.L.; Kampel, M. Performance analysis of MODIS 500-m spatial resolution products for estimating Chlorophyll-a concentrations in Oligo- to Meso-Trophic waters case study: Itumbiara Reservoir, Brazil. Remote Sens. 2014, 6, 1634–1653. [Google Scholar] [CrossRef]
- Gitelson, A.; Garbuzov, G.; Szilagyi, F.; Mittenzwey, K.H.; Karnielli, A.; Kaiser, A. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens. 1993, 14, 1269–1295. [Google Scholar] [CrossRef]
- Gons, H.J. Optical teledetection of chlorophyll a in turbid inland waters. Environ. Sci. Technol. 1999, 33, 1127–1132. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Bowles, J.H.; Povazhnyi, V.; Saprygin, V.; Wagner, E.J.; Patterson, K.W. HICO-based NIR-Red models for estimating Chlorophyll-a concentration in productive coastal waters. IEEE Geosci. Remote Sens. 2014, 11, 1111–1115. [Google Scholar] [CrossRef]
- Moreno-Madriñán, M.J.; Fischer, M.A. Performance of the MODIS FLH algorithm in estuarine waters: A multi-year (2003–2010) analysis from Tampa Bay, Florida (USA). Int. J. Remote Sens. 2013, 34, 6467–6483. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-α concentration in turbid productive waters: Experimental results. Appl. Opt. 2005, 44, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-α concentration in turbid productive waters: Modeling results. Appl. Opt. 2006, 45, 3577–3592. [Google Scholar] [CrossRef] [PubMed]
- Southwest Florida Water Management District. Lake Thonotosassa Surface Water Improvement and Management (SWIM) Plan; Southwest Florida Water Management District: Plant City, FL, USA, 2003.
- Cowell, B.C.; Dye, C.W.; Ada, R.C. A synoptic study of the limnology of Lake Thonotosassa, Florida. Part I. effects of primary treated sewage and citrus wastes. Hydrobiologia 1975, 46, 301–345. [Google Scholar] [CrossRef]
- Cowell, B.C.; Vodopich, D.S. Distribution and seasonal abundance of benthic macroinvertebrate in a subtropical Florida lake. Hydrobiologia 1981, 78, 97–105. [Google Scholar] [CrossRef]
- Florida Department of Environmental Regulation. Integrated Water Quality Assessment for Florida: 2012 305(b) Report and 303(d) List Update; Florida Department of Environmental Regulation—Division of Environmental Assessment and Restoration: Tallahassee, FL, USA, 2012. [Google Scholar]
- Clesceri, L.S.; Eaton, A.D.; Greenberg, A.E.; Franson, M.A.H. (Eds.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association & Water Environment Federation: Washington, DC, USA, 1998.
- Moreno-Madriñán, M.J. Analysis of limnological variables associated to water quality in lakes of Northwestern Hillsborough County, Florida. Fla. Sci. 2010, 73, 218–224. [Google Scholar]
- Moreno-Madriñán, M.J. Analysis of the relationship between Submerged Aquatic Vegetation (SAV) and water trophic status of lakes clustered in Northwestern Hillsborough County, Florida. Water Air Soil Poll. 2011, 214, 539–546. [Google Scholar] [CrossRef]
- Ocean Color Web. Available online: http://oceancolor.gsfc.nasa.gov/ (accessed on 3 February 2014).
- EOS ClearingHouse (ECHO). Available online: http://reverb.echo.nasa.gov/ (accessed on 3 February 2014).
- Fu, G.; Settle, K.; McClain, C.R. SeaDAS: The SeaWiFSData analysis system. In Proceedings of the 1998 Pacic Ocean Remote Sensing Conference, Qingdao, China, 28–31 July 1998; Secretariat: Beijing, China, 1998; pp. 73–77. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; O’Brien, M.C.; Siegel, D.A.; Toole, D.; Menzies, D.; Smith, R.C.; Mueller, J.L.; Mitchell, B.G.; Kahru, M.; et al. SeaWiFS Postlaunch Calibration and Validation Analyses; Part 3, Volume 11; National Aeronautics and Space Administration: Washington, DC, USA, 2000.
- Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a semianalytical ocean color model for global-scale applications. Appl. Opt. 2002, 41, 2705–2714. [Google Scholar] [CrossRef] [PubMed]
- Franz, B.A.; Werdell, P.J. A generalized framework for modeling of inherent optical properities in ocean remote sensing applications. In Proceedings of the 2010 Ocean Optics, Anchorage, AK, USA, 27 September–1 October 2010.
- Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res. 1988, 931, 10749–10768. [Google Scholar] [CrossRef]
- Gordon, H.R. Ocean color remote sensing: Influence of the particle phase function and the solar zenith angle. EOS Trans. Am. Geophys. Union 1986, 14, 1055. [Google Scholar]
- Ruddick, K.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef] [PubMed]
- Ogashawara, I.; Curtarelli, M.P.; Souza, A.F.; Augusto-Silva, P.B.; Alcântara, E.H.; Stech, J.L. Interactive Correlation Environment (ICE)—A statistical web tool for data collinearity analysis. Remote Sens. 2014, 6, 3059–3074. [Google Scholar] [CrossRef]
- Beaulieu, M.; Pick, F.; Gregory-Eaves, I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr. 2013, 58, 1736–1746. [Google Scholar] [CrossRef]
- Smith, V.H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 1983, 221, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Orihel, D.M.; Bird, D.F.; Brylinsky, M.; Chen, H.; Donald, D.B.; Huang, D.Y.; Giani, A.; Kinniburgh, D.; Kling, H.; Kotak, B.G.; et al. High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes. Can. J. Fish. Aquat. Sci. 2012, 69, 1457–1462. [Google Scholar] [CrossRef]
- Xie, L.; Xie, P.; Li, S.; Tang, H.; Liu, H. The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Res. 2003, 37, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- Downing, J.A.; Watson, S.B.; McCauley, E. Predicting Cyanobacteria dominance in lakes. Can. J. Fish. Aquat. Sci. 2001, 58, 1905–1908. [Google Scholar] [CrossRef]
- Schindler, D.W. Evolution of phosphorus limitation in Lakes. Science 1977, 195, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef] [PubMed]
- Brezonik, P.L. Trophic state indices: Rationale for multivariate approaches. Lake Reserv. Manag. 1984, 1, 441–445. [Google Scholar] [CrossRef]
- Tilstone, G.H.; Lotliker, A.A.; Miller, P.I.; Ashraf, P.M.; Kumar, T.S.; Suresh, T.; Ragavan, B.T.; Menon, H.B. Assessment of MODIS-Aqua chlorophyll-α algorithms in coastal and shelf waters of the eastern Arabian Sea. Cont. Shelf Res. 2013, 65, 14–26. [Google Scholar] [CrossRef]
- Vincent, R.K.; Qin, X.; McKay, R.M.L.; Miner, J.; Czajkowski, K.; Savino, J.; Bridgeman, T. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sens. Environ. 2004, 89, 381–392. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. Res. 1997, 102, 17131–17141. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Alvain, S.; Moulin, C.; Dandonneau, Y.; Bréon, F.M. Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res. I 2005, 52, 1989–2004. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Hu, C.; English, D.; Cannizzaro, J.; Chen, Z.; Feng, L.; Boler, R.; Kovach, C. Towards a long-term chlorophyll-α data record in a turbid estuary using MODIS observations. Prog. Oceanogr. 2012, 109, 90–103. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; UNESCO/WHO/UNEP: London, UK, 1999. [Google Scholar]
- World Health Organization. Guidelines for Safe Recreational Water Environments, Volume I: Coastal and Fresh Waters; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogashawara, I.; Moreno-Madriñán, M.J. Improving Inland Water Quality Monitoring through Remote Sensing Techniques. ISPRS Int. J. Geo-Inf. 2014, 3, 1234-1255. https://doi.org/10.3390/ijgi3041234
Ogashawara I, Moreno-Madriñán MJ. Improving Inland Water Quality Monitoring through Remote Sensing Techniques. ISPRS International Journal of Geo-Information. 2014; 3(4):1234-1255. https://doi.org/10.3390/ijgi3041234
Chicago/Turabian StyleOgashawara, Igor, and Max J. Moreno-Madriñán. 2014. "Improving Inland Water Quality Monitoring through Remote Sensing Techniques" ISPRS International Journal of Geo-Information 3, no. 4: 1234-1255. https://doi.org/10.3390/ijgi3041234
APA StyleOgashawara, I., & Moreno-Madriñán, M. J. (2014). Improving Inland Water Quality Monitoring through Remote Sensing Techniques. ISPRS International Journal of Geo-Information, 3(4), 1234-1255. https://doi.org/10.3390/ijgi3041234