Urban Land Subsidence Analyzed Through Time-Series InSAR Coupled with Refined Risk Modeling: A Wuhan Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Datasets
2.3. Methods
2.3.1. Basic Principles of SBAS-InSAR
2.3.2. The GD-FAHP Model
- (1)
- Based on the obtained q-value, the factor comparison matrix Q is calculated, and then the priority judgement matrix F is built. In Equation (6), is the comparative value of the factor drivers for factor i and factor j; q is the factor driver; and is the prioritized discriminant value of factor i and factor j.
- (2)
- Each row of the prioritized relation matrix F is summed to obtain the vector C, and then the fuzzy judgment matrix R is computed. Finally, the sorting vector is computed, utilizing the sum-row normalization method, as shown in Equation (7).
- (3)
- To solve the sorting vector with higher accuracy, the sorting vector is used as the initial value for iteration. The eigenvector is obtained by iterating using the formula , in which the reciprocal judgment matrix E is transformed by the complementary judgment matrix R, until is satisfied. Then is the maximum eigenvalue , and is normalized to obtain the final sorting vector . At this point, the iteration is finished. If the condition is not satisfied, the iteration is carried out again with as the new initial value until the iteration condition is satisfied.
2.3.3. EWM Process
- (1)
- Determine the assessment factors and establish a standardized data matrix. Using the selected factors as the assessment set, categorize each as a positive or negative indicator and then apply data standardization. The ratio of each indicator in each unit is calculated by the formula . Then, the information entropy value contained in the jth indicator is obtained by the Equation (8), where i = 1, 2, … m, k is the adjustment coefficient and . After having nondimensionalized the ith unit’s jth indicator value, is the original value of the jth indicator data for the ith unit.
- (2)
- Calculate the difference coefficient of the indicator, according to the principle of the entropy value method, with the difference coefficient of the indicator ; a larger difference coefficient indicates that the higher the influence degree of this indicator is, the more likely it is the object of focusing consideration. Calculate the weight of each indicator by and establish the fuzzy relationship affiliation matrix according to Equation (9).
- (3)
- Determine the fuzzy integrated assessment matrix
2.3.4. Assessment Workflow
3. Results
3.1. Time-Series Analysis of Subsidence
3.2. Accuracy Assessment
3.2.1. Internal Precision Evaluation
3.2.2. Real Precision Evaluation
3.3. Land Subsidence Risk Zonation Results
4. Discussion
4.1. Land Subsidence and Urbanization
4.2. Land Subsidence Induced by Underground Construction
4.3. Hydrogeological Effects on Land Subsidencce
4.4. Analysis of the Land Subsidence Risk Assessment
4.4.1. Hazards
4.4.2. Vulnerability
4.4.3. Results of the Risk Assessment of Wuhan
5. Conclusions
- (1)
- Wuhan exhibited a peak subsidence rate of −49 mm/a, with significant spatial heterogeneity. The greatest cumulative subsidence, reaching −135 mm, occurred in HS, where ground deformation was most pronounced. Subsidence areas are expanding outward, with new subsidence zones emerging in Hannan District. Overall, subsidence predominantly developed in the southern central urban area during the study period.
- (2)
- Land subsidence in Wuhan is driven by a combination of factors. Urban infrastructure construction emerged as the primary driver, with cumulative subsidence exceeding −98 mm in construction-intensive areas. Underground engineering activities and soft soil conditions exacerbated subsidence in surrounding regions. Seasonal rainfall variations influenced groundwater levels, further impacting subsidence dynamics. Notably, land uplift was observed during the July 2020 flood, albeit with a temporal lag. Additionally, hydrogeological conditions, such as soft soil layers and carbonate rock belts, facilitated subsidence occurrence.
- (3)
- The GD-FAHP method was employed to classify subsidence risk levels, identifying HS as a high-risk area, likely due to its thick, soft soil layers. The EWM-based vulnerability analysis categorized the main urban area as medium to high risk. The integrated risk assessment model highlighted high-risk zones concentrated in JH, HS, and WC, underscoring the significant impact of human activities on subsidence risk. These findings emphasize the need for targeted monitoring and mitigation efforts in high-risk areas. The proposed methodology demonstrates the applicability of geohazard risk evaluation in Wuhan and similar urban environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, Y.; Zhang, H.D.; Xie, M.W.; Jiang, Y.J.; Chicas, S.D.; Liu, J.N. A Possible Mechanism of High-Speed and Long-Distance Rockslides. J. Earth Sci. 2024, 35, 2158–2162. [Google Scholar] [CrossRef]
- Davydzenka, T.; Tahmasebi, P.; Shokri, N. Unveiling the Global Extent of Land Subsidence: The Sinking Crisis. Geophys. Res. Lett. 2024, 51, 11. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Z.X.; Chen, Z.W.; Wang, S.Y.; Liu, Y.T.; Gong, X.H. Analyzing surface deformation throughout China’s territory using multi-temporal InSAR processing of Sentinel-1 radar data. Remote Sens. Environ. 2024, 305, 114105. [Google Scholar] [CrossRef]
- Tao, Q.X.; Li, X.P.; Gao, T.F.; Chen, Y.; Liu, R.X.; Xiao, Y.X. Land subsidence monitoring and analysis in Qingdao, China using time series InSAR combining PS and DS. Geomat. Nat. Hazards Risk 2025, 16, 31. [Google Scholar] [CrossRef]
- Chen, B.B.; Gong, H.L.; Lei, K.C.; Li, J.W.; Zhou, C.F.; Gao, M.L.; Guan, H.L.; Lv, W. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 54–67. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, Y.Z.; Zhu, Z.L.; Ren, C.; Yang, F.; Huang, L.; Li, X. Spatial and temporal evolution of surface subsidence in Tianjin from 2015 to 2020 based on SBAS-InSAR technology. J. Geod. Geoinf. Sci. 2022, 5, 60–72. [Google Scholar]
- Zhou, L.; Guo, J.M.; Li, X.; Hu, J.Y. Monitoring and analyzing on ground settlement in Beijing area based on SBAS-InSAR. J. Geod. Geodyn. 2016, 36, 793–797. [Google Scholar]
- Guo, J.M.; Zhou, L.; Yao, C.L.; Hu, J.Y. Surface subsidence analysis by multi-temporal insar and grace: A case study in Beijing. Sensors 2016, 16, 1495. [Google Scholar] [CrossRef]
- He, X.F.; Gao, Z.; Xiao, R.Y.; Luo, H.B.; Jia, D.Z.; Zhang, Z.T. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring. Acta Geod. Cartogr. Sin. 2022, 51, 1338. [Google Scholar]
- Yu, C.; Li, Z.H.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Li, Z.W.; Hu, J. Research progress and methods of InSAR for deformation monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717–1733. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, W.; Yu, C.; Zhang, Q.; Zhnag, C.; Liu, Z.; Zhang, X.; Chen, B.; Du, J.; Song, C. Interferometric synthetic aperture radar for deformation mapping: Opportunities, challenges and the outlook. Acta Geod. Cartogr. Sin. 2022, 51, 1485–1519. [Google Scholar]
- Li, D.; Deng, K.Z.; Gao, X.X.; Niu, H.P. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1531–1537. [Google Scholar]
- Hu, J.Y.; Motagh, M.; Guo, J.M.; Haghighi, M.H.; Li, T.; Qin, F.; Wu, W.H. Inferring subsidence characteristics in Wuhan (China) through multitemporal InSAR and hydrogeological analysis. Eng. Geol. 2022, 297, 16. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.M.; Wang, H.S.; Sun, Q.S. Spatiotemporal Characterization of Land Subsidence and Uplift (2009–2010) over Wuhan in Central China Revealed by TerraSAR-X InSAR Analysis. Remote Sens. 2016, 8, 14. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, J.M.; Hu, J.Y.; Li, J.W.; Xu, Y.F.; Pan, Y.J.; Shi, M. Wuhan surface subsidence analysis in 2015–2016 based on Sentinel-1A data by SBAS-InSAR. Remote Sens. 2017, 9, 982. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.L.; Jin, M.Q.; Jing, Y.; Liu, Y.; Liu, Y.F.; Sun, W.; Wei, J.Q.; Chen, Y. Monitoring Land Subsidence in Wuhan City (China) using the SBAS-InSAR Method with Radarsat-2 Imagery Data. Sensors 2019, 19, 16. [Google Scholar] [CrossRef]
- Jiang, H.N.; Balz, T.; Cigna, F.; Tapete, D.; Li, J.A.; Han, Y.K. Multi-sensor InSAR time series fusion for long-term land subsidence monitoring. Geo-Spat. Inf. Sci. 2023, 27, 1424–1440. [Google Scholar] [CrossRef]
- Lyu, H.M.; Zhou, W.H.; Shen, S.L.; Zhou, A.N. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain. Cities Soc. 2020, 56, 14. [Google Scholar] [CrossRef]
- Jin, Y.; Gao, X.; Hu, Q.; Jia, Z. Risk Assessment of Urban Buildings Based on InSAR Technology. Sci. Surv. Mapp. 2021, 46, 76–79. [Google Scholar]
- Mercurio, C.; Calderón-Cucunuba, L.P.; Argueta-Platero, A.A.; Azzara, G.; Cappadonia, C.; Martinello, C.; Rotigliano, E.; Conoscenti, C. Predicting Earthquake-Induced Landslides by Using a Stochastic Modeling Approach: A Case Study of the 2001 El Salvador Coseismic Landslides. ISPRS Int. J. Geo-Inf. 2023, 12, 28. [Google Scholar] [CrossRef]
- Moresi, F.V.; Maesano, M.; di Cristofaro, M.; Mugnozza, G.S.; Brunori, E. Evaluating Shallow Landslide Prediction Mapping by Using Two Different GIS-Based Models: 4SLIDE and SHALSTAB. ISPRS Int. J. Geo-Inf. 2025, 14, 19. [Google Scholar] [CrossRef]
- Komu, M.P.; Nefeslioglu, H.A.; Gokceoglu, C. Modeling Shallow Landslide Runout Distance in Eocene Flysch Facies Using Empirical-Statistical Models (Western Black Sea Region of Türkiye). ISPRS Int. J. Geo-Inf. 2024, 13, 27. [Google Scholar] [CrossRef]
- Sundell, J.; Haaf, E.; Tornborg, J.; Rosén, L. Comprehensive risk assessment of groundwater drawdown induced subsidence. Stoch. Environ. Res. Risk Assess. 2019, 33, 427–449. [Google Scholar] [CrossRef]
- Zhao, F.M.; Gong, W.P.; Tang, H.M.; Pudasaini, S.P.; Ren, T.H.; Cheng, Z. An integrated approach for risk assessment of land subsidence in Xi’an, China using optical and radar satellite images. Eng. Geol. 2023, 314, 14. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Ishikawa, A.; Amagasa, M.; Shiga, T.; Tomizawa, G.; Tatsuta, R.; Mieno, H. The max-min delphi method and fuzzy dephi method via fuzzy integration. Fuzzy Sets Syst. 1993, 55, 241–253. [Google Scholar] [CrossRef]
- Chitsazan, M.; Rahmani, G.; Ghafoury, H. Land subsidence susceptibility mapping using PWRSTFAL framework and analytic hierarchy process: Fuzzy method (case study: Damaneh-Daran Plain in the west of Isfahan Province, Iran). Environ. Monit. Assess. 2022, 194, 16. [Google Scholar] [CrossRef]
- Jin, Y.F.; Yin, Z.Y.; Zhou, W.H.; Huang, H.W. Multi-objective optimization-based updating of predictions during excavation. Eng. Appl. Artif. Intell. 2019, 78, 102–123. [Google Scholar] [CrossRef]
- Gu, X.B.; Wu, S.T.; Ji, X.J.; Zhu, Y.H. The Risk Assessment of Debris Flow Hazards in Banshanmen Gully Based on the Entropy Weight-Normal Cloud Method. Adv. Civ. Eng. 2021, 2021, 11. [Google Scholar] [CrossRef]
- Ouyang, T.P.; Fu, S.Q.; Zhu, Z.Y.; Kuang, Y.Q.; Huang, N.S.; Wu, Z.F. A new assessment method for urbanization environmental impact: Urban environment entropy model and its application. Environ. Monit. Assess. 2008, 146, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.M.; Shen, S.L.; Zhou, A.N.; Yang, J. Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Sci. Total Environ. 2020, 717, 18. [Google Scholar]
- Zhao, Q.Z.; Liu, Y.; Yao, W.Q.; Yao, Y.B. Hourly Rainfall Forecast Model Using Supervised Learning Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 9. [Google Scholar] [CrossRef]
- Luo, X. Features of the shallow karst development and control of karst collapse in Wuhan. Carsologica Sin. 2013, 32, 419–432. [Google Scholar]
- Zhou, L.; Li, X.; Pan, Y.; Ma, J.; Wang, C.; Shi, A.; Chen, Y. Deformation monitoring of long-span railway bridges based on SBAS-InSAR technology. Geod. Geodyn. 2024, 15, 122–132. [Google Scholar] [CrossRef]
- Li, R.W.; Wang, P.W.; Tan, S.C.; Zhou, Y.B.; Liu, L.F.; Gou, C.D.; Yu, Y.L. Exploration of slope-type geological hazard susceptibility evaluation based on dynamic correction of SBAS-InSAR technology: A case study of Kang County in Gansu Province. Ecol. Inform. 2025, 85, 16. [Google Scholar] [CrossRef]
- Sierra, L.A.; Yepes, V.; Pellicer, E. A review of multi-criteria assessment of the social sustainability of infrastructures. J. Clean Prod. 2018, 187, 496–513. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Chen, P.Y. On the Diversity-Based Weighting Method for Risk Assessment and Decision-Making about Natural Hazards. Entropy 2019, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Zhang, S.B.; Hu, C.T.; Zhang, X.X.; Yang, S.W.; Yan, H.W.; Zhang, Z. Hazard assessment model of ground subsidence coupling AHP, RS and GIS—A case study of Shanghai. Gondwana Res. 2023, 117, 344–362. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, S.X.; Zhou, L.; Li, Q.L.; Xiao, J.H.; Cai, J.F. Detection of the Urban Surface Deformation and New Strategy for Flood Prevention in Wuhan Central District. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1015–1024. [Google Scholar]
- Hu, B.B.; Zhou, J.; Wang, J.; Chen, Z.L.; Wang, D.Q.; Xu, S.Y. Risk assessment of land subsidence at Tianjin coastal area in China. Environ. Earth Sci. 2009, 59, 269–276. [Google Scholar] [CrossRef]
- Qin, Y.Z.; Cao, L.; Li, S.M.; Ye, F.W.; Boloorani, A.D.; Liang, Z.X.; Huang, J.; Liu, G.F. Multisource geoscience data-driven framework for subsidence risk assessment in urban area. Int. J. Disaster Risk Reduct. 2024, 113, 22. [Google Scholar] [CrossRef]
- Chen, R.R.; Zhan, Q.; Jiang, X.Z.; Chen, J. Conical ground subsidence morphodynamics in the Yellow River Delta, China: Insights from InSAR analysis. J. Hydrol. Reg. Stud. 2025, 60, 19. [Google Scholar] [CrossRef]
- Hu, R.L.; Yue, Z.Q.; Wang, L.C.; Wang, S.J. Review on current status and challenging issues of land subsidence in China. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
SV (mm/a) | CUD (mm) | SS | CB | GDP | POD | RD (km/km2) | BD (km/km2) | Level |
---|---|---|---|---|---|---|---|---|
>0 | >0 | 0 | 0 | <1 | <0.1 | <5 | <1 | I |
0~−10 | 0~−10 | 1~5 | 0.1~0.5 | 5~10 | 1~2.5 | II | ||
−10~−20 | −10~−30 | 5~10 | 0.5~1 | 10~25 | 2.5~5 | III | ||
−20~−30. | −30~−50 | 10~25 | 1~1.5 | 25~50 | 5~10 | IV | ||
<−30 | <−50 | 1 | 1 | >25 | >1.5 | >50 | >10 | V |
Characterization | Pore Water in Loose Rock Types | Carbonate Rock Fissure Karst Water |
---|---|---|
Top plate burial depth (m) | 9~17 | 30~50 |
Water level and depth (m) | 0.5~9 | 3.4 |
Permeability (m/d) | 15~25 | 0.04~0.4 |
Single well gushing volume (m3/d) | 500~1000 | 10~500 |
Cumulative Subsidence | Subsidence Rate | Soft Soil | Carbonate Zone | |
---|---|---|---|---|
Weight | 0.4049 | 0.3699 | 0.078 | 0.1472 |
Unit GDP Density | Population Density | Building Density | Road Density | |
---|---|---|---|---|
Weight | 0.3206 | 0.3120 | 0.1991 | 0.1683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Liang, L.; Chen, Q.; He, H.; Li, H.; Qin, J.; Yang, F.; Li, X.; Bai, J. Urban Land Subsidence Analyzed Through Time-Series InSAR Coupled with Refined Risk Modeling: A Wuhan Case Study. ISPRS Int. J. Geo-Inf. 2025, 14, 320. https://doi.org/10.3390/ijgi14090320
Zhou L, Liang L, Chen Q, He H, Li H, Qin J, Yang F, Li X, Bai J. Urban Land Subsidence Analyzed Through Time-Series InSAR Coupled with Refined Risk Modeling: A Wuhan Case Study. ISPRS International Journal of Geo-Information. 2025; 14(9):320. https://doi.org/10.3390/ijgi14090320
Chicago/Turabian StyleZhou, Lv, Liqi Liang, Quanyu Chen, Haotian He, Hongming Li, Jie Qin, Fei Yang, Xinyi Li, and Jie Bai. 2025. "Urban Land Subsidence Analyzed Through Time-Series InSAR Coupled with Refined Risk Modeling: A Wuhan Case Study" ISPRS International Journal of Geo-Information 14, no. 9: 320. https://doi.org/10.3390/ijgi14090320
APA StyleZhou, L., Liang, L., Chen, Q., He, H., Li, H., Qin, J., Yang, F., Li, X., & Bai, J. (2025). Urban Land Subsidence Analyzed Through Time-Series InSAR Coupled with Refined Risk Modeling: A Wuhan Case Study. ISPRS International Journal of Geo-Information, 14(9), 320. https://doi.org/10.3390/ijgi14090320