Spatial-Temporal Evolution Characteristics Analysis of Color Steel Buildings in Lanzhou City
Abstract
:1. Introduction
2. Related Work
2.1. Study on the Spatiotemporal Evolution Rules and Characteristics of Typical Geographic Entities
2.2. Spatial and Temporal Evolution Law and Characteristics of Color Steel Plate Building Group
3. Materials and Methods
3.1. Study Area
3.2. Research Methods
3.2.1. Distribution and Transfer of Center of Gravity
3.2.2. Standard Deviation Ellipse
3.2.3. Compactness Index
3.2.4. Patch Density and Landscape Percentage
3.2.5. Weighted Kernel Density Analysis
3.2.6. The Extreme Point Detection Model
3.2.7. Kappa Coefficient
3.2.8. FLUS Model
3.3. Work Framework
4. Results
4.1. Accuracy Analysis of Extraction
4.2. The Overall Spatiotemporal Distribution Characteristics of Color Steel Plate Buildings
4.3. Characterization of the Shift in the Center of Gravity of the Color Steel Plate Building Group
4.4. The Analysis Results of Fragmentation and Aggregation for Color Steel Plate Buildings
4.5. Extraction of Kernel Density Extremum Points for Color Steel Plate Buildings
4.6. Predictive Analysis of Color Steel Plate Building Clusters
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, Y.; Jiao, L.; Liu, J.; Xu, G. Analysis of the Factors Affecting the Degree of Urban Expansion: Taking Wuhan City as an Example. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 417–426. [Google Scholar] [CrossRef]
- Deng, O.; Wang, S.; Ran, J.; Huang, S.; Zhang, X.; Duan, J.; Zhang, L.; Xia, Y.; Reis, S.; Xu, J.; et al. Managing urban development could halve nitrogen pollution in China. Nat. Commun. 2024, 15, 401. [Google Scholar] [CrossRef]
- Hecht, R.; Behnisch, M.; Herold, H. Innovative Approaches, Tools and Visualization Techniques for Analysing Land Use Structures and Dynamics of Cities and Regions (Editorial). J. Geovis Spat. Anal. 2020, 4, 19. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-Scenario Simulation of Urban Land Change in Shanghai by Random Forest and CA-Markov Model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Zhong, E.; Wang, S.; Zhang, J. Study on the spatial structure and driving force of urban areas in Beijingbased on building space structure. Geogr. Res. 2013, 32, 2055–2065. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, W.; Li, J.; Wang, S. Resource-Based Cities: Spatial Structure and Evolutionary Identification Based on Nighttime Light Images. Front. Earth Sci. 2022, 10, 929927. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Mu, H.; Wang, B.; Wang, S. Cities Are Going Uphill: Slope Gradient Analysis of Urban Expansion and Its Driving Factors in China. Sci. Total Environ. 2021, 775, 145836. [Google Scholar] [CrossRef]
- Bao, G.; Lu, J.; Wang, J. Experimental study on full-scale fire of temporary houses. Fire Saf. Sci. 2010, 19, 205–211. [Google Scholar] [CrossRef]
- Xue, D.; Yao, S.; Zhang, H. Contacting on the function and optimizing on the structure in Guanzhong urban agglomeration. Econ. Geogr. 2000, 52–60. [Google Scholar] [CrossRef]
- Yang, S.; Ma, J.; Wang, J. Reserch on spatial and temporal distribution of color steel building based on multi-source high-resolution satellite imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 2101–2105. [Google Scholar] [CrossRef]
- Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens. Environ. 2007, 111, 537–552. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Yang, X.; Li, C.; Xu, Y. A Triplet Network Fusing Optical and SAR Images for Colored Steel Building Extraction. Sensors 2023, 24, 89. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, S.; Fu, Y.; Yan, H.; Xue, Q. Spatio-temporal Agglomeration Characteristics of color steel plate buildings in lanzhou and their influence on urban heat island effect. Geogr. Geo-Inf. Sci. 2022, 38, 43–49. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, S.; Zhang, M.; Fu, Y. Analysis of influence of Concentration Density of Colored Steel Building on Urban Heat lsland Effect: Taking Lanzhou City as an Exampe. Sci. Technol. Eng. 2022, 22, 2185–2192. [Google Scholar]
- Bonsu, K.; Bonin, O. Urban Growth Process in Greater Accra Metropolitan Area: Characterization Using Fractal Analysis. J. Geovis. Spat. Anal. 2023, 7, 21. [Google Scholar] [CrossRef]
- Mubareka, S.; Koomen, E.; Estreguil, C.; Lavalle, C. Development of a Composite Index of Urban Compactness for Land Use Modelling Applications. Landsc. Urban Plan. 2011, 103, 303–317. [Google Scholar] [CrossRef]
- Sikder, S.K.; Behnisch, M.; Herold, H.; Koetter, T. Geospatial Analysis of Building Structures in Megacity Dhaka: The Use of Spatial Statistics for Promoting Data-Driven Decision-Making. J. Geovis. Spat. Anal. 2019, 3, 7. [Google Scholar] [CrossRef]
- Nunes, J. Geographic Space as a Set of Concrete Geographical Entities. In Cognitive and Linguistic Aspects of Geographic Space; Mark, D.M., Frank, A.U., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1991; pp. 9–33. ISBN 978-94-011-2606-9. [Google Scholar]
- Gao, B.; Yang, J.; Chen, Z.; Sugihara, G.; Li, M.; Stein, A.; Kwan, M.-P.; Wang, J. Causal Inference from Cross-Sectional Earth System Data with Geographical Convergent Cross Mapping. Nat. Commun. 2023, 14, 5875. [Google Scholar] [CrossRef]
- Gong, X.; Peng, S.; Lu, Y.; Wang, S.; Huang, X.; Ye, X. Social Network Analysis of Nonprofits in Disaster Response: The Case of Twitter During the COVID-19 Pandemic in the United States. Soc. Sci. Comput. Rev. 2023, 41, 2029–2054. [Google Scholar] [CrossRef]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of Tree Locations and Arrangements on Outdoor Microclimates and Human Thermal Comfort in an Urban Residential Environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef]
- Wang, L.; Guo, G.; Liu, Y. Structuring methods of geographic entities towards construction of smart cities. Bull. Surv. Mapp. 2022, 20–24. [Google Scholar] [CrossRef]
- Zhong, E. Deep MappingA Critical Engagement of Cartography with Neuroscience. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1988–2002. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.; Xing, H. Research on the key technology of geographic materialized data processing. Bull. Surv. Mapp. 2012, 550–562. [Google Scholar]
- Zhang, Y.; Jia, G.; Tao, Y.; Zhu, X.; Zuo, X.; Cui, L. Geographic entity spatial orginzation, variety characters and its application. Bull. Surv. Mapp. 2020, 132–138. [Google Scholar] [CrossRef]
- Chettry, V. A Critical Review of Urban Sprawl Studies. J. Geovis. Spat. Anal. 2023, 7, 28. [Google Scholar] [CrossRef]
- Zhilin, L.; Gong, X.; Chen, J.; Mills, J.; Li, S.; Zhu, X.; Peng, T.; Hao, W. Functional Requirements of Systems for Visualization of Sustainable Development Goal (SDG) Indicators. J. Geovis. Spat. Anal. 2020, 4, 5. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, Y.; Lu, H.; Wang, E.; Yun, W.; Cai, W. Geospatial Big Data Analytics Engine for Spark. In Proceedings of the 6th ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, Redondo Beach, CA, USA, 7 November 2017; Association for Computing Machinery: New York, NY, USA; pp. 42–45. [Google Scholar]
- Wang, S.; Zhong, E.; Cai, W.; Zhou, Q.; Lu, H.; Gu, Y.; Yun, W.; Hu, Z.; Long, L. A Visual Analytics Framework for Big Spatiotemporal Data. In Proceedings of the 2nd ACM SIGSPATIAL Workshop on Analytics for Local Events and News, Seattle, WA, USA, 6 November 2018; pp. 1–5. [Google Scholar]
- Osman, T.; Divigalpitiya, P.; Osman, M.M.; Kenawy, E.; Salem, M.; Hamdy, O. Quantifying the Relationship between the Built Environment Attributes and Urban Sustainability Potentials for Housing Areas. Buildings 2016, 6, 39. [Google Scholar] [CrossRef]
- Vařbuchta, P.; Hromádka, V. Index of Residential Development: Evaluation of the Possibility of New Residential Construction Depending on the City Plan. Buildings 2023, 13, 3016. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, W.; Yang, X.; Wei, S.; Yu, Y. The Framework of Technical Evaluation Indicators for Constructing Low-Carbon Communities in China. Buildings 2021, 11, 479. [Google Scholar] [CrossRef]
- De Siqueira, A.C.H.; Najjar, M.K.; Hammad, A.W.A.; Haddad, A.; Vazquez, E. Sustainable Urban Development in Slum Areas in the City of Rio de Janeiro Based on LEED-ND Indicators. Buildings 2020, 10, 116. [Google Scholar] [CrossRef]
- Yang, S.; Yan, H.; Li, Y.; He, Y. Effects of Temporary Color Steel Buildings on Urban Development and Urban Space Form in China. Preprints 2019, 2019040022. [Google Scholar]
- Xing, J.; Wu, Z.; Wang, G.; Yu, Z.; Niu, Z.; Zhang, P.; Dong, Y.; Li, H. Design and Construction Method of Color Steel Plate Maintenance Structure in Arc-shaped Buildings. Contam. Control Air-Cond. Technol. 2024, 1, 84–88. [Google Scholar]
- Hou, D.; Wang, S.; Xing, H. A Novel Benchmark Dataset of Color Steel Sheds for Remote Sensing Image Retrieval. Earth Sci. Inform. 2021, 14, 809–818. [Google Scholar] [CrossRef]
- Samat, A.; Gamba, P.; Wang, W.; Luo, J.; Li, E.; Liu, S.; Du, P.; Abuduwaili, J. Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images. Remote Sens. 2022, 14, 230. [Google Scholar] [CrossRef]
- Hong, W.; Yang, S.; Su, H.; Fu, Y.; Zhang, N. Spectral testing and analysis of color steel plate building based on satellite image. Spacecr. Recovery Remote Sens. 2023, 44, 113–124. [Google Scholar]
- Sun, M.; Deng, Y.; Li, M.; Jiang, H.; Huang, H.; Liao, W.; Liu, Y.; Yang, J.; Li, Y. Extraction and Analysis of Blue Steel Roofs Information Based on CNN Using Gaofen-2 Imageries. Sensors 2020, 20, 4655. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Jiang, L.; Wang, L.; Chen, J.; Zhao, Y. Semantic Segmentation of Remote Sensing Images Depicting Environmental Hazards in High-Speed Rail Network Based on Large-Model Pre-Classification. Sensors 2024, 24, 1876. [Google Scholar] [CrossRef]
- Song, X. Study of fire safety distance between color steel sandwich panel houses and tents. Fire Sci. Technol. 2011, 30, 1007–1010. [Google Scholar] [CrossRef]
- Piroglu, F.; Baydogan, M.; Ozakgul, K. An Experimental Study on Fire Damage of Structural Steel Members in an Industrial Building. Eng. Fail. Anal. 2017, 80, 341–351. [Google Scholar] [CrossRef]
- Zhou, G.; Zhao, J.; Jin, J. Study on the correlation between the fire traces and the fire condition of ALASS fiber color steel plate. Fire Sci. Technol. 2018, 37, 854–857. [Google Scholar]
- Gao, L.; Li, Y.; Yang, S.; Song, H. Spatial Coupling Analysis between Color Steel Buildings, Urban Hot Spot and Fire Point—A Case Study of Lanzhou. IOP Conf. Ser. Earth Environ. Sci. 2021, 693, 012036. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Hong, W.; Su, H.; Luo, Y. Research on the spatial and temporal distribution of industrial park in Xining City from the perspective of color steel plate building complex. Remote Sens. Nat. Resour. 2023. [Google Scholar]
- Jurdy, D.M.; Stefanick, M. Models for the Hotspot Distribution. Geophys. Res. Lett. 1990, 17, 1965–1968. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Yang, L.; Min, X.; Zhang, S. Research on the Spatial Distribution of Color Steel Sheds in Anning District, Lanzhou City. Geospat. Inf. 2012, 15, 53–55. [Google Scholar] [CrossRef]
- Ma, J.; Yang, S.; Jia, X.; Yan, R. Temporal and spatial change of color steel sheds in Anning district of Lanzhou city. Sci. Surv. Mapp. 2018, 43, 34–37. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, G.; Ding, L.; Du, M.; Yang, S. Analysis and Research on Temporal and Spatial Variation of Color Steel Tile Roof of Munyaka Region in Kenya, Africa. Sustainability 2022, 14, 14886. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Yang, S.; Ma, J. Research on Spatial Distribution Characteristics of Color Steel Buildings in Anning District of Lanzhou. J. Lanzhou Jiaotong Univ. 2019, 38, 110–114. [Google Scholar] [CrossRef]
- Gao, L.; Li, Y.; Yang, S.; Song, H. Analysis on Fire Rescue 0ptimization of Color Steel Building Complexes in Northwest China: A Case Study of Lanzhou. Geomat. Spat. Inf. Technol. 2021, 44, 31–39. [Google Scholar]
- Wang, H.; Zhang, B.; Liu, Y.; Liu, Y.; Xu, S.; Zhao, Y.; Chen, Y.; Hong, S. Urban Expansion Patterns and Their Driving Forces Based on the Center of Gravity-GTWR Model: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration. J. Geogr. Sci. 2020, 30, 297–318. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, L.; Wang, Y.; Gong, J.; Li, J.; Chen, Q. Urban Expansion Patterns and Their Driving Forces Analysis: A Comparison between Chengdu-Chongqing and Middle Reaches of Yangtze River Urban Agglomerations. Environ. Monit. Assess. 2023, 195, 1121. [Google Scholar] [CrossRef]
- Gu, G.; Wu, B.; Chen, Q.; Zhang, W.; Lu, R.; Lu, S.; Feng, X.; Liao, W. Spatial Differences and Influence Mechanisms of Construction Land Development Intensity in China, 2002–2020. Sci. Rep. 2023, 13, 11153. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Ouyang, Q.; Jiang, Z.; Liu, Z.; Tan, J.; Zhou, G. Urban Spatial Expansion and lts Influence Factors Based on RS/GIS: A Case Study in Changsha. Econ. Geogr. 2017, 37, 81–85. [Google Scholar] [CrossRef]
- Gaile, G.L. Measures of Spatial Equality. In Spatial Statistics and Models; Gaile, G.L., Willmott, C.J., Eds.; Theory and Decision Library; Springer: Dordrecht, The Netherlands, 1984; pp. 223–233. ISBN 978-94-017-3048-8. [Google Scholar]
- Li, X. Visualizing spatial equality of development. Sci. Geogr. Sin. 1999, 19, 63–66. [Google Scholar]
- Yuill, R.S. The standard deviational ellipse: An updated tool for spatial description. Geogr. Ann. Ser. B Hum. Geogr. 1971, 53, 28–39. [Google Scholar] [CrossRef]
- Lu, S. Characteristics and Driving Mechanism of Urban Space Expansion in Urumqi. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1025–1034. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Z.; Yang, L.; Wu, J.; Bian, J.; Zeng, J.; Liu, Z. Identifying the Spatial Differentiation Factors of Traditional Villages in China. Herit. Sci. 2023, 11, 149. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Wu, Z.; Song, J.; Wang, X.; Cheng, Y.; Zhang, N. On urbanization process and spatial expansion in the urban fringe of Beijing: A case study of Daxing District. Geogr. Res. 2008, 27, 285–293. [Google Scholar] [CrossRef]
- Batty, M. Exploring Isovist Fields: Space and Shape in Architectural and Urban Morphology. Environ. Plan. B Plan. Des. 2001, 28, 123–150. [Google Scholar] [CrossRef]
- Weng, Y.-C. Spatiotemporal Changes of Landscape Pattern in Response to Urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Tian, J.; Guo, J.; Liu, L.; Jiang, Z. A Study of Landscape Pattern of Land Consolidation Based on GIS and Landscape Ecology. Remote Sens. Nat. Resour. 2011, 1, 110–114. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial Heterogeneity in Urban Ecosystems: Reconceptualizing Land Cover and a Framework for Classification. Front. Ecol. Environ. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- Yu, W.; Ren, T.; Zhou, W.; Li, W. Forest fragmentation and its relationship with urban expansion in Guangdong-Hong Kong-Macao Great Bay Area, China. Acta Ecol. Sin. 2020, 40, 8474–8481. [Google Scholar]
- Fan, C.; Myint, S. A Comparison of Spatial Autocorrelation Indices and Landscape Metrics in Measuring Urban Landscape Fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Kaza, N. Landscape Shape Adjusted Compactness Index for Urban Areas. GeoJournal 2022, 87, 1399–1409. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Jia, K. Boundary identification and spatial pattern optimization of central urban areas based on POl data: Taking Gaotang County for example. Urban Dev. Stud. 2021, 28, 74–83. [Google Scholar] [CrossRef]
- Xie, Z.; Yan, J. Kernel Density Estimation of Traffic Accidents in a Network Space. Comput. Environ. Urban Syst. 2008, 32, 396–406. [Google Scholar] [CrossRef]
- Kang, L.; Liu, H.; Cheng, W.; Chen, X.; Li, J. A method of urban facility hot spot recognition considering attribute characteristics. Bull. Surv. Mapp. 2022, 8–14. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Z. Comparing Luojia 1-01 and VIIRS Nighttime Light Data in Detecting Urban Spatial Structure Using a Threshold-Based Kernel Density Estimation. Remote Sens. 2021, 13, 1574. [Google Scholar] [CrossRef]
- Podobnikar, T. Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures. Remote Sens. 2012, 4, 784–809. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Zhao, C.; Zhu, X.; Yuan, H.; Dai, T. Extreme Clustering—A Clustering Method via Density Extreme Points. Inf. Sci. 2020, 542, 24–39. [Google Scholar] [CrossRef]
- Netzel, P.; Slopek, J. Comparison of Different Implementations of a Raster Map Calculator. Comput. Geosci. 2021, 154, 104824. [Google Scholar] [CrossRef]
- Chmura Kraemer, H.; Periyakoil, V.; Noda, A. Kappa coefficients in medical research. Stat. Med. 2002, 21, 2109–2129. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Chen, G.; Leng, J.; Wen, Y.; Chen, G. Coupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones. Int. J. Geogr. Inf. Sci. 2020, 34, 1930–1952. [Google Scholar] [CrossRef]
- Song, H.; Yang, S.; Gao, L. Research on Spatial and Temporal Pattern Evolution of Large Color Steel Building in Yinchuan. IOP Conf. Ser. Earth Environ. Sci. 2021, 693, 012113. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Yang, S.; Yan, H. Spatial Distribution Characteristics of Color Steel Plate Buildings in Lanzhou City; Modern Environmental Science and Engineering: Brooklyn, NY, USA, 2019; pp. 583–589. [Google Scholar]
- Wang, H.; Li, D.; Ma, R. Simulation and Experimental Verification of Fire Safety Distance between Color Steel Sandwich Panel Houses. J. Tongji Univ. Nat. Sci. 2014, 42, 552–557. [Google Scholar] [CrossRef]
- Li, Y.; Jin, W.; Qiu, S.; Zuo, D.; Liu, J. Color-Coated Steel Sheet Roof Building Extraction from External Environment of High-Speed Rail Based on High-Resolution Remote Sensing Images. Remote Sens. 2023, 15, 3933. [Google Scholar] [CrossRef]
- Mills, G. The Radiative Effects of Building Groups on Single Structures. Energy Build. 1997, 25, 51–61. [Google Scholar] [CrossRef]
Indicator | White Color Steel Buildings | Red Color Steel Buildings | Gray Color Steel Buildings | Blue Color Steel Buildings | Mean |
---|---|---|---|---|---|
Kappa | 81.48 | 82.61 | 80.94 | 82.95 | 82.00 |
Year | Quantity | Area | ||||
---|---|---|---|---|---|---|
Minimum/m2 | Maximum/m2 | Sum/km2 | Average/m2 | Standard Deviation/m2 | ||
2013 | 20,497 | 4.58 | 34,500.28 | 11.71 | 571.07 | 1285.28 |
2014 | 22,724 | 4.58 | 48,804.17 | 13.38 | 588.75 | 1479.34 |
2015 | 25,528 | 4.58 | 48,804.17 | 14.45 | 565.96 | 1425.79 |
2016 | 25,638 | 4.58 | 58,962.08 | 15.02 | 585.99 | 1513.06 |
2017 | 27,318 | 4.58 | 58,962.08 | 15.39 | 563.52 | 1474.15 |
2019 | 26,996 | 4.58 | 58,962.08 | 14.73 | 545.62 | 1455.52 |
2020 | 26,551 | 4.58 | 59,059.43 | 14.67 | 552.35 | 1549.01 |
2021 | 26,425 | 4.58 | 59,059.43 | 14.72 | 557.20 | 1564.28 |
District | Year | Quantity | Area | ||||
---|---|---|---|---|---|---|---|
Minimum/m2 | Maximum/m2 | Sum/km2 | Average/m2 | Standard Deviation/m2 | |||
Anning | 2013 | 3397 | 11.61 | 29,078.83 | 1.56 | 457.53 | 1185.07 |
2014 | 3498 | 13.48 | 29,078.83 | 1.67 | 476.42 | 1228.85 | |
2015 | 3545 | 13.48 | 29,078.83 | 1.65 | 465.43 | 1218.06 | |
2016 | 2886 | 19.54 | 29,078.83 | 1.48 | 511.20 | 1389.40 | |
2017 | 2752 | 19.54 | 29,078.83 | 1.46 | 528.72 | 1427.87 | |
2019 | 2434 | 16.58 | 29,078.83 | 1.28 | 527.78 | 1514.71 | |
2020 | 2349 | 16.58 | 29,078.83 | 1.26 | 535.36 | 1539.80 | |
2021 | 2196 | 13.16 | 29,078.83 | 1.23 | 559.74 | 1627.33 | |
Chengguan | 2013 | 3524 | 11.21 | 23,468.54 | 2.85 | 807.87 | 1552.97 |
2014 | 4446 | 11.21 | 31,689.51 | 3.54 | 797.25 | 1549.21 | |
2015 | 5512 | 11.21 | 31,689.51 | 4.08 | 739.34 | 1459.27 | |
2016 | 6045 | 11.21 | 31,689.51 | 4.32 | 714.84 | 1423.64 | |
2017 | 7179 | 11.21 | 31,689.51 | 4.57 | 637.16 | 1320.72 | |
2019 | 7227 | 11.21 | 31,689.51 | 4.53 | 626.47 | 1299.61 | |
2020 | 7147 | 11.79 | 31,689.51 | 4.43 | 620.47 | 1289.78 | |
2021 | 7153 | 11.79 | 31,689.51 | 4.45 | 621.70 | 1289.25 | |
Honggu | 2013 | 3059 | 4.58 | 25,545.80 | 1.38 | 449.89 | 1472.78 |
2014 | 3673 | 4.58 | 31,265.57 | 1.64 | 446.75 | 1484.82 | |
2015 | 4288 | 4.58 | 31,265.57 | 1.87 | 435.34 | 1441.76 | |
2016 | 4348 | 4.58 | 58,962.08 | 2.05 | 471.40 | 1755.40 | |
2017 | 4455 | 4.58 | 58,962.08 | 2.17 | 487.96 | 1762.36 | |
2019 | 4526 | 4.58 | 58,962.08 | 2.36 | 522.40 | 1897.96 | |
2020 | 4595 | 4.58 | 59,059.43 | 2.51 | 546.96 | 2105.28 | |
2021 | 4595 | 4.58 | 59,059.43 | 2.51 | 546.96 | 2105.28 | |
Qilihe | 2013 | 6715 | 7.86 | 33,086.66 | 3.89 | 578.87 | 1346.25 |
2014 | 6869 | 7.86 | 48,804.17 | 4.13 | 601.43 | 1504.99 | |
2015 | 7637 | 7.86 | 48,804.17 | 4.36 | 571.31 | 1437.76 | |
2016 | 7601 | 7.86 | 48,804.17 | 4.44 | 584.66 | 1484.07 | |
2017 | 7955 | 7.86 | 48,804.17 | 4.37 | 549.81 | 1449.64 | |
2019 | 7727 | 7.21 | 33,086.66 | 3.72 | 480.93 | 1284.41 | |
2020 | 7368 | 7.21 | 33,086.66 | 3.51 | 476.02 | 1301.30 | |
2021 | 7453 | 7.86 | 33,086.66 | 3.46 | 464.23 | 1282.26 | |
Xigu | 2013 | 3834 | 10.31 | 34,500.28 | 2.08 | 543.48 | 1401.46 |
2014 | 4268 | 10.31 | 48,804.17 | 2.50 | 584.91 | 1706.66 | |
2015 | 4579 | 10.31 | 48,804.17 | 2.60 | 567.68 | 1657.41 | |
2016 | 4790 | 10.31 | 48,804.17 | 2.84 | 592.85 | 1660.71 | |
2017 | 5016 | 10.31 | 48,804.17 | 2.93 | 583.54 | 1626.16 | |
2019 | 5125 | 10.31 | 38,241.70 | 2.92 | 569.37 | 1446.96 | |
2020 | 5134 | 10.31 | 48,276.52 | 3.02 | 588.90 | 1632.85 | |
2021 | 5069 | 10.31 | 48,276.52 | 3.14 | 620.43 | 1696.38 |
Year | X Coordinate | Y Coordinate | Center of Gravity Shift Distance/m | Clockwise and North Direction Angle/° | Expansion Direction |
---|---|---|---|---|---|
2013 | 379,729.00 | 3,995,964.85 | |||
2014 | 379,628.20 | 3,996,097.74 | 166.80 | 322.82 | NW |
2015 | 379,502.30 | 3,996,112.00 | 126.70 | 276.46 | NW |
2016 | 379,285.49 | 3,996,109.99 | 216.82 | 269.47 | SW |
2017 | 379,148.44 | 3,996,137.97 | 139.88 | 281.54 | NW |
2018 | 378,412.58 | 3,996,350.12 | 765.82 | 286.08 | NW |
2020 | 377,742.56 | 3,996,518.83 | 690.93 | 284.13 | NW |
2021 | 377,640.82 | 3,996,545.52 | 105.18 | 284.70 | NW |
Year | Study Area Area/km2 | Color Steel Plate Building Area/km2 | Color Steel Plate Building Perimeter/km | Color Steel Plate Building Quantity | Area Proportion/% | PD/unit·km−2 | C |
---|---|---|---|---|---|---|---|
2013 | 1625.92 | 11.71 | 1865.32 | 20,497 | 0.72 | 1750 | 0.0065 |
2014 | 1625.92 | 13.38 | 2105.08 | 22,724 | 0.82 | 1698 | 0.0062 |
2015 | 1625.92 | 14.45 | 2323.17 | 25,528 | 0.89 | 1767 | 0.0058 |
2016 | 1625.92 | 15.02 | 2366.41 | 25,638 | 0.92 | 1707 | 0.0058 |
2017 | 1625.92 | 15.39 | 2467.11 | 27,318 | 0.95 | 1775 | 0.0056 |
2019 | 1625.92 | 14.73 | 2389.32 | 26,996 | 0.91 | 1832 | 0.0057 |
2020 | 1625.92 | 14.67 | 2352.89 | 26,551 | 0.90 | 1810 | 0.0057 |
2021 | 1625.92 | 14.72 | 2346.03 | 26,425 | 0.91 | 1795 | 0.0058 |
District | Year | Area Proportion/% | PD/unit·km−2 | C |
---|---|---|---|---|
Anning | 2013 | 1.80 | 2178 | 0.016 |
2014 | 1.93 | 2095 | 0.016 | |
2015 | 1.91 | 2148 | 0.015 | |
2016 | 1.71 | 1950 | 0.018 | |
2017 | 1.69 | 1885 | 0.018 | |
2019 | 1.48 | 1902 | 0.020 | |
2020 | 1.46 | 1864 | 0.020 | |
2021 | 1.42 | 1785 | 0.021 | |
Chengguan | 2013 | 1.31 | 1236 | 0.015 |
2014 | 1.62 | 1256 | 0.013 | |
2015 | 1.87 | 1351 | 0.012 | |
2016 | 1.98 | 1399 | 0.012 | |
2017 | 2.10 | 1571 | 0.011 | |
2019 | 2.08 | 1595 | 0.011 | |
2020 | 2.03 | 1613 | 0.011 | |
2021 | 2.04 | 1607 | 0.011 | |
Honggu | 2013 | 0.25 | 2217 | 0.018 |
2014 | 0.30 | 2240 | 0.016 | |
2015 | 0.34 | 2293 | 0.015 | |
2016 | 0.37 | 2121 | 0.015 | |
2017 | 0.39 | 2053 | 0.015 | |
2019 | 0.43 | 1918 | 0.015 | |
2020 | 0.46 | 1831 | 0.015 | |
2021 | 0.46 | 1831 | 0.015 | |
Qilihe | 2013 | 0.98 | 1726 | 0.011 |
2014 | 1.04 | 1663 | 0.011 | |
2015 | 1.09 | 1752 | 0.011 | |
2016 | 1.11 | 1712 | 0.011 | |
2017 | 1.10 | 1820 | 0.011 | |
2019 | 0.93 | 2077 | 0.011 | |
2020 | 0.88 | 2099 | 0.011 | |
2021 | 0.87 | 2154 | 0.011 | |
Xigu | 2013 | 0.56 | 1843 | 0.015 |
2014 | 0.67 | 1707 | 0.014 | |
2015 | 0.70 | 1761 | 0.014 | |
2016 | 0.76 | 1687 | 0.013 | |
2017 | 0.79 | 1712 | 0.013 | |
2019 | 0.79 | 1755 | 0.013 | |
2020 | 0.81 | 1700 | 0.013 | |
2021 | 0.84 | 1614 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, X.; Wang, T.; Wang, S.; Wang, R.; Xu, D.; Zhou, J. Spatial-Temporal Evolution Characteristics Analysis of Color Steel Buildings in Lanzhou City. ISPRS Int. J. Geo-Inf. 2024, 13, 179. https://doi.org/10.3390/ijgi13060179
Wang W, Li X, Wang T, Wang S, Wang R, Xu D, Zhou J. Spatial-Temporal Evolution Characteristics Analysis of Color Steel Buildings in Lanzhou City. ISPRS International Journal of Geo-Information. 2024; 13(6):179. https://doi.org/10.3390/ijgi13060179
Chicago/Turabian StyleWang, Wenda, Xiao Li, Ting Wang, Shaohua Wang, Runqiao Wang, Dachuan Xu, and Junyuan Zhou. 2024. "Spatial-Temporal Evolution Characteristics Analysis of Color Steel Buildings in Lanzhou City" ISPRS International Journal of Geo-Information 13, no. 6: 179. https://doi.org/10.3390/ijgi13060179
APA StyleWang, W., Li, X., Wang, T., Wang, S., Wang, R., Xu, D., & Zhou, J. (2024). Spatial-Temporal Evolution Characteristics Analysis of Color Steel Buildings in Lanzhou City. ISPRS International Journal of Geo-Information, 13(6), 179. https://doi.org/10.3390/ijgi13060179