You are currently viewing a new version of our website. To view the old version click .
ISPRS International Journal of Geo-Information
  • Article
  • Open Access

21 April 2022

Managing Inhomogeneity in the Control Point Network during Staking Out Cadastral Boundaries in Austria

,
and
1
Geolanz ZT GmbH, 4020 Linz, Austria
2
Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria
3
BEV, Austrian Federal Office of Metrology and Surveying, 1020 Vienna, Austria
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Applications of GIScience for Land Administration

Abstract

The coordinate system of the Austrian cadastre is physically realised through control points provided by the national institution for surveying. Due to historical development over the centuries and changes in measurement technologies, inhomogeneities can occur within the local control point network. These inhomogeneities affect the derived boundary point coordinates. When staking out boundary points in an area with inhomogeneous control points, deviations from the boundary marks in the field can occur that exceed the accuracy requirements of the ordinance for surveying. Examples show that a suitable approach to tackle this issue has to be selected on a case-based strategy. Different situations might require different approaches. This needs to be considered in the legal framework to enable cadastral experts to select the optimal approach.

1. Introduction

Staking out boundary points for the purpose of marking property boundaries in the field is a frequently performed activity in any cadastre. When transferring the coordinates from a cadastral map to the field, deviations from the current location of the boundary marks may occur. In this work, deviations that are a result of strains in the network of control points are investigated. In Austria, the network of control points, as a physical representation of the national coordinate system, forms the technical basis for determining the coordinates of boundary points. Since 1817, the neighbourhood relations of the control points have shown strains, which are subsequently also transferred to the derived boundary point coordinates. Differences will arise between the coordinates of the boundary markings in the real world and those according to the legal boundary cadastre [1] when staking out boundary points from the legal boundary cadastre using the official control point network according to the current Austrian surveying ordinance (VermV2016, Vermessungsverordnung). The legal boundary cadastre was introduced in 1969 and provides a guarantee for the parcel boundaries. The coordinates of the boundary points of the land parcels are derived from the nearest control points in accordance with the surveying ordinance applicable at the time of surveying and are indicated in the surveying document.
The optimal method that should be used to obtain the best results when staking out points from old cadastral surveys in a region with an inhomogeneous control point network is still up for debate. This question is significant because legal regulations dictate technical processes for special situations. If inadequate methods have to be applied, the users of the cadastre will have to deal with possible negative consequences. This paper uses three test cases to analyse different methods for staking out points based on coordinates—or, rather, the deviations that occur when applying different methods to connect to the control point network.
Old documents contain points (boundary points, polygon points, or others, such as corners of buildings) that may still exist in the real world today. These can be used for the transformation and subsequent reconstruction of boundary points, if they are physically identical. Without identification points, the staking out of points based on coordinates is not easy. Staking out coordinates from the legal boundary cadastre is only possible if the control points originally used are still present, at the same position, and do not have large strains with adjacent control points. This is not always the case.
Possible approaches are the classical Helmert transformation with or without interpolation of the residual slacks of the control points used, the interpolation of the homogeneous vectors of the control points, or the connection to the control point network by means of GNSS RTK (Global Navigation Satellite System—Real-Time Kinematic) transformation according to VermV2016. Distance-weighted interpolation, for example, can be applied to the residual gaps or homogeneous vectors to stake out boundary points in the survey area. The official pre-transformation with Austrian-wide transformation parameters from the BEV (Federal Office of Metrology and Surveying) for the transition from ETRS89 (European Terrestrial Reference System 1989) to MGI (historical Austrian Military-Geographic Institute, Militär-Geographisches Institut) coordinates still used for the Austrian cadastre can be performed for each control point determined by GNSS measurement. The difference between the (homogeneous) ETRS coordinates transformed to MGI and the original/official (inhomogeneous) MGI coordinates can be represented as a homogeneous vector. These homogeneous vectors can also be interpolated for the survey area and thus the coordinates from the legal boundary cadastre can be staked out. The difference from the homogeneous coordinates is actually a gap vector, which is called a homogeneous vector in the following sections, as in the documents of the BEV.
The legal boundary cadastre relies on the control point network. In case of inhomogeneities in the control point network, the basis for the staking out can change due to loss or movement of control points, or new coordinates of control points due to readjustment. Thus, newly derived coordinates for boundary points may change, even if the boundary marks are physically unchanged in the real world. § 13 VermG (Austrian Survey Act) provides the possibility to correct coordinates in the legal boundary cadastre by means of an ordinance issued by the surveying office with local responsibility (out of currently 41 local surveying offices). Whether a highly inhomogeneous control point network can be invoked as a reason for a correction according to § 13(1) VermG is interpreted differently by the courts, since, as opposed to administrative bodies, they are free in the choice of evidence. In any case, § 13(4) VermG explicitly offers the possibility to correct coordinates in legal boundary cadastres by an ordinance if the control point network changes due to an adjustment to a superordinate reference frame.
The broader topic of georeferencing is not only relevant for Austria. Land movement can occur abruptly or can gradually change the position of control points. A well-documented example for the first case is the Christchurch earthquake in New Zealand in 2011 [2]. Slow land movement can happen anywhere, and affects the use of all kinds of geographical data. There are various approaches to protect land rights. Kiepke states that there are more solutions for ownership protection in the European Union than there are countries [3]. The Austrian cadastre is a case where the legal design of the solution demands a high level of positional accuracy. However, even countries using GNSS solutions as a spatial reference might be affected by land movements since they change the position of boundaries and therefore their coordinates.

2. Austrian Cadastre

The Austrian land administration system consists of the cadastre defining the parcel boundaries and the land registry connecting people and parcels by rights, restrictions, and responsibilities. The land registry is based on a title registration system. The cadastre forms the geometrical basis for the land registration. It was created in 1817, and since 1883, the data have been kept up-to-date by a continuous process of documenting boundary changes. Although parcels are shown in cadastral maps, the position of the boundary can only be determined by looking at the situation in reality, by referring, for example, to boundary stones, walls, fences, or simple extent of use. Only if these elements are non-existent are the old survey documents used to reconstruct the boundary. In 1969, the quality of legal boundary cadastres was added, where the parcel owner and all neighbours agree on the position of the boundary. The agreement is documented by a licensed surveyor, who also determines the coordinates of the boundary points. The surveying authority guarantees these points to be reconstructable if boundary marks in the field are lost [4]. The coordinates of the boundary points are then proof of the boundary itself. This requires a stable control point network, which provides the geodetic reference frame.
A triangulation network and an area-wide dense control point network based on it form the basis for the cadastre. Triangulation was performed under the Austrian–Hungarian monarchy based on seven plane coordinate systems. The scale in each of the systems was determined from already existing local baseline measurements. The triangulation points should provide a reference for subsequent graphic triangulation. Due to time restrictions, the triangulation was not performed in strictly descending order. Additionally, some triangulation points were not stabilised until decades after the measurements were taken, leading to high point losses and a lack of certainty regarding the identity of the points [5,6,7,8].
In 1917, the Gauss–Krüger projection replaced plane coordinate systems. The progressive densification of the triangulation network after the Second World War created the technical basis for the legal boundary cadastre [5,6,7,9,10,11]
Since 1953, lower-level control points have been introduced, which are not determined by triangulation. With a target control point density of 10 points per square kilometre, measurements with terrestrial methods have reached their limits. The technical advancement of photogrammetry drove the rapid densification of the control point network by means of aerial photo evaluation. From today’s point of view, the photogrammetric consolidation of the control point network is to be regarded critically, since the assumed accuracy for the point location has not been achieved and is significantly lower than required for modern cadastral surveying, as already noticed in the late 1970s ([12], p. 32).
With the first surveying law, enacted in 1968, the creation and maintenance of a close-meshed network of control points became an official task of the national survey, and the connection of cadastral surveys to the control point network became a legal obligation. The goal of the legal boundary cadastre was to create a legal and technical framework that avoids boundary disputes by replacing documents that are subject to interpretation by an objective measure in the form of coordinates. A prerequisite for the creation of the legal boundary cadastre is the availability of a sufficiently accurate control point network in the respective cadastral municipality. Due to technical progress in the field of measuring instruments, especially electronic distance measurement, the control point network has been continuously re-measured, and the coordinates of the control points have been recalculated and adjusted. There are still several thousand control points in Austria whose determination has been carried out exclusively by photogrammetry, and which are therefore also subject to random deviations up to a few decimetres. In 2000, the control point network reached a maximum number of 300,000 control points. Due to point losses, e.g., from construction activities and lack of maintenance, the number has been decreasing since then [5,8,13,14].
With the availability of high-precision positioning with satellite navigation services, ETRS89 coordinates are also determined by the BEV for all control points, which have been handed over to customers since 2011 ([14], p. 38). By using this method for coordinate determination, the existing density of the control point network is no longer required for new surveys. However, to reconstruct the control point connection from previous surveys, it is still necessary to include the location of the control points used in order to be able to comply with the neighbourhood accuracy. The contradiction between an inhomogeneous, maintenance-intensive control point network and the comparatively inexpensive homogeneous ETRS89 system confronts the BEV with the task of modernising the control point network [8]. Currently (as of October 2021), the Austrian control point network comprises 56,800 triangulation points and 153,000 lower-level control points. Of these, official ETRS89 coordinates are available for all triangulation points and for 119,000 (72.5%) lower-level points.
Until the introduction of the Austrian Survey Act on 1 January 1969, the cadastre was used to visualise parcels. Since the introduction of the legal boundary cadastre, the coordinates of boundary points have provided legally binding proof of the boundary’s position for parcels in the legal boundary cadastre. The legal boundary cadastre enjoys public faith; thus, everyone can trust its accuracy. Before its introduction, boundary markers such as hewn granite stones were set to mark boundaries in the field. Sometimes, the coordinates of these boundary points are known, but they are not legally binding if the stone is lost. The boundary in the field also plays a role in connection with the legal boundary cadastre, albeit a subordinate one. Since every measurement is subject to errors, the boundary in the field is decisive only within the uncertainty of the paper boundary, or the boundary derived using the documentation only. The point accuracy of the documentation varies over time with different versions of the regulations (VermG, VermV1994, VermV2010, VermV2016): ±20 cm until 1994, ±15 cm from 1994 to 2010, and ±5 cm since 2010. The advantage of the legal boundary cadastre is that, in case of lost boundary markers, the legally valid boundary can be restored by staking out the boundary points using the registered coordinates. Obviously, this requires a stable control point network [15,16,17].
In the practical application of the legal boundary cadastre, which is usually handled by licensed surveyors, one of the problems lies in defining the legally binding boundaries in the field by coordinates. Practical experience shows that there are situations where no solution exists that fulfils all theoretical and practical requirements. In these situations, professional judgement is necessary to find a solution.
Müller-Fembeck presents a situation where currently no legally clean solution exists [16]. A wall, which was surveyed in the 1970s, marks a boundary. At that time, a deviation of 20 cm was acceptable. What if a surveyor needs to define a point on this wall today, e.g., as a boundary point separating two parcels on the same side of the wall? The limited accuracy of the original survey could lead to the situation shown in Figure 1.
Figure 1. Visualisation of the problem discussed by [16].
The solid line represents the surface of the wall, which should coincide with the boundary line. The distance between the wall points (P1 and P2) and the positions determined by the coordinates (P1c and P2c) is almost 20 cm. They are treated as equal, i.e., by law, the wall is identical to the boundary line. In version a, the point is marked and surveyed directly at the wall. This results in a bent boundary line (P1c–a–P2c). In version b, the new boundary point is calculated mathematically, but when staking it out, the position that has to be marked is not on the boundary in the field.

3. GNSS Positioning and Transformations

3.1. Reference Frames

The representation of positions in a reference system requires the definition of a coordinate system. There are local and global definitions, and the latter ones are relevant, for example, when using GNSS. The currently used global reference frame is the International Terrestrial Reference System (ITRS). Due to continental drift and other influences, the Eurasian plate moves in the range of centimetres per year [18]. Thus, the global reference system ITRS is not suitable for many applications in the European context. ETRS89 is the European realisation of the datum definition. The currently valid reference frame in Austria as a realisation of the ETRS89 is EUREF Austria 2002 [14,19,20].
The Austrian geodetic reference system is the MGI system defined in 1892. The Bessel ellipsoid from 1841 serves as a reference surface. The Gauss–Krüger projection (transversal cylindrical projection) provides the mapping to the planar coordinate system [5,10,14,21]. The control points realise the national system MGI and serve as a starting point for the surveys in the national coordinate system. The stabilisation of the triangulation points is primarily based on granite stones with underground backup. This ensures the permanent representation of the national coordinate system. Other types of stabilisation, such as iron tubes or metal plates, are also common in the case of lower-level control points. § 1 VermV stipulates the precision in the determination of control points using a two-dimensional simple mean point-position accuracy of 2 cm for triangulation points and 3 cm for the lover-level control points. This is determined by adjustment of measurements in MGI. However, the law acknowledges that this validity is limited by systematic effects due to ground movements, network stresses, or changes in stabilisation [10,13,14,22,23].

3.2. GNSS Positioning and RTK Implementation in Austria

The position of a GNSS receiver is determined by the time-of-flight measurement to at least four satellites. By differential measurement and the use of reference stations with known coordinates, RTK measurements can achieve accuracy better than 1 cm in position [24]. With a receiver close to the reference station, it can be assumed that the position errors are approximately the same as those directly at the reference station, due to the described error influences, and thus, the calculated correction data can also be transferred to the moving receiver [20].
High-precision positioning using satellite navigation systems for the entire territory of Austria requires a nationwide infrastructure of reference stations. The Austrian Positioning Service (APOS) is operated by the BEV and currently comprises 36 permanent GNSS reference stations (average distance of 50 km) throughout Austria, as well as additional stations in neighbouring countries for cross-border networking. Since 2019, APOS, as a multi-GNSS service, has used the signals of GPS, GLONASS, and GALILEO systems, and thus provides a real-time service for homogeneous 3D coordinates in the ETRS89 system. With an availability of 99.5% (24 h a day, 7 days a week) and almost 1500 customers (as of October 2021), the Austrian service is reliable and in-demand. The BEV offers APOS Real Time in various data formats, and mount points for users of RTCM-capable GNSS receivers [25,26].
When using APOS, it is possible to choose between the two concepts, namely Virtual Reference Station (VRS) and Master-Auxiliary Concept (MAC), for the network RTK solution. The service provides its own mount points for this purpose, via which the correction data for the respective method can be obtained. The basic principle follows the determination of correction values of the satellite signals at a coordinate-known reference station, and the calculation and transmission of the corrections of a moving receiver in the vicinity of the reference station. By using a network of reference stations, the corrections can be determined more accurately and the data can be calculated in a networked manner at a master station. Therefore, this case is referred to as network RTK [14,20].
In the VRS concept, a virtual reference station is generated in the immediate vicinity of the moving receiver, with virtual measurement data and correction data based on calculations in the computing station, derived from the measurements in the reference station network. In this process, the receiver sends its approximated position to the processing centre and receives the corresponding correction data via a wireless data link. By attaching the correction data to the receiver’s measurements, the error effects of the inaccurate satellite orbit data, as well as the propagation delay of the signals through the troposphere and ionosphere, are corrected, enabling centimetre-accurate positioning [14,27].
The second RTK variant of point determination that is possible with APOS is the MAC. In contrast to VRS, where most of the evaluation takes place externally in the data centre, here, the calculation takes place directly at the moving receiver. First, the user sends their approximate position to the APOS centre and receives the raw GNSS data measured there from the nearest reference station (master). From further reference stations (auxiliary) included in this concept, defined by a fixed number or a selected radius, the receiver receives coordinate and correction differences relative to the master station. These data are then used on the receiver side to calculate the position. The advantage of this method is the traceability of the position determination, since the baseline evaluation is not completed with respect to a virtual reference station, but to a physically existing station with fixed coordinates [14,20,27].

5. Discussion

Due to the inhomogeneity of the Austrian coordinate system MGI, problems inevitably arise in the cadastre that cannot be solved with standardised approaches. The current surveying regulations provide a legal framework within which cadastral surveying must be carried out. Particularly, when connecting to the official control point network, local deviations must be taken into account and decisions on specific execution must be made on a case-by-case basis. The introduction of legally binding boundary point coordinates in the legal boundary cadastre made it possible to place parcel boundaries under the protection of trust. However, the decades following the introduction of the legal boundary cadastre showed that the control point network is not sufficiently accurate and stable in some parts of Austria. In these areas, the symbolic immutability of the boundary points and their coordinates creates a demanding geodetic challenge in everyday surveying. Staking out points according to their cadastral coordinates requires the analysis of local deviations, which requires legal and technical expertise.
In this paper, we analysed methods that could provide information on the displacement of boundary points in a distorted control point network. The examples showed that it is not possible to predict deviations from the results of local transformation. Rotation of the boundary points of a document remains undetected with the distance-weighted interpolation. The local 2D Helmert transformation yielded the best results for the cases of Gramastetten and Gallneukirchen, by complying with the legal requirements and providing geometries without distortions in areas with a stressed control point network.
The reconstruction of the connection with the control point network from an old survey document contains more uncertainty factors than simply the possible strains of the control points used. Unfortunately, not all surveying approaches adopted in the past meet today’s accuracy needs. Photogrammetrically determined control points in Austria may be an extreme case, but similar situations will occur in other countries too if the network exists for centuries. Control points are lost over time, e.g., due to construction work. On the other hand, control points may shift due to land movement, or have to be suspended because of increasing legal demands regarding the quality of the control point network. Even when the control points are perfectly fine, land movement may affect objects on the ground, including boundary marks, fences, walls, and houses. Technically, this results in the same situation. All of these influences impact cadastral work. It is often impossible to identify the reasons, but this might not be necessary. It is necessary, however, to develop strategies that can cope with these problems.
The approach of mathematically transferring the stresses in the control point network onto the boundary points is based on the assumption that the relation between calculated residuals or homogeneous vectors and the true coordinates of the boundary point is (at least nearly) linear with distance. It is also assumed that the shapes of the parcels are unchanged in the real world, and that the boundary point coordinates listed in the survey document were derived directly from the control points used. However, it is often the case that coordinates are taken from a previous survey, and small deviations between these coordinates and newly derived coordinates are accepted. This procedure is legally valid for boundary points that are not relevant for the survey.
Since there are no ideal conditions in the Austrian cadastre, no statement can be made about the exact amount or direction of the displacement with the help of the interpolation of residuals or homogeneous vectors. The assessment is only possible in a case-based manner, taking into account influences such as the configuration of the control point network and the deviation of the existing boundary marks from the coordinates according to the cadastre. These differences can only be determined by measurements in the area of interest. Similarly to the distance until which control points are usable for interpolation, the assessment of acceptable boundary configurations is also subjective, and eludes simple standard rules. Theoretically, a highly homogeneous control point network would be able to solve this problem. However, this is only true if the relative positions of control points and boundary points do not change, i.e., there is no local, horizontal land movement. This could be the case in flat parts of the world, but mountainous regions will always have such movements. However, the analysis also showed the need for a broader discussion on digital documentation of ownership boundaries in Austria. The contradictions between the intention of the legal boundary cadastre and the technical limitations due to the inhomogeneity of the reference frame, soil movements, and developments in measurement technology need to be thoroughly addressed to avoid constantly facing this kind of challenge.
A limitation of the paper is that the Austrian cadastre is purely 2D. Three-dimensional cadastres [34] have to deal with similar problems, but they expand the range of issues. Every land movement caused by gravitational forces affects both plane coordinates and height. However, there are also situations where land only moves vertically, e.g., due to post-glacial land rise or underground mining. This is not a problem for 2D systems, but it is for 3D systems. Finally, the parcels themselves may move if they are connected to a building sinking into the ground. The question of how to deal with these challenges needs to be addressed in the future.

Author Contributions

Conceptualization, Valentin Weber, Gerhard Navratil and Franz Blauensteiner; methodology, Valentin Weber, Gerhard Navratil and Franz Blauensteiner; validation, Valentin Weber; formal analysis, Valentin Weber; investigation, Valentin Weber; resources, Valentin Weber, Gerhard Navratil and Franz Blauensteiner; data curation, Valentin Weber; writing—original draft preparation, Gerhard Navratil, Valentin Weber and Franz Blauensteiner; writing—review and editing, Gerhard Navratil and Valentin Weber; visualisation, Valentin Weber; supervision, Gerhard Navratil and Franz Blauensteiner; project administration, Franz Blauensteiner. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

The coordinates of the control points used in the paper can be downloaded here: https://drive.google.com/drive/folders/1s8c7g1cJspEsUYrVwl2G4gJDTN6rYa3S?usp=sharing (accessed on 10 April 2022).

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations for regulations are used in this manuscript:
VermGAustrian Survey Act (1968), BGBl 306/1968
VermV1994Austrian Surveying Ordinance (1994), BGBl 562/1994
VermV2010Austrian Surveying Ordinance (2010), BGBl II 115/2010
VermV2016Austrian Surveying Ordinance (2016), BGBl II 307/2016

References

  1. Ernst, J.; Mansberger, R.; Muggenhuber, G.; Navratil, G.; Ozlberger, S.; Twaroch, C. The Legal Boundary Cadastre in Austria: A Success Story? Geod. Vestn. 2019, 63, 234–249. [Google Scholar] [CrossRef]
  2. Kaiser, A.; Holden, C.; Beavan, J.; Beetham, D.; Benites, R.; Celentano, A.; Collett, D.; Cousins, J.; Cubrinovski, M.; Dellow, G.; et al. The Mw 6.2 Christchurch earthquake of February 2011: Preliminary report. N. Z. J. Geol. Geophys. 2012, 55, 67–90. [Google Scholar] [CrossRef] [Green Version]
  3. Kiepke, C. The Publicly Appointed Surveying Engineer as Part of the Cadastral System. 2007. Available online: https://www.slideshare.net/ColegioOficialdeInge/presentations (accessed on 10 April 2022).
  4. Lisec, A.; Navratil, G. The Austrian Land Cadastre: From the Earliest Beginnings to the Modern Land Information System. Geod. Vestn. 2014, 58, 482–516. [Google Scholar] [CrossRef]
  5. Zeger, J. Durchführung von Triangulierungsarbeiten; BEV: Vienna, Austria, 1979. (In German) [Google Scholar]
  6. Zeger, J. Die Historische Entwicklung der Staatlichen Vermessungsarbeiten (Grundlagenvermessungen) in Österreich (Band II—Triangulierung für Katasterzwecke); Anton Riegelnik: Vienna, Austria, 1991. (In German) [Google Scholar]
  7. Schwarzinger, K. 100 Jahre Führung des Katasters; BEV: Wien, Austria, 1986. [Google Scholar]
  8. Imrek, E.; Mück, W. Vom System St. Stephan zum Globalen Positionierungssystem. In 200 Jahre Kataster; BEV: Wien, Austria, 2017; pp. 71–84. (In German) [Google Scholar]
  9. Rohrer, H. Die Ausgestaltung des Dreiecksnetzes 1. Ordnung. Österreichische Z. Vermess. 1935, 33, 101–106. (In German) [Google Scholar]
  10. Ernst, J.; Abart, G.; Twaroch, C. Der Grenzkataster: Grundlagen, Verfahren und Anwendungen, 2nd ed.; Neuer Wissenschaftlicher Verlag: Graz, Austria, 2017. (In German) [Google Scholar]
  11. Ernst, J.; Kast, K. Von der Evidenzhaltung zur Fortführung des Katasters. In 200 Jahre Kataster; BEV: Wien, Austria, 2017; pp. 107–120. (In German) [Google Scholar]
  12. van Hoorne, P. Homogenisierung des Grenzkatasters nach Zusammenlegungsverfahren im Nicht Spannungsfreien Festpunktfeld. Master’s Thesis, TU Wien, Department for Geodesy and Geoinformation, Vienna, Austria, 2017. (In German). [Google Scholar]
  13. Stickler, A.; Waldhäusl, P. Untersuchung der Genauigkeit photogrammetrisch bestimmter Einschaltpunkte. Österreichische Z. Vermess. 1965, 53, 185–192. (In German) [Google Scholar]
  14. Otter, J. BEV: 3-D Referenzsysteme in Österreich (V2.0); Technical Report; BEV: Wien, Austria, 2015. (In German) [Google Scholar]
  15. Twaroch, C. Kataster- und Vermessungsrecht, 3rd ed.; Neuer Wissenschaftlicher Verlag: Graz, Austria, 2017. (In German) [Google Scholar]
  16. Müller-Fembeck, M. 50 Jahre Grenzkataster: Haben wir rechtlich etwas garantiert, das wir technisch gar nicht garantieren können? Österreichische Z. Vermess. Geoinf. (VGI) 2018, 106, 261–263. (In German) [Google Scholar]
  17. Burtscher, T.; Holler, K.; Müller-Fembeck, M.; Stix, P. Das österreichische Vermessungsrecht, 5th ed.; Manz Verlag: Wien, Austria, 2019. (In German) [Google Scholar]
  18. Bretterbauer, K.; Robert, W. A Primer of Geodesy for GIS Users; Geowissenschaftliche Mitteilungen 64; TU Wien: Wien, Austria, 2003. [Google Scholar]
  19. Titz, H.; Höggerl, N.; Imrek, E.; Stangl, G. Realisierung und Monitoring von ETRS89 in Österreich. Österreichische Z. Vermess. Geoinf. (VGI) 2010, 98, 52–61. (In German) [Google Scholar]
  20. Bauer, M. Vermessung und Ortung mit Satelliten: Globale Navigationssatellitensysteme (GNSS) und Andere Satellitengestützte Navigationssysteme, 7th ed.; Wichmann: Berlin, Germany, 2018. (In German) [Google Scholar]
  21. Erker, E. Die Homogenisierung des österreichischen Festpunktfeldes im Internationalen Rahmen. Österreichische Z. Vermess. Geoinf. (VGI) 1997, 85, 109–116. (In German) [Google Scholar]
  22. Kovarik, J. Zur Photogrammetrischen Bestimmung von Einschaltpunkten. Österreichische Z. Vermess. (VGI) 1971, 59, 39–47. (In German) [Google Scholar]
  23. Grillmayer, R.; Blauensteiner, F. GNSS Measurements in Cadastral Surveying (orig. GNSS Messungen im Kataster. Österreichische Z. Vermess. Geoinf. (VGI) 2017, 105, 167–173. [Google Scholar]
  24. Dawoud, S. GNSS Principles and Comparison; Potsdam University: Potsdam, Germany, 2012. [Google Scholar]
  25. Höggerl, N.; Imrek, E. Recent Steps towards the Introduction of ETRS89 in Austria. Geod. Vestn. 2007, 51, 742–750. [Google Scholar]
  26. Zahn, E. APOS—Austrian Positioning Service on the Way to Multi GNSS. Österreichische Z. Vermess. (VGI) 2019, 107, 119–123. (In German) [Google Scholar]
  27. El-Mowafy, A. Precise Real-Time Positioning Using Network RTK. In Global Navigation Satellite Systems; Jin, S., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 7. [Google Scholar] [CrossRef] [Green Version]
  28. Garnero, G. Use of NTv2 Transformation Grids in Engineering Applications. Earth Sci. Inform. 2014, 7, 139–145. [Google Scholar] [CrossRef] [Green Version]
  29. Buchanan, M. Fit for Purpose. Nat. Phys. 2008, 4, 901. [Google Scholar] [CrossRef]
  30. Ghilani, C.; Harles, D. Adjustment Computations, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
  31. Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 ACM National Conference, New York, NY, USA, 27–29 August 1968; ACM: New York, NY, USA, 1968; pp. 517–524. [Google Scholar] [CrossRef]
  32. Čeh, M.; Gielsdorf, F.; Trobec, B.; Krivic, M.; Lisec, A. Improving the Positional Accuracy of Traditional Cadastral Index Maps with Membrane Adjustment in Slovenia. ISPRS Int. J. Geo-Inf. 2019, 8, 338. [Google Scholar] [CrossRef] [Green Version]
  33. Gillman, D.W. Triangulations for Rubber-Sheeting. In Proceedings of the Digital Representations of Spatial Knowledge, Washington, DC, USA, 11–14 March 1985; Vogel, S.J., Chrisman, N.R., Clawson, M.G., Dixon, D.M., Hezlep, B., Prusky, J.A., Smith, C.A., Thompson, B.L., Tomlinson, B.L., Eds.; American Society of Photogrammetry and American Congress on Surveying and Mapping: Falls Church, VA, USA, 1985. [Google Scholar]
  34. Best Practices 3D Cadastres; van Oosterom, P. (Ed.) International Federation of Surveyors (FIG): Copenhagen, Denmark, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.