Volunteered Geographical Information and Recreational Uses within Metropolitan and Rural Contexts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Conceptual Framework
2.3. Geographical Data Collection
- Gpx files were used to extract vector data and kml files (having information such as track name, username, track length and suitable activity) were used to retrieve metadata to populate the attributes table.
- Information regarding the submission date for each track, country of origin/residence for all identified users, and favourite activity was also retrieved from the web service and added to the final dataset.
- Although track length could be obtained from the primary data, it was re-calculated within a GIS environment to ensure the best accuracy of this indicator.
- To guarantee minimal disturbance among the volunteer data used in this study, only routes indicated as suitable for one activity, and with an identified user, were selected for the final datasets.
2.4. Data Analyses
- Comparing outdoor activities in metropolitan vs. rural areas
- Each track submission date was used to produce a temporal evaluation of recreational uses in each study area.
- Profiling recreational users
- Users were profiled based on their provenience (nationals vs. foreigners) and preferences considering the two study areas. For each activity a track length analysis was performed to explore data average, homogeneity, and dispersion, all considered an indication of practitioners’ preferences. To avoid misinterpretations due to extreme values, either due to GPS or user errors, this analysis was only performed with the length of the track under Percentile 95, as proposed by [53].
- Mapping recreational spatial distribution.
- To map the recreational use, the spatial information associated with each dataset was analysed within a GIS environment. Line density [58] was applied to calculate the magnitude per unit area from each dataset that was within a 100 m radius around each 25 m cell grid. The result was a raster image where one can identify the favourites and most popular places for each activity, i.e., hot spots, and their general spatial distribution.
- Evaluating the attractiveness of outdoor and adventure products.
3. Results
3.1. Outdoor Activities in Metropolitan vs. Rural Areas
3.2. Profiling Recreational Users
3.3. Mapping Recreational Spatial Distribution
3.4. Evaluating the Attractiveness of Outdoor and Adventure Products
4. Discussion
4.1. VGI to Evaluate Recreational Uses in Different Contexts
4.2. Assessing the Attractiveness of Outdoor and Adventure Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Li, C.-L. Quality of Life: The perspective of urban park recreation in three Asian cities. J. Outdoor Recreat. Tour. 2020, 29, 100260. [Google Scholar] [CrossRef]
- Chu, Y.-T.; Li, D.; Chang, P.-J. Effects of urban park quality, environmental perception, and leisure activity on well-being among the older population. Int. J. Environ. Res. Public Health 2021, 18, 11402. [Google Scholar] [CrossRef] [PubMed]
- Fagerholm, N.; Torralba, M.; Moreno, G.; Girardello, M.; Herzog, F.; Aviron, S.; Burgess, P.; Crous-Duran, J.; Ferreiro-Domínguez, N.; Graves, A.; et al. Cross-Site Analysis of Perceived Ecosystem Service Benefits in Multifunctional Landscapes. Glob. Environ. Change 2019, 56, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban green space and its impact on human health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef] [Green Version]
- Pietrzyk-Kaszyńska, A.; Czepkiewicz, M.; Kronenberg, J. Eliciting non-monetary values of formal and informal urban green spaces using public participation GIS. Landsc. Urban Plan. 2017, 160, 85–95. [Google Scholar] [CrossRef]
- Santos, T.; Nogueira Mendes, R.; Vasco, A. Recreational activities in urban parks: Spatial interactions among users. J. Outdoor Recreat. Tour. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as Sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.; Gonnet, J.; Pickering, C. Impacts of informal trails on vegetation and soils in the highest protected area in the southern hemisphere. J. Environ. Manage 2013, 127, 50–60. [Google Scholar] [CrossRef]
- Leung, Y.-F.; Newburger, T.; Jones, M.; Kuhn, B.; Woiderski, B. Developing a monitoring protocol for visitor-created informal trails in Yosemite National Park, USA. Environ. Manag. 2011, 47, 93–106. [Google Scholar] [CrossRef]
- Wood, S.A.; Guerry, A.D.; Silver, J.M.; Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 2013, 3, 2976. [Google Scholar] [CrossRef]
- Raya, J.M.; Martínez-Garcia, E.; Celma, D. Economic and social yield of investing in hiking tourism: The case of Berguedà, Spain. J. Travel Tour. Mark. 2018, 35, 148–161. [Google Scholar] [CrossRef]
- Flanagin, A.J.; Metzger, M.J. The credibility of volunteered geographic information. GeoJournal 2008, 72, 137–148. [Google Scholar] [CrossRef]
- Fonte, C.C.; Antoniou, V.; Bastin, L.; Estima, J.; Arsanjani, J.J.; Bayas, J.-C.L.; See, L.; Vatseva, R. Assessing VGI Data Quality. Ubiquity Press 2017, 137–163. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.; See, L.; Fritz, S.; Moorthy, I.; Perger, C.; Schill, C.; Boyd, D.; Foody, G.; See, L.; Fritz, S.; et al. Increasing the accuracy of crowdsourced information on land cover via a voting procedure weighted by information inferred from the contributed data. ISPRS Int. J. Geo-Inf. 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1, 110–120. [Google Scholar] [CrossRef]
- Haklay, M. How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28, 700–719. [Google Scholar] [CrossRef]
- Dorn, H.; Törnros, T.; Zipf, A.; Dorn, H.; Törnros, T.; Zipf, A. Quality Evaluation of VGI using authoritative data—A comparison with land use data in southern Germany. ISPRS Int. J. Geo-Inf. 2015, 4, 1657–1671. [Google Scholar] [CrossRef]
- Heikinheimo, V.; Minin, E.D.; Tenkanen, H.; Hausmann, A.; Erkkonen, J.; Toivonen, T. User-Generated geographic information for visitor monitoring in a national park: A comparison of social media data and visitor survey. ISPRS Int. J. Geo-Inf. 2017, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- See, L.; Fritz, S.; Perger, C.; Schill, C.; McCallum, I.; Schepaschenko, D.; Duerauer, M.; Sturn, T.; Karner, M.; Kraxner, F.; et al. Harnessing the power of volunteers, the internet and google earth to collect and validate global spatial information using Geo-Wiki. Technol. Forecast. Soc. Chang. 2015, 98, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, M.F.; Glennon, J.A. Crowdsourcing geographic information for disaster response: A research frontier. Int. J. Digit. Earth 2010, 3, 231–241. [Google Scholar] [CrossRef]
- Langley, S.A.; Messina, J.P.; Moore, N. Using meta-quality to assess the utility of volunteered geographic information for science. Int. J. Health Geogr. 2017, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minghini, M.; Antoniou, V.; Fonte, C.C.; Estima, J.; Olteanu-Raimond, A.-M.; See, L.; Laakso, M.; Skopeliti, A.; Mooney, P.; Arsanjani, J.J.; et al. The Relevance of Protocols for VGI Collection; Ubiquity Press: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Jestico, B.; Nelson, T.; Winters, M. Mapping ridership using crowdsourced cycling data. J. Transp. Geogr. 2016, 52, 90–97. [Google Scholar] [CrossRef] [Green Version]
- McArthur, D.P.; Hong, J. Visualising where commuting cyclists travel using crowdsourced data. J. Transp. Geogr. 2019, 74, 233–241. [Google Scholar] [CrossRef]
- Nogueira Mendes, R.; Dias, P.; Pereira da Silva, C. Profiling MTB Users’ Preferences within Protected Areas through Webshare Services. In Proceedings of the 7th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas, Local Community Outdoor Recreat, Tallinn, Estonia, 20–23 August 2014; pp. 166–168. [Google Scholar]
- Nogueira Mendes, R.M.; Silva, A.; Grilo, C.; Rosalino, L.M.; da Silva, C.P. MTB Monitoring in Arrábida Natural Park, Portugal. In Proceedings of the 6th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas, Stockholm, Sweden, 21–24 August 2012; pp. 32–33. [Google Scholar]
- Norman, P.; Pickering, C.M. Using volunteered geographic information to assess park visitation: Comparing three on-line platforms. Appl. Geogr. 2017, 89, 163–172. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Bardin, E.; Ahmouda, A. Estimating bicycle trip volume for miami-dade county from strava tracking data. J. Transp. Geogr. 2019, 75, 58–69. [Google Scholar] [CrossRef]
- Àvila Callau, A.; Pérez-Albert, Y.; Serrano Giné, D. Quality of GNSS traces from VGI: A data cleaning method based on activity type and user experience. ISPRS Int. J. Geo-Inf. 2020, 9, 727. [Google Scholar] [CrossRef]
- Bizarro, S.; Nogueira Mendes, R.M.; Santos, T.; Julião, R.P. Multicriteria analysis a proposal of revitalization of the ancestral trails of the Serra da Estrela natural park (PNSE). In Proceedings of the 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas, Bordeaux, France, 28–31 August 2018; Dehez, J., Lambert, G., Ginelli, L., hadj Abdallah, K.B., Eds.; Bordeaux Sciences Agro: Bordeaux, France, 2018; pp. 144–146, ISBN 978-2-9551251-1-3. [Google Scholar]
- Paracchini, M.L.; Zulian, G.; Kopperoinen, L.; Maes, J.; Schägner, J.P.; Termansen, M.; Zandersen, M.; Perez-Soba, M.; Scholefield, P.A.; Bidoglio, G. Mapping cultural ecosystem services: A framework to assess the potential for outdoor recreation across the EU. Ecol. Indic. 2014, 45, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Walden-Schreiner, C.; Rossi, S.D.; Barros, A.; Pickering, C.; Leung, Y.-F. Using crowd-sourced photos to assess seasonal patterns of visitor use in mountain-protected areas. Ambio 2018, 47, 781–793. [Google Scholar] [CrossRef]
- Teles da Mota, V.; Pickering, C. Assessing the popularity of urban beaches using metadata from social media images as a rapid tool for coastal management. Ocean. Coast. Manag. 2021, 203, 105519. [Google Scholar] [CrossRef]
- Teles da Mota, V.; Pickering, C. Geography of Discourse about a European Natural Park: Insights from a Multilingual Analysis of Tweets. Soc. Nat. Resour. 2021, 34, 1492–1509. [Google Scholar] [CrossRef]
- Brown, G.; Sanders, S.; Reed, P. Using public participatory mapping to inform general land use planning and zoning. Landsc. Urban Plan. 2018, 177, 64–74. [Google Scholar] [CrossRef]
- Wolf, I.D.; Brown, G.; Wohlfart, T. Applying public participation GIS (PPGIS) to inform and manage visitor conflict along multi-use trails. J. Sustain. Tour. 2018, 26, 470–495. [Google Scholar] [CrossRef]
- Wolf, I.D.; Wohlfart, T.; Brown, G.; Bartolomé Lasa, A. The use of public participation GIS (PPGIS) for park visitor management: A case study of mountain biking. Tour. Manag. 2015, 51, 112–130. [Google Scholar] [CrossRef]
- Selala, M.K.; Musakwa, W. The potential of strava data to contribute in non-motorised transport (Nmt) planning in johannesburg. ISPRS Arch. 2016, XLI-B2, 587–594. [Google Scholar] [CrossRef]
- Sun, Y.; Du, Y.; Wang, Y.; Zhuang, L. Examining associations of environmental characteristics with recreational cycling behaviour by street-level strava data. Int. J. Environ. Res. Public Health 2017, 14, 644. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Bergman, C.; Sainio, J.; Westerholm, J. Methods for deriving and calibrating privacy-preserving heat maps from mobile sports tracking application data. J. Transp. Geogr. 2015, 48, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Balletto, G.; Milesi, A.; Ladu, M.; Borruso, G. A Dashboard for Supporting slow tourism in green infrastructures. a methodological proposal in Sardinia (Italy). Sustainability 2020, 12, 3579. [Google Scholar] [CrossRef]
- Munira, S.; Sener, I.N. A Geographically weighted regression model to examine the spatial variation of the socioeconomic and land-use factors associated with strava bike activity in Austin, Texas. J. Transp. Geogr. 2020, 88, 102865. [Google Scholar] [CrossRef]
- Aubrecht, C.; Aubrecht, D.Ö.; Ungar, J.; Freire, S.; Steinnocher, K. VGDI–Advancing the concept: Volunteered Geo-Dynamic information and its benefits for population dynamics modeling. Trans. GIS 2017, 21, 253–276. [Google Scholar] [CrossRef]
- Bakillah, M.; Liang, S.; Mobasheri, A.; Arsanjani, J.J.; Zipf, A. Fine-Resolution population mapping using Openstreetmap points-of-interest. Int. J. Geogr. Inf. Sci. 2014, 28, 1940–1963. [Google Scholar] [CrossRef]
- Patel, N.N.; Stevens, F.R.; Huang, Z.; Gaughan, A.E.; Elyazar, I.; Tatem, A.J. Improving large area population mapping using Geotweet densities. Trans. GIS 2017, 21, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.; da Silva, C.P.; Nogueira Mendes, R.; Vitek, O. Monitorização de Actividades Recreativas Em Áreas Protegidas Com Recurso a Serviços de Partilha On-Line: Estudo Comparativo Entre Portugal e a República Checa. In Proceedings of the X Congresso da Geografia Portuguesa, Lisboa, Portugal, 9–12 September 2015; pp. 615–620. [Google Scholar]
- Campelo, M.B. Caracterização do BTT no Parque Natural de Sintra-Cascais: Um Contributo Para a Revisão da Carta de Desporto de Natureza do PNSC. Master’s Thesis, Lisbon University, Lisbon, Portugal, 2015. [Google Scholar]
- Levin, N.; Lechner, A.M.; Brown, G. An evaluation of crowdsourced information for assessing the visitation and perceived importance of protected areas. Appl. Geogr. 2017, 79, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Roque, B.F.; Nogueira Mendes, R.; Magalhães, M.F.; Pereira da Silva, C. Monitoring walkers and hikers of madeira island through web-share services. In Proceedings of the 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas: Recreation, Place and Local Development, Bordeaux, France, 28–31 August 2018; Dehez, J., Lambert, G., Ginelli, L., hadj Abdallah, K.B., Eds.; Bordeaux Sciences Agro: Bordeaux, France, 2018; pp. 77–79, ISBN 978-2-9551251-1-3. [Google Scholar]
- Santos, T.; Nogueira Mendes, R.M. Exploração de Usos Turísticos Na Área Metropolitana de Lisboa a Partir de Informação Geográfica Voluntária. In Proceedings of the 25th APDR Congress, Lisbon, Portugal, 5–6 July 2018; pp. 511–516. [Google Scholar]
- Ladle, A.; Galpern, P.; Doyle-Baker, P. Measuring the use of green space with urban resource selection functions: An application using smartphone GPS locations. Landsc. Urban Plan. 2018, 179, 107–115. [Google Scholar] [CrossRef]
- Nogueira Mendes, R.; Pereira da Silva, C. Looking back at recreational activities in protected areas using vgi from web-share services. In Proceedings of the 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas (MMV9), Bordeaux, France, 28–31 August 2018; Dehez, J., Lambert, G., Ginelli, L., hadj Abdallah, K.B., Eds.; Bordeaux Sciences Agro: Bordeaux, France, 2018; pp. 140–142, ISBN 978-2-9551251-1-3. [Google Scholar]
- Instituto Nacional de Estatistica, Censos. 2011. Available online: http://censos.ine.pt/xportal/xmain?xpgid=censos2011_apresentacao&xpid=CENSOS (accessed on 8 November 2018).
- Instituto Nacional de Estatística—Estatísticas do Turismo: 2017. Lisboa: INE. 2018. ISSN 0377-2306. ISBN 978-989-25-0447-6. Available online: https://www.ine.pt/xurl/pub/320462327 (accessed on 8 December 2021).
- Turismo de Portugal Estatísticas|Dormidas 2014-2018. Available online: http://travelbi.turismodeportugal.pt/pt-pt/Paginas/PowerBI/dormidas.aspx (accessed on 8 November 2018).
- Boss, D.; Nelson, T.; Winters, M.; Ferster, C.J. Using crowdsourced data to monitor change in spatial patterns of bicycle ridership. J. Transp. Health 2018, 9, 226–233. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis. In Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1986; p. 22. ISBN 0-412-24620-1. [Google Scholar]
- Campelo, M.B.; Nogueira Mendes, R.M. Comparing webshare services to assess mountain bike use in protected areas. J. Outdoor Recreat. Tour. 2016, 15, 82–88. [Google Scholar] [CrossRef]
- Browning, M.H.E.M.; Stern, M.J.; Ardoin, N.M.; Heimlich, J.E. Factors that contribute to community members’ support of local nature centers. Environ. Educ. Res. 2018, 24, 326–342. [Google Scholar] [CrossRef]
- Fromel, K.; Kudlacek, M.; Groffik, D.; Svozil, Z.; Simunek, A.; Garbaciak, W. Promoting healthy lifestyle and well-being in adolescents through outdoor physical activity. Int. J. Environ. Res. Public Health 2017, 14, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheaton, B. Introducing the consumption and representation of lifestyle sports. Sport Soc. 2010, 13, 1057–1081. [Google Scholar] [CrossRef]
- Julião, R.P.; Valente, M.; Nogueira Mendes, R. Issues on trail runners, trail running and recreational and protected areas in Portugal. In Proceedings of the 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas, Bordeaux, France, 28–31 August 2018; Dehez, J., Lambert, G., Ginelli, L., hadj Abdallah, K.B., Eds.; Bordeaux Sciences Agro: Bordeaux, France, 2018; pp. 301–304, ISBN 978-2-9551251-1-3. [Google Scholar]
- Martins, G.F. de, M. Caracterização da Atividade de Geocaching no Parque Natural da Arrábida. Master’s Thesis, Lisbon University, Lisbon, Portugal, 2014. [Google Scholar]
- Bell, S.; Tyrväinen, L.; Sievänen, T.; Pröbstl, U.; Simpson, M. Outdoor recreation and nature tourism: A European perspective. Living Rev. Landsc. Res. 2007, 1, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, T.; Thompson, C.W. Outdoor environments, activity and the well-being of older people: Conceptualising environmental support. Environ. Plan A 2007, 39, 1943–1960. [Google Scholar] [CrossRef]
- Strava Global Heatmap. Available online: https://www.strava.com/heatmap (accessed on 8 November 2018).
- Nogueira Mendes, R.M.; Pereira da Silva, C. Organized Mountain Biking Events within Peri-Urban Protected Areas. How Many Are Too Many? In Proceedings of the 8th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas, Novi Sad, Serbia, 26–30 September 2016; pp. 166–168. [Google Scholar]
- Chen, C.; Tsai, L.-T.; Lin, C.-F.; Huang, C.-C.; Chang, Y.-T.; Chen, R.-Y.; Lyu, S.-Y. Factors Influencing Interest in Recreational Sports Participation and Its Rural-Urban Disparity. PLoS ONE 2017, 12, e0178052. [Google Scholar] [CrossRef] [PubMed]
- Mooney, P.; Sun, H.; Yan, L. VGI As a Dynamically Updating Data Source in Location-Based Services in Urban Environments. In Proceedings of the 2nd International Workshop on Ubiquitous Crowdsouring, Beijing, China, 18 September 2011; ACM: New York, NY, USA, 2011; pp. 13–16. [Google Scholar]
- Massa, P.; Campagna, M. Integrating Authoritative and Volunteered Geographic Information for Spatial Planning. In European Handbook of Crowdsourced Geographic Information; Ubiquity Press: London, UK, 2016; pp. 401–418. [Google Scholar] [CrossRef] [Green Version]
- Milholland, N.; Pultar, E. The San Francisco Public Art Map Application: Using VGI and Social Media to Complement Institutional Data Sources. In Proceedings of the Proceedings of the 1st ACM SIGSPATIAL International Workshop on MapInteraction, New York, NY, USA, 5 November 2013; ACM: New York, NY, USA, 2013; pp. 48–53. [Google Scholar]
Study Area | LMA | SWPT | ||||
---|---|---|---|---|---|---|
Activity | Tracks | Km | Users | Tracks | Km | Users |
Hiking | 1049 (5%) | 35,483 | 376 | 178 (6%) | 11,283 | 86 |
Running | 1296 (7%) | 18,568 | 376 | 38 (1%) | 1225 | 24 |
Walking | 693 (4%) | 9604 | 243 | 69 (2%) | 1151 | 33 |
Cycling | 2845 (15%) | 329,990 | 755 | 466 (17%) | 56,455 | 181 |
Mountain biking | 9407 (49%) | 508,035 | 1637 | 1535 (55%) | 118,392 | 417 |
Racing bike | 3927 (20%) | 422,110 | 777 | 528 (19%) | 65,722 | 199 |
Total | 19,217 (100%) | 1,323,789 | 2842 * | 2814 (100%) | 254,227 | 798 * |
Study Area | LMA | SWPT | ||||
---|---|---|---|---|---|---|
Activity | Nationals | Foreigners | Totals | Nationals | Foreigners | Totals |
Hiking | 323 (86%) | 53 (14%) | 376 | 42 (49%) | 44 (51%) | 86 |
Running | 336 (89%) | 40 (11%) | 376 | 14 (58%) | 10 (42%) | 24 |
Walking | 227 (93%) | 16 (7%) | 243 | 29 (88%) | 4 (12%) | 33 |
Cycling | 617 (82%) | 138 (18%) | 755 | 123 (68%) | 58 (32%) | 181 |
Mountain biking | 1588 (97%) | 49 (3%) | 1637 | 392 (94%) | 25 (6%) | 417 |
Racing bike | 745 (96%) | 32 (4%) | 777 | 166 (83%) | 33 (17%) | 199 |
Total | 2537 (89%) * | 305 (11%) * | 2842 * | 632 (79%) * | 166 (21%) * | 798 * |
Hiking | Running | Walking | Cycling | Mountain Biking | Racing Bike | ||
---|---|---|---|---|---|---|---|
LMA (P95) | Count * | 996 | 1231 | 658 | 2702 | 8919 | 3731 |
Average | 22.16 | 11.43 | 9.93 | 87.16 | 45.39 | 94.57 | |
StDev | 19.33 | 6.02 | 6.43 | 63.87 | 22.94 | 39.74 | |
Max. | 92.14 | 30.91 | 31.87 | 322.25 | 124.48 | 191.50 | |
Q3 | 31.35 | 14.24 | 12.91 | 115.09 | 56.72 | 120.14 | |
Median | 15.43 | 10.23 | 8.77 | 77.90 | 41.39 | 97.88 | |
Q1 | 8.27 | 7.86 | 5.28 | 39.80 | 29.92 | 66.85 | |
Min. | 0.32 | 0.30 | 0.27 | 0.86 | 0.26 | 0.25 | |
SWPT (P95) | Count | 169 | 36 | 65 | 442 | 1458 | 501 |
Average | 42.98 | 17.83 | 13.82 | 101.07 | 61.79 | 113.97 | |
StDev | 54.60 | 38.15 | 5.71 | 63.82 | 36.45 | 49.13 | |
Max. | 256.01 | 232.28 | 24.79 | 295.60 | 225.58 | 212.91 | |
Q3 | 46.10 | 14.17 | 17.89 | 134.24 | 75.28 | 147.85 | |
Median | 20.15 | 9.63 | 14.64 | 85.47 | 53.49 | 108.89 | |
Q1 | 10.05 | 6.49 | 9.10 | 52.82 | 38.20 | 77.69 | |
Min. | 0.50 | 0.70 | 1.74 | 1.75 | 1.87 | 1.01 |
Activities | Users’ (Stated) Favourite Activity | Tracks Upload to GPSies from These Users | Average Tracks per User |
---|---|---|---|
Hiking | 256 | 6974 | 27.24 |
Running | 176 | 4013 | 22.80 |
Walking | 110 | 2293 | 20.85 |
Cycling | 446 | 22,361 | 50.14 |
Mountain biking | 1236 | 29,400 | 23.79 |
Racing bike | 464 | 18,955 | 40.85 |
None | 556 | 3956 | 7.12 |
Others | 53 | 952 | 17.96 |
Total | 3297 | 88,904 | 26.97 |
Hiking | Running | Walking | Cycling | Mountain Biking | Racing Bike | Total | ||
---|---|---|---|---|---|---|---|---|
Total Score | with GR | 86,035 | 7310 | 12,622 | 380,028 | 1,062,444 | 468,650 | 2,017,089 |
without GR | 47,576 | 5387 | 6238 | 352,898 | 855,894 | 452,639 | 1,720,632 | |
GR weight | 45% | 26% | 51% | 7% | 19% | 3% | 15% | |
National Score | with GR | 52,054 | 2479 | 9344 | 262,042 | 995,417 | 404,482 | 1,725,818 |
without GR | 37,738 | 1178 | 4661 | 247,156 | 799,493 | 391,513 | 1,481,739 | |
GR weight | 28% | 52% | 50% | 6% | 20% | 3% | 14% | |
Foreign Score | with GR | 33,981 | 4831 | 3278 | 117,986 | 67,027 | 64,168 | 291,271 |
without GR | 9838 | 4209 | 1577 | 105,742 | 56,401 | 61,126 | 238,893 | |
GR weight | 71% | 13% | 52% | 10% | 16% | 5% | 18% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, T.; Nogueira Mendes, R.; Farías-Torbidoni, E.I.; Julião, R.P.; Pereira da Silva, C. Volunteered Geographical Information and Recreational Uses within Metropolitan and Rural Contexts. ISPRS Int. J. Geo-Inf. 2022, 11, 144. https://doi.org/10.3390/ijgi11020144
Santos T, Nogueira Mendes R, Farías-Torbidoni EI, Julião RP, Pereira da Silva C. Volunteered Geographical Information and Recreational Uses within Metropolitan and Rural Contexts. ISPRS International Journal of Geo-Information. 2022; 11(2):144. https://doi.org/10.3390/ijgi11020144
Chicago/Turabian StyleSantos, Teresa, Ricardo Nogueira Mendes, Estela I. Farías-Torbidoni, Rui Pedro Julião, and Carlos Pereira da Silva. 2022. "Volunteered Geographical Information and Recreational Uses within Metropolitan and Rural Contexts" ISPRS International Journal of Geo-Information 11, no. 2: 144. https://doi.org/10.3390/ijgi11020144
APA StyleSantos, T., Nogueira Mendes, R., Farías-Torbidoni, E. I., Julião, R. P., & Pereira da Silva, C. (2022). Volunteered Geographical Information and Recreational Uses within Metropolitan and Rural Contexts. ISPRS International Journal of Geo-Information, 11(2), 144. https://doi.org/10.3390/ijgi11020144