GeoSPARQL 1.1: Motivations, Details and Applications of the Decadal Update to the Most Important Geospatial LOD Standard †
Abstract
1. Introduction and Motivation
- A specification: document:
- −
- The main GeoSPARQL document defining, in human-readable terms and with code snippets, most elements of the standard including ontology elements, geospatial functions that may be performed on Resource Description Format (RDF) [5] data via SPARQL [6,7] queries, entailment rules in the Rules Interchange Format (RIF) [8] for RDF reasoning and requirements and abstract tests for testing ontology data and function implementations.
- An RDF/OWL [9] schema:
- −
- The GeoSPARQL ontology—Semantic Web data model—in an RDF file.
- An RDF vocabulary:
- −
- The simple features vocabulary for “defining SimpleFeature geometry types” taken from [10] in RDF/OWL terms, also in an RDF file.
- New geometry serialisations:
- −
- GeoJSON, KML and other now-popular formats missing from GeoSPARQL 1.0.
- −
- The possibility to convert between literal formats in-query.
- New and specialised ontology classes and properties:
- −
- More nuanced spatial data representation and alignment with other systems.
- More spatial functions:
- −
- Implementing functions well-known in non-Semantic Web spatial systems.
- Scalar spatial properties:
- −
- Area, volume, etc., alongside geometries.
- Better handling of Spatial (Coordinate) Reference Systems (SRS)
- −
- Allowing for automated coordinate serialisation conversions.
- Internet protocol-based selection of different geometries for features.
- Revising “upper ontology” GeoSPARQL structure–how its classes relate to fundamental concepts in ontology;
- Alignments to other ontologies, perhaps W3C Time Ontology in OWL [19];
- Catering for very different SRSes, such as Discrete Global Grid Systems.
- 1.1: Extensions that are fully compatible with GeoSPARQL 1.0;
- 1.2: Fully or mostly compatible extensions but which are larger additions to the standard’s conceptual coverage;
- 2.0: Future GeoSPARQL likely incompatible with GeoSPARQL 1.0.
2. Updates in GeoSPARQL 1.1
2.1. Profile Declaration
- A profile declaration
- The definition of the profile links to the things it profiles and a listing of its parts
- Nn human (HTML) and machine (RDF) readable forms
- A specification resource
- As per GeoSPARQL 1.0, the normative document of the GeoSPARQL standard
- Contains requirements and conformance classes
- Presented as a document in human-readable form (a PDF) but also containing normative code (schema) snippets and function definition tables and examples
- An RDF/OWL model schema resource
- The GeoSPARQL 1.1 ontology, in both RDF and HTML forms
- Several vocabulary resources
- Mainly derived from the schema
- Presented in human- and machine-readable forms of the Simple Knowledge Organization System (SKOS) taxonomy model [22]
- There are vocabularies for Functions, Rules, Conformance Classes in addition to GeoSPARQL 1.0’s Simple Features definitions
- JSON-LD ‘context’ mappings
- Mappings between local names and fully qualified ontology identifiers for the GeoSPARQL 1.1 ontology and also the Simple Features definitions vocabulary
- A validation resource
- A series of Shapes Constraint Language (SHACL) [23] shapes for RDF data validation.
2.2. Ontology Extensions
2.2.1. Scalar Spatial Properties
- geo:hasSize & geo:hasMetricSize–generic property
|
2.2.2. New Geometry Properties
|
2.2.3. Topological Relations
2.2.4. Support for Collections
- geof:geometryN—allows the retrieval of the nth geometry inside a sf:GeometryCollection instance;
- geof:numGeometries—allows the retrieval of the number of geometries contained in a sf:GeometryCollection instance.
2.3. Ontology Alignments
2.4. New Geometry Literal Types
2.4.1. GeoJSON & KML
|
2.4.2. DGGS Literals
|
2.4.3. Appropriateness of DGGS Data as Geometry Literals
2.5. New Geometry Conversion Functions
2.6. Spatial Aggregate Functions
- No client-side library is needed to create an aggregated geometry result.
- Fewer/more appropriate results are returned, for example a union result.
- Federated SPARQL queries can aggregate results from multiple endpoints.
2.7. Comparison of Query Capabilities
2.7.1. Common Query Language CQL
2.7.2. Simple Features for SQL
2.7.3. PostGIS Query Capabilities
2.8. Shacl Shapes for Graph Validation
- Encouragement of a unified Geometry instance structure: GeoSPARQL 1.1 encourages geo:Geometry instances to only link to one serialisation. The intention behind this rule is that not all Geometry serialisations that GeoSPARQL 1.1 supports are 1:1 convertible. Users are still free to use more than one serialisation attached to a Geometry but should be warned about the fact that serialisations may not be 100% equivalent. A simple example of this non-equivalence can be seen when a geometry is associated with a WKT literal in a non CRS84 coordinate reference system and a GeoJSON literal. Because of a limitation of the GeoJSON literal to only accept one coordinate reference system, the literal values of these to literals cannot be equivalent.
- Rudimentary checks of literal contents: Geometry literal contents are checked for plausibility. These checks do not contain the parsing of geometry literals and its validation but aim to check whether the contents of the geometry literal seem to be correct according to its literal type.
- Correct usage of GeoSPARQL classes: Several SHACL shapes test the proper usage of GeoSPARQL classes. In particular, SpatialObjectCollections are expected to have at least one member relation, and geo:Feature instances are expected to be associated to at least one geo:Geometry instance, whereas each Geometry instance is expected to relate to at least one Geometry serialisation.
- Geometry property consistency: Further SHACL shapes test for the consistency of values and cardinality of properties of a geo:Feature or geo:Geometry. For example, one SHACL shape tests the consistency of dimensionality properties of a geo:Geometry.
2.9. JSON-LD Contexts
2.10. Requirements and Conformance Class Vocabulary
2.10.1. Compliance Benchmarking
2.10.2. Partial Data Conformance Claims
3. Reference Implementations
3.1. RDFLib DGGS
3.2. GeoSPARQL-Jena
3.3. SPARQLing Unicorn QGIS Plugin
4. Examples of Usage of GeoSPARQL 1.1
4.1. Profile Declaration
4.2. Use of New Geometry Formats
4.3. OGC API Features Backend
4.4. DGGS Application Example
5. Future Work
5.1. GeoSPARQL 1.1 Finalization
- Send the new version to system implementors for wider review.
- Respond to implementors’ feedback.
- Register the new IRIs within version 1.1 with the OGC Naming Authority.
- Initiate the mandatory OGC standard update notification period.
5.2. Work beyond GeoSPARQL 1.1
5.3. Inclusion of Further Spatial Data Types
5.4. Geometry Roles
5.5. Interoperability with Buildings Data
5.6. Formalisation of Spatial Reference Systems
5.7. Linked Data Fragments Support
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
BIM | Building Information Modeling |
CQL | Common Query Language |
CRS | Coordinate Reference System |
DGGS | Discrete Global Grid System |
EPSG | European Petroleum Survey Group |
GeoSPARQL | Geographic SPARQL Protocol Furthermore, RDF Query Language |
GIS | Geographic Information System |
GML | Geography Markup Language |
HTML | Hypertext Markup Language |
KML | Keyhole Markup Language |
JSON | JavaScript Object Notation |
LDF | Linked Data Fragments |
NDES | National Data Exchange Standard |
OGC | Open Geospatial Consortium |
OWL | Web Ontology Language |
QGIS | Quantum GIS |
RDF | Resource Description Framework |
RDFS | Resource Description Framework Schema |
RIF | Rule Interchange Format |
SDWWG | Spatial Data On The Web Working Group |
SHACL | Shapes Constraint Language |
SKOS | Simple Knowledge Organization System |
SOSA | Semantic Sensor Network Ontology |
SPARQL | SPARQL Protocol Furthermore, RDF Query Language |
SRS | Spatial Reference System |
SWG | Standard Working Group |
W3C | World Wide Web Consortium |
WKT | Well-Known Text |
XML | Extensible Markup Language |
Appendix A. GeoSPARQL 1.0 and 1.1 Topological Relations
Simple Features | Egenhofer Relations | Region Connection Calculus (RCC8) |
---|---|---|
geo:sfEquals | geo:ehEquals | geo:rcc8eq |
geo:sfDisjoint | geo:ehDisjoint | geo:rcc8dc |
geo:sfIntersects | geo:ehMeet | geo:rcc8ec |
geo:sfTouches | geo:ehOverlap | geo:rcc8po |
geo:sfCrosses | geo:ehCovered | geo:rcc8tppi |
geo:sfWithin | geo:ehCoveredBy | geo:rcc8tpp |
geo:sfContains | geo:ehInside | geo:rcc8ntpp |
geo:sfOverlaps | geo:ehContains | geo:rcc8ntppi |
References
- Cox, S.; Browning, D.; Beltran, A.G.; Albertoni, R.; Perego, A.; Winstanley, P. Data Catalog Vocabulary (DCAT)—Version 2. W3C Recommendation, W3C. 2020. Available online: https://www.w3.org/TR/vocab-dcat-2/ (accessed on 30 October 2021).
- Doerr, M.; Hiebel, G.; Eide, Ø. CRMgeo: Linking the CIDOC CRM to GeoSPARQL through a Spatiotemporal Refinement; Technical Report; CIDOC-CRM Documentation Standards Working Group: Geneva, Switzerland, 2013; Available online: https://cidoc-crm.org/crmgeo/sites/default/files/Technical%20Report435-CRMgeo.pdf (accessed on 30 October 2021).
- Hiebel, G.; Doerr, M.; Eide, Ø. CRMgeo: A spatiotemporal extension of CIDOC-CRM. Int. J. Digit. Libr. 2017, 18, 271–279. [Google Scholar] [CrossRef]
- Perry, M.; Herring, J. OGC GeoSPARQL—A Geographic Query Language for RDF Data; OGC Implementation Standard; Open Geospatial Consortium: Rockville, MD, USA, 2012. [Google Scholar]
- Cyganiak, R.; Wood, D.; Lanthaler, M. RDF 1.1 Concepts and Abstract Syntax; W3C Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2014. [Google Scholar]
- W3C SPARQL Working Group. SPARQL 1.1 Overview; W3C Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2013; Available online: http://www.w3.org/TR/sparql11-overview/ (accessed on 30 October 2021).
- Seaborne, A.; Harris, S. SPARQL 1.1 Query Language; W3C Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2013; Available online: http://www.w3.org/TR/sparql11-query/ (accessed on 30 October 2021).
- Kifer, M.; Boley, H. RIF Overview, 2nd ed.; W3C Working Group Note; World Wide Web Consortium: Cambridge, MA, USA, 2013; Available online: https://www.w3.org/TR/rif-overview/ (accessed on 30 October 2021).
- Motik, B.; Patel-Schneider, P.F.; Parsia, B. OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax; W3C Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2009; Available online: https://www.w3.org/TR/owl2-syntax/ (accessed on 30 October 2021).
- ISO 19125-1:2004; Geographic Information—Simple Feature Access—Part 1: Common Architecture. International Organization for Standardization: Geneva, Switzerland, 2004.
- Car, N.J.; Homburg, T. GeoSPARQL 1.1: An Almost Decadal Update to the Most Important Geospatial LOD Standard; Yaman, B., Sherif, M.A., Ngonga Ngomo, A.C., Haller, A., Eds.; Geospatial Linked Data Workshop 2021; CEUR-WS: Hersonissos, Greece, 2021; Volume 2977, pp. 26–33. [Google Scholar]
- Van den Brink, L.; Barnaghi, P.; Tandy, J.; Atemezing, G.; Atkinson, R.; Cochrane, B.; Fathy, Y.; Troncy, R. Best practices for publishing, retrieving, and using spatial data on the web. Semant. Web 2018, 10, 95–114. [Google Scholar] [CrossRef]
- Jovanovik, M.; Homburg, T.; Spasić, M. A GeoSPARQL Compliance Benchmark. ISPRS Int. J. Geo-Inf. 2021, 10, 487. [Google Scholar] [CrossRef]
- Troumpoukis, A.; Konstantopoulos, S.; Mouchakis, G.; Prokopaki-Kostopoulou, N.; Paris, C.; Bruzzone, L.; Pantazi, D.A.; Koubarakis, M. GeoFedBench: A Benchmark for Federated GeoSPARQL Query Processors; ISWC (Demos/Industry): Athens, Greece, 2020. [Google Scholar]
- Ioannidis, T.; Garbis, G.; Kyzirakos, K.; Bereta, K.; Koubarakis, M. Evaluating geospatial RDF stores using the benchmark Geographica 2. J. Data Semant. 2021, 10, 1–40. [Google Scholar] [CrossRef]
- Huang, W.; Raza, S.A.; Mirzov, O.; Harrie, L. Assessment and benchmarking of spatially enabled RDF stores for the next generation of spatial data infrastructure. ISPRS Int. J. Geo-Inf. 2019, 8, 310. [Google Scholar] [CrossRef]
- Abhayaratna, J.; van den Brink, L.; Car, N.; Atkinson, R.; Homburg, T.; Knibbe, F.; Thiery, F. OGC Benefits of Representing Spatial Data Using Semantic and Graph Technologies; OGC White Paper; Open Geospatial Consortium: Rockville, MD, USA, 2020. [Google Scholar]
- Abhayaratna, J.; van den Brink, L.; Car, N.; Homburg, T.; Knibbe, F. Ogc Swg Charter. In OGC GeoSPARQL 2.0 SWG Charter; Open Geospatial Consortium: Rockville, MD, USA, 2020. [Google Scholar]
- Cox, S.; Little, C. Time Ontology in OWL; W3C Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2017. [Google Scholar]
- Car, N.J.; Homburg, T.; Perry, M.; Herring, J.; Knibbe, F.; Cox, S.J.D.; Abhayaratna, J.; Bonduel, M. OGC GeoSPARQL—A Geographic Query Language for RDF Data. 2021. Available online: https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html (accessed on 30 October 2021).
- Atkinson, R.; Car, N.J. The Profiles Vocabulary; W3C Working Group Note; World Wide Web Consortium: Cambridge, MA, USA, 2020. [Google Scholar]
- Miles, A.; Bechhofer, S. SKOS Simple Knowledge Organization System Reference; W3C Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2009. [Google Scholar]
- Knublauch, H.; Kontokostas, D. Shapes Constraint Language (SHACL); W3C Recommendation; W3C: Cambridge, MA, USA, 2017. [Google Scholar]
- Haller, A.; Janowicz, K.; Cox, S.; Le Phuoc, D.; Taylor, K.; Lefrançois, M. Semantic Sensor Network Ontology; W3C Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2017. [Google Scholar]
- Compton, M.; Barnaghi, P.; Bermudez, L.; Garcia-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32. [Google Scholar] [CrossRef]
- Open Geospatial Consortium. OGC API—Features—Part 1: Core; Implementation Standard; Open Geospatial Consortium: Rockville, MD, USA, 2019. [Google Scholar]
- Cox, S.J. Extensions to the Semantic Sensor Network Ontology; W3C Working Draft; World Wide Web Consortium: Cambridge, MA, USA, 2020. [Google Scholar]
- Butler, H.; Daly, M.; Doyle, A.; Gillies, S.; Schaub, T.; Schaub, T. The GeoJSON Format; RFC 7946; Internet Engineering Taskforce: Reston, VA, USA, 2016. [Google Scholar] [CrossRef]
- Nolan, D.; Lang, D.T. Keyhole Markup Language. In XML and Web Technologies for Data Sciences with R; Springer: New York, NY, USA, 2014; pp. 581–618. [Google Scholar] [CrossRef]
- Sahr, K.; White, D.; Kimerling, A.J. Geodesic Discrete Global Grid Systems. In Cartography and Geographic Information Science; Taylor & Francis: London, UK, 2003; Volume 2, pp. 121–134. [Google Scholar]
- Vretanos, P.A.; Portele, C. OGC API—Features—Part 3: Filtering and the Common Query Language (CQL); Open Geospatial Consortium Standard Draft; Open Geospatial Consortium: Rockville, MD, USA, 2021. [Google Scholar]
- Debruyne, C.; McGlinn, K. Reusable SHACL Constraint Components for Validating Geospatial Linked Data. CEUR-WS 2021, 2977, 59–66. Available online: http://ceur-ws.org/Vol-2977/paper8.pdf (accessed on 30 October 2021).
- Champin, P.A.; Longley, D.; Kellogg, G. JSON-LD 1.1; W3C Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2020; Available online: https://www.w3.org/TR/2020/REC-json-ld11-20200716/ (accessed on 30 October 2021).
- Röder, M.; Kuchelev, D.; Ngonga Ngomo, A.C. HOBBIT: A platform for benchmarking Big Linked Data. Data Sci. 2020, 3, 15–35. [Google Scholar] [CrossRef]
- Habgood, D. Simple Feature Functions for rHEALPix DGGS. Python Software. 2021. Available online: https://pypi.org/project/rhealpix-sf/ (accessed on 30 October 2021).
- Gibb, R.; Raichev, A.; Speth, M. The rHEALPix Discrete Global Grid System; Landcare Research New Zealand: Lincoln, New Zealand, 2016. [Google Scholar] [CrossRef]
- Habgood, D. RDFlib GeoSPARQL Functions for DGGS. 2021. Available online: https://pypi.org/project/geosparql-dggs/ (accessed on 30 October 2021).
- Albiston, G.L.; Osman, T.; Chen, H. GeoSPARQL-Jena: Implementation and benchmarking of a GeoSPARQL graphstore. 2018. Available online: https://www.semanticscholar.org/paper/GeoSPARQL-Jena%3A-Implementation-and-Benchmarking-of-Albiston-Osman/224bcc2ca5b39294e14eb1202f29ac63f534e8e3 (accessed on 30 October 2021).
- Homburg, T.; Staab, S.; Janke, D. GeoSPARQL+: Syntax, Semantics and System for Integrated Querying of Graph, Raster and Vector Data. The Semantic Web—ISWC 2020; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Thiery, F.; Homburg, T. SPARQLing Unicorn QGIS Plugin; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Duckham, M.; Arnold, L.; Armstrong, K.; McMeekin, D.; Mottolini, D. Towards a spatial knowledge infrastructure. In Proceedings of the AGILE 2018, Lund, Sweden, 12–15 June 2018. [Google Scholar]
- Ivánová, I.; Siao Him Fa, J.; McMeekin, D.A.; Arnold, L.M.; Deakin, R.; Wilson, M. From spatial data to spatial knowledge infrastructure: A proposed architecture. Trans. GIS 2020, 24, 1526–1558. [Google Scholar] [CrossRef]
- Fierro, G.; Koh, J.; Agarwal, Y.; Gupta, R.K.; Culler, D.E. Beyond a House of Sticks: Formalizing Metadata Tags with Brick. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; pp. 125–134. [Google Scholar] [CrossRef]
- Terkaj, W.; Šojić, A. Ontology-based representation of IFC EXPRESS rules: An enhancement of the ifcOWL ontology. Autom. Constr. 2015, 57, 188–201. [Google Scholar] [CrossRef]
- Verborgh, R.; Vander Sande, M.; Hartig, O.; Van Herwegen, J.; De Vocht, L.; De Meester, B.; Haesendonck, G.; Colpaert, P. Triple Pattern Fragments: A Low-cost Knowledge Graph Interface for the Web. J. Web Semant. 2016, 37–38, 184–206. [Google Scholar] [CrossRef]
- Zhang, C.; Beetz, J.; de Vries, B. BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data. Semant. Web 2018, 9, 829–855. [Google Scholar] [CrossRef]
- Renz, J. A canonical model of the region connection calculus. J. Appl. Non-Class. Logics 2002, 12, 469–494. [Google Scholar] [CrossRef][Green Version]
Category | CQL Expression | GeoSPARQL Expression |
---|---|---|
Query Parameter | limit = 5 | LIMIT 5 |
Literal Value | “A string” | “A string”^^xsd:string |
Comparison predicate | name IS NOT NULL | EXISTS {?item my:name ?name} |
Spatial Operators | CONTAINS(geometry1,geometry2) | FILTER(geof:sfContains (?geometry1,?geometry2)) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Car, N.J.; Homburg, T. GeoSPARQL 1.1: Motivations, Details and Applications of the Decadal Update to the Most Important Geospatial LOD Standard. ISPRS Int. J. Geo-Inf. 2022, 11, 117. https://doi.org/10.3390/ijgi11020117
Car NJ, Homburg T. GeoSPARQL 1.1: Motivations, Details and Applications of the Decadal Update to the Most Important Geospatial LOD Standard. ISPRS International Journal of Geo-Information. 2022; 11(2):117. https://doi.org/10.3390/ijgi11020117
Chicago/Turabian StyleCar, Nicholas J., and Timo Homburg. 2022. "GeoSPARQL 1.1: Motivations, Details and Applications of the Decadal Update to the Most Important Geospatial LOD Standard" ISPRS International Journal of Geo-Information 11, no. 2: 117. https://doi.org/10.3390/ijgi11020117
APA StyleCar, N. J., & Homburg, T. (2022). GeoSPARQL 1.1: Motivations, Details and Applications of the Decadal Update to the Most Important Geospatial LOD Standard. ISPRS International Journal of Geo-Information, 11(2), 117. https://doi.org/10.3390/ijgi11020117