The Use of Interactive Virtual BIM to Boost Virtual Tourism in Heritage Sites, Historic Jeddah
Abstract
:1. Introduction
1.1. Historic Jeddah: UNESCO World Heritage Site
1.2. Challenges of Heritage Sites
1.3. Research Aim
2. Literature Review
2.1. The Implementation of BIM in Heritage
2.2. The Difference between Virtual, Augmented, and Mixed Realities
2.3. BIM-Based and Applications of VR and AR
3. Material
3.1. The 3D Modeling and E-Documentation
3.2. Virtual and Augmented Reality (VR&VA) for Documenting Cultural Heritage
4. Method
4.1. Zainal House Case Study
4.2. Reality Capture: 3D Environment
Point Cloud Data Processing
4.3. 3D Heritage BIM Model
4.4. From Heritage BIM toward Virtual Panoramic Tours
5. Results and Discussion
From Heritage BIM toward Augmented Reality (AR) and Virtual Reality (VR) Technologies
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saudi Commission for Tourism and Antiquities (SCTA). The Workshop of Mechanisms to Preserve the Architectural Heritage. 2015. Available online: https://www.youtube.com/watch?v=pultz0hytrY (accessed on 20 January 2017).
- Paquet, E.; Viktor, H.L. Long-term preservation of 3D cultural heritage data related to architectural sites. In Proceedings of the ISPRS Working Group, Mestre, Venice, Italy, 22–24 August 2005; Volume 4. [Google Scholar]
- Barazzetti, L.; Banfi, F. Historic BIM for mobile VR/AR applications. In Mixed Reality and Gamification for Cultural Heritage; Springer: Berlin/Heidelberg, Germany, 2017; pp. 271–290. [Google Scholar]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- NBIMS-US. About the National BIM Standard-United States. 2015. Available online: http://www.nationalbimstandard.org/ (accessed on 1 July 2021).
- Murphy, M. Historic Building Information Modelling (HBIM) For Recording and Documenting Classical Architecture in Dublin 1700 to 1830. Ph.D. Thesis, Trinity College Dublin, Dublin, Ireland, 2012. [Google Scholar]
- eBIM. Heritage BIM-eBIM. 2015. Available online: http://ebim.co.uk/heritage-bim/ (accessed on 10 April 2016).
- Baik, A. Heritage Building Information Modelling “HBIM” as a Model of UNESCO’s World Heritage Nomination File; University College London: London, UK, 2017. [Google Scholar]
- Dirix, E. Former Places of Worship in Dublin: Historic Building Information; University of Leuven: Leuven, Belgium, 2015. [Google Scholar]
- Fai, S.; Graham, K.; Duckworth, T.; Wood, N.; Attar, R. Building Information Modelling and Heritage Documentation. In Proceedings of the XXIII CIPA International Symposium, Prague, Czech Republic, 12–16 September 2011. [Google Scholar]
- Hichri, N.; Stefani, C.; Luca, L.D.; Veron, P. Review of the « AS-BUILT BIM » Approaches. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W1, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; McGovern, E.; Pavia, S. Historic building information modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Oreni, D. From 3D Content Models to HBIM for Conservation and Management of Built Heritage. In Computational Science and Its Applications—ICCSA 2013; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7974, pp. 344–357. [Google Scholar]
- Penttilä, H.; Rajala, M.; Freese, S. Building Information modelling of modern historic buildings. In Proceedings of the Predicting the Future, 25th eCAADe Konferansı, Frankfurt am Main, Germany, 26–29 September 2007; pp. 607–613. [Google Scholar]
- Backes, D.; Thomson, C.; Malki-Ephshtein, L.; Boehm, J. Chadwick GreenBIM: Advancing Operational Understanding of Historical Buildings with BIM to Support Sustainable Use. 2014. Available online: http://www.bso14.org/BSO14_Papers/BSO14_Paper_007.pdf (accessed on 1 July 2021).
- Dore, C.; Murphy, M. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. In Proceedings of the VSMM 2012: 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; pp. 369–376. [Google Scholar]
- Massimiliano, P.; Domenica, C.; Alfio, V.S.; Restuccia, A.G.; Papalino, N.M. Scan to BIM for the digital management and representation in 3D GIS environment of cultural heritage site. J. Cult. Herit. 2021, 50, 115–125. [Google Scholar]
- Ewart, I.J.; Zuecco, V. Heritage Building Information Modelling (HBIM): A review of published case studies. In Advances in Informatics and Computing in Civil and Construction Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 35–41. [Google Scholar]
- Brilakis, I.; Pan, Y.; Braun, A.; Borrmann, A. Void-Growing: A Novel Scan-to-BIM Method for Manhattan World Buildings from Point Cloud; Cambridge University: Cambridge, UK, 2021. [Google Scholar]
- Alshawabkeh, Y.; Baik, A.; Miky, Y. Integration of Laser Scanner and Photogrammetry for Heritage BIM Enhancement. ISPRS Int. J. Geo-Inf. 2021, 10, 316. [Google Scholar] [CrossRef]
- Costantino, D.; Pepe, M.; Restuccia, A.G. Scan-to-HBIM for conservation and preservation of Cultural Heritage building: The case study of San Nicola in Montedoro church (Italy). Appl. Geomat. 2021, 1–15. [Google Scholar] [CrossRef]
- Baik, A.H. Heritage Building Information Modelling for Implementing UNESCO Procedures: Challenges, Potentialities, and Issues; Routledge: London, UK, 2020. [Google Scholar]
- Thomson, C.; Boehm, J. Automatic Geometry Generation from Point Clouds for BIM. Remote Sens. 2015, 7, 11753–11775. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, E. Virtual Wolverhampton: Recreating the Historic City in Virtual Reality. ArchNet-IJAR Int. J. Archit. Res. 2017, 11, 42–57. [Google Scholar] [CrossRef]
- Rubio-Tamayo, J.L.; Barrio, M.G.; García, F.G. Immersive environments and virtual reality: Systematic review and advances in communication, interaction and simulation. Multimodal Technol. Interact. 2017, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Salem, O.; Samuel, I.J.; He, S. Bim and Vr/Ar Technologies: From Project Development to Lifecycle Asset Management; ISEC Press: Fargo, ND, USA, 2020; Volume 7. [Google Scholar]
- Adascalitei, I. The Influence of Augmented Reality in Construction and Integration into Smart City. Inform. Econ. 2018, 22, 55–67. [Google Scholar] [CrossRef]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented reality: A class of displays on the reality-virtuality continuum. In Proceedings of the Telemanipulator and Telepresence Technologies, Boston, MA, USA, 31 October–4 November 1994; Volume 2351, pp. 282–293. [Google Scholar] [CrossRef]
- Chi, H.-L.; Kang, S.-C.; Wang, X. Research trends and opportunities of augmented reality applications in architecture, engineering, and construction. Autom. Constr. 2013, 33, 116–122. [Google Scholar] [CrossRef]
- Du, J.; Zou, Z.; Shi, Y.; Zhao, D. Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative decision-making. Autom. Constr. 2018, 85, 51–64. [Google Scholar] [CrossRef]
- Sacks, R.; Perlman, A.; Barak, R. Construction safety training using immersive virtual reality. Constr. Manag. Econ. 2013, 31, 1005–1017. [Google Scholar] [CrossRef]
- Postlethwaite, D. Community college welding program update. Weld. J.-Incl. Weld. Res. Suppl. 2012, 91, 33. [Google Scholar]
- Tatić, D.; Tešić, B. The application of augmented reality technologies for the improvement of occupational safety in an industrial environment. Comput. Ind. 2017, 85. [Google Scholar] [CrossRef]
- Styliadis, A.D. Digital documentation of historical buildings with 3D modeling functionality. Autom. Constr. 2007, 16, 498–510. [Google Scholar] [CrossRef]
- Icomos, A. The Burra Charter: The Australia ICOMOS Charter for Places of Cultural Significance 2013; Australia ICOMOS Incorporated: Burwood, Australia, 2013. [Google Scholar]
- Chu, M.; Matthews, J.; Love, P.E. Integrating mobile building information modelling and augmented reality systems: An experimental study. Autom. Constr. 2018, 85, 305–316. [Google Scholar] [CrossRef]
- Zaher, M.; Greenwood, D.; Marzouk, M. Mobile augmented reality applications for construction projects. Constr. Innov. 2018, 18, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Albourae, A.T.; Armenakisa, C.; Kyan, M. Architectural heritage visualization using interactive technologies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Samadbeik, M.; Yaaghobi, D.; Bastani, P.; Abhari, S.; Rezaee, R.; Garavand, A. The applications of virtual reality technology in medical groups teaching. J. Adv. Med. Educ. Prof. 2018, 6, 123. [Google Scholar]
- Milovanovic, J.; Moreau, G.; Siret, D.; Miguet, F. Virtual and Augmented Reality in Architectural Design and Education. In Proceedings of the 17th International Conference, CAAD Futures 2017, Istanbul, Turkey, 12–14 July 2017. [Google Scholar]
- Waugh, L.M.; Rausch, B.; Engram, T.; Aziz, F. Inuvik Super School VR Documentation: Mid-Project Status. In Cold Regions Engineering 2012: Sustainable Infrastructure Development in a Changing Cold Environment; ASCE Publications: Bhopal, India, 2012; pp. 221–230. [Google Scholar]
- Park, C.-S.; Lee, D.-Y.; Kwon, O.-S.; Wang, X. A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom. Constr. 2013, 33, 61–71. [Google Scholar] [CrossRef]
- Dunston, P.S.; Wang, X. Mixed reality-based visualization interfaces for architecture, engineering, and construction industry. J. Constr. Eng. Manag. 2005, 131, 1301–1309. [Google Scholar] [CrossRef]
- Dong, S.; Kamat, V.R. SMART: Scalable and modular augmented reality template for rapid development of engineering visualization applications. Vis. Eng. 2013, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Truijens, M.; Hou, L.; Wang, Y.; Zhou, Y. Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Autom. Constr. 2014, 40, 96–105. [Google Scholar] [CrossRef]
- Wang, X.; Truijens, M.; Hou, L.; Wang, Y. Application of collaborative mobile system in ar-based visualization, data storage and manipulation. In Proceedings of the International Conference on Cooperative Design, Visualization and Engineering, Seattle, WA, USA, 14–17 September 2013; pp. 221–226. [Google Scholar]
- Shen, Z.; Jiang, L.; Grosskopf, K.; Berryman, C. Creating 3D web-based game environment using BIM models for virtual on-site visiting of building HVAC systems. In Construction Research Congress; ASCE: Reston, VA, USA, 2012; pp. 1212–1221. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baik, A. The Use of Interactive Virtual BIM to Boost Virtual Tourism in Heritage Sites, Historic Jeddah. ISPRS Int. J. Geo-Inf. 2021, 10, 577. https://doi.org/10.3390/ijgi10090577
Baik A. The Use of Interactive Virtual BIM to Boost Virtual Tourism in Heritage Sites, Historic Jeddah. ISPRS International Journal of Geo-Information. 2021; 10(9):577. https://doi.org/10.3390/ijgi10090577
Chicago/Turabian StyleBaik, Ahmad. 2021. "The Use of Interactive Virtual BIM to Boost Virtual Tourism in Heritage Sites, Historic Jeddah" ISPRS International Journal of Geo-Information 10, no. 9: 577. https://doi.org/10.3390/ijgi10090577
APA StyleBaik, A. (2021). The Use of Interactive Virtual BIM to Boost Virtual Tourism in Heritage Sites, Historic Jeddah. ISPRS International Journal of Geo-Information, 10(9), 577. https://doi.org/10.3390/ijgi10090577