Prediction of Urban Area Expansion with Implementation of MLC, SAM and SVMs’ Classifiers Incorporating Artificial Neural Network Using Landsat Data
Abstract
:1. Introduction
2. Case Study
3. Materials and Methods
3.1. Maximum Likelihood (MLC) Algorithm
- n = the number of multispectral bands,
- X = unknown measurement vector,
- Vi = covariance matrix for each training class,
- M = mean vector of each training class.
3.2. Spectral Angle Mapper (SAM) Algorithm
- D = angle between the reference spectrum (sample points spectrum) and image,
- X = image spectrum,
- Y = reference image spectrum (sample points spectrum).
3.3. Support Vector Machines’ (SVMs) Algorithm
- T is the training set,
- (Oi, Ii) is the ith study point,
- Ii is input value and Oi output value,
- In and On are input and output sets, respectively,
- m is the number of training points,
- n is the number of dimensions.
3.4. Prediction of Land Cover
4. Results
5. Discussion and Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centre for Health Development, World Health Organization. Hidden Cities: Unmasking and Overcoming Health Inequities in Urban Settings; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Huang, B.; Wang, J. Big spatial data for urban and environmental sustainability. Geo-Spat. Inf. Sci. 2020, 23, 125–140. [Google Scholar] [CrossRef]
- Idowu, T.; Waswa, R.; Lasisi, K.; Mubea, K.; Nyadawa, M.; Kiema, J.B. Towards Achieving Sustainability of Coastal Environments: Urban Growth Analysis and Prediction of Lagos, State Nigeria. Preprints 2020. [CrossRef]
- Shao, Z.; Sumari, N.S.; Portnov, A.; Ujoh, F.; Musakwa, W.; Mandela, P.J. Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spat. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Bajracharya, P.; Lippitt, C.D.; Sultana, S. Modeling Urban Growth and Land Cover Change in Albuquerque Using SLEUTH. Prof. Geogr. 2020, 72, 181–193. [Google Scholar] [CrossRef]
- U.S. Census Bureau. Growth in Urban Population Outpaces Rest of Nation, Census Bureau Reports. 2012. Available online: https://www.census.gov/newsroom/releases/archives/2010_census/cb12-50.html (accessed on 6 March 2019).
- Iran Statistic Center. Population Census Results of Different Years; Press and Information Office of Statistics: Tehran, Iran, 2013. [Google Scholar]
- Salem, J.; Mojaverian, M. Study of relationship between food security, urban population and development plans in Iran. Environ. Resour. Res. 2017, 5, 143–152. [Google Scholar]
- McConnell, W.J.; Gerstner, K.; Heinimann, A.; Verburg, P.H.; Mertz, O.; Rudel, T.K.; Magliocca, N.R.; Ellis, E.C. Synthesis in land change science: Methodological patterns, challenges, and guidelines. Reg. Environ. Chang. 2015, 15, 211–226. [Google Scholar]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Hersperger, A.M.; Oliveira, E.; Pagliarin, S.; Palka, G.; Verburg, P.; Bolliger, J.; Grădinaru, S. Urban land-use change: The role of strategic spatial planning. Glob. Environ. Chang. 2018, 51, 32–42. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, W.; Li, D. Spatio-temporal-spectral observation model for urban remote sensing. Geo-Spat. Inf. Sci. 2021. [Google Scholar] [CrossRef]
- Maleki, M.; Van Genderen, J.L.; Tavakkoli-Sabour, S.M.; Saleh, S.S.; Babaee, E. Land use/cover change in dinevar rural area of west iran during 2000–2018 and its prediction for 2024 and 2030. Geogr. Tech. 2020, 15, 93–105. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Subasinghe, S.; Estoque, R.C.; Murayama, Y. Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka. ISPRS Int. J. Geo-Inf. 2016, 5, 197. [Google Scholar] [CrossRef] [Green Version]
- Alharthi, A.; El-Sheikh, M.A.; Elhag, M.; Alatar, A.A.; Abbadi, G.A.; Abdel-Salam, E.M.; Eid, E.M. Remote sensing of 10 years changes in the vegetation cover of the northwestern coastal land of Red Sea, Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 3169–3179. [Google Scholar] [CrossRef] [PubMed]
- Terama, E.; Clarke, E.; Rounsevell, M.D.; Fronzek, S.; Carter, T.R. Modelling population structure in the context of urban land use change in Europe. Reg. Environ. Chang. 2019, 19, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Trinder, J.; Liu, Q. Assessing environmental impacts of urban growth using remote sensing. Geo-Spat. Inf. Sci. 2020, 23, 2039. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, H.; Wang, Y.; Xu, C.Y. Evaluation of the effect of land use/cover change on flood characteristics using an integrated approach coupling land and flood analysis. Hydrol. Res. 2016, 47, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wang, Y.C. Dynamics of land surface temperature in response to land-use/cover change. Geogr. Res. 2011, 49, 23–36. [Google Scholar] [CrossRef]
- Arsiso, B.K.; Tsidu, G.M.; Stoffberg, G.H.; Tadesse, T. Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Phys. Chem. Earth Parts A/B/C 2018, 105, 212–223. [Google Scholar] [CrossRef]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 310–325. [Google Scholar]
- Seki, H.A.; Shirima, D.D.; Courtney Mustaphi, C.J.; Marchant, R.; Munishi, P.K. The impact of land use and land cover change on biodiversity within and adjacent to Kibasira Swamp in Kilombero Valley, Tanzania. Afr. J. Ecol. 2018, 56, 518–527. [Google Scholar] [CrossRef]
- Batty, M.; Xie, Y. Possible urban automata. Environ. Plan. B Plan. Des. 1997, 24, 175–192. [Google Scholar] [CrossRef]
- Johnson, B.A.; Iizuka, K. Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines. Appl. Geogr. 2016, 67, 140–149. [Google Scholar] [CrossRef]
- Gibril, M.B.A.; Bakar, S.A.; Yao, K.; Idrees, M.O.; Pradhan, B. Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area. Geocarto Int. 2017, 32, 735–748. [Google Scholar] [CrossRef]
- Wellmann, T.; Haase, D.; Knapp, S.; Salbach, C.; Selsam, P.; Lausch, A. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecol. Indic. 2018, 85, 190–203. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Intensity and spatial pattern of urban land changes in the megacities of Southeast Asia. Land Use Policy 2015, 48, 213–222. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y. Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustain. Cities Soc. 2018, 39, 262–274. [Google Scholar] [CrossRef]
- MohanRajan, S.N.; Loganathan, A.; Manoharan, P. Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environ. Sci. Pollut. Res. Int. 2020, 27, 29900–29926. [Google Scholar] [CrossRef]
- Mallouk, A.; Elhadrachi, H.; Malaainine, M.E.I.; Rhinane, H.; des Travaux Publics, E.H. Using the SLEUTH urban growth model coupled with a GIS to simulate and predict the future urban expansion of Casablanca region, Morocco. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W12, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Dezhkam, S.; Amiri, B.J.; Darvishsefat, A.A.; Sakieh, Y. Simulating the urban growth dimensions and scenario prediction through sleuth model: A case study of Rasht County, Guilan, Iran. GeoJournal 2014, 79, 591–604. [Google Scholar] [CrossRef]
- Sivakumar, V. Urban mapping and growth prediction using remote sensing and GIS techniques, Pune, India. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2014, 8, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Wang, Z.; Liu, Q.; Lu, D.; Yang, G.; Zeng, L.; Du, J. Land use/land cover (LULC) characterization with MODIS time series data in the Amu River Basin. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 4, p. IV-310. [Google Scholar]
- Peled, A.; Gilichinsky, M. GIS-driven classification of land use using IKONOS data and a core national spatial information database. Appl. Geomat. 2013, 5, 109–117. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ghassoun, Y.; Löwner, M.O.; Behmanesh, M.; Faraji, M.; Nemati, S.; Miri, M. Spatial analysis and risk assessment of urban BTEX compounds in Urmia, Iran. Chemosphere 2020, 246, 125769. [Google Scholar] [CrossRef]
- Lotfata, Y.; Lotfata, A. Effect of physical changes on the spatial structure of historical area, the Historical District of Urmia city as a case study. J. Sustain. Dev. 2018, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Mobaraki, O. Strategic planning and urban development by using the SWOT analysis. Case Urmia City. Rom. Rev. Reg. Stud. 2014, 10, 47. [Google Scholar]
- Mobaraki, O.; Mohammadi, J.; Zarabi, A. Urban Form and Sustainable Development: The Case of Urmia City. J. Geogr. Geol. 2012, 4, 1–12. [Google Scholar] [CrossRef]
- Asadi, Y.; Ezimand, K.; Keshtkar, H.; Alavipanah, S.K. A Survey of Landscape Metrics and Land-use/land-cover Structures on Urban Heat Islands Surface: A Case Study on Urmia City, Iran. Desert 2019, 24, 293–306. [Google Scholar]
- Abedini, A.; Khalili, A. Determining the capacity infill development in growing metropolitans: A case study of Urmia city. J. Urban Manag. 2019, 8, 316–327. [Google Scholar] [CrossRef]
- Wu, X.; Peng, J.; Shan, J.; Cui, W. Evaluation of semivariogram features for object-based image classification. Geo-Spat. Inf. Sci. 2015, 18, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Gan, W.; Xu, J.; Yang, R.; Wang, S. Support vector machine regression (SVR)-based nonlinear modelling of radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization (RRN). Geo-Spat. Inf. Sci. 2020, 23, 237–247. [Google Scholar] [CrossRef]
- Huang, X.; Liu, A.; Li, J. Mapping and analyzing the local climate zones in China’s 32 major cities using Landsat imagery based on a novel convolutional neural network. Geo-Spat. Inf. Sci. 2021. [Google Scholar] [CrossRef]
- Shin, J.I.; Seo, W.W.; Kim, T.; Park, J.; Woo, C.S. Using UAV multispectral images for classification of forest burn severity—A case study of the 2019 Gangneung forest fire. Forests 2019, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.; Acuna, M.; Cho, S.; Jung, G.; Kim, B.; Ryu, J.; Woo, C.; Park, J. Application of spectral angle mapping and maximum likelihood classification techniques to evaluate forest fire severity from UAV multispectral images in South Korea. Preprints 2020. [CrossRef]
- Rashmi, S.; Addamani, S. Spectral Angle Mapper Algorithm for Remote Sensing Image Classification. IJISET Int. J. Innov. Sci. Eng. Technol. 2014, 1, 201–204. [Google Scholar]
- Yuhas, R.H.; Goetz, A.F.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In Proceedings of the Summaries of the Third Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; Volume 1, pp. 147–149. [Google Scholar]
- Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Kadavi, P.R.; Lee, C.W. Land cover classification analysis of volcanic island in Aleutian Arc using an artificial neural network (ANN) and a support vector machine (SVM) from Landsat imagery. Geosci. J. 2018, 22, 653–665. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, M.; Wang, Z. Estimation of chlorophyll-a Concentration of lakes based on SVM algorithm and Landsat 8 OLI images. Environ. Sci. Pollut. Res. 2020, 16, 1–4. [Google Scholar] [CrossRef]
- Cuentas, S.; Peñabaena-Niebles, R.; Garcia, E. Support vector machine in statistical process monitoring: A methodological and analytical review. Int. J. Adv. Manuf. Technol. 2017, 91, 485–500. [Google Scholar] [CrossRef]
- Kong, X.; Che, X.; Su, R.; Zhang, C.; Yao, Q.; Shi, X. A new technique for rapid assessment of eutrophication status of coastal waters using a support vector machine. J. Oceanol. Limnol. 2018, 36, 249–262. [Google Scholar] [CrossRef]
- Cláudia, A.; José, G. Cellular automata and neural networks as a modelling framework for the simulation of urban land use change. In Proceedings of the Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, Brasil, 16–21 April 2005; pp. 3697–3705. [Google Scholar]
- Saputra, M.H.; Lee, H.S. Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton. Sustainability 2019, 11, 3024. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.E. Selling a geographical information system to government policy makers. InURISA 1987, 3, 150–156. [Google Scholar]
- Zhu, X.; Hu, T.; Ye, X.; Guo, W.; Huang, L.; Xiong, H.; Ai, H.; She, B.; Xiong, Q.; Duan, L. Development and implementation of a dynamic and 4D GIS based on semantic location model. Geo-Spat. Inf. Sci. 2019, 22, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Peng, F.L. A GIS-based evaluation method of underground space resources for urban spatial planning: Part 1 methodology. Tunn. Undergr. Space Technol. 2018, 74, 82–95. [Google Scholar] [CrossRef]
- Yuan, H.; He, Y.; Wu, Y. A comparative study on urban underground space planning system between China and Japan. Sustain. Cities Soc. 2019, 48, 101541. [Google Scholar] [CrossRef]
- Qiao, Y.K.; Peng, F.L.; Wang, Y. Monetary valuation of urban underground space: A critical issue for the decision-making of urban underground space development. Land Use Policy 2017, 69, 12–24. [Google Scholar] [CrossRef]
- NasrEsfahani, R.; Safari, B.; Bashiri, M. Determining the Optimal Use of Urban Underground Space (Selected Streets of Isfahan City). J. Urban Econ. Manag. 2018, 6, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The assessment of Landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.W.; Munkhnasan, L.; Lee, W. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Tadese, S.; Soromessa, T.; Bekele, T. Analysis of the Current and Future Prediction of Land Use/Land Cover Change Using Remote Sensing and the CA-Markov Model in Majang Forest Biosphere Reserves of Gambella, Southwestern Ethiopia. Sci. World J. 2021, 2021, 6685045. [Google Scholar] [CrossRef]
- Vandansambuu, B.; Davaa, T.; Gantumur, B.; Purevtseren, M.; Lkhagva, O.; Wu, F. Spatiotemporal monitoring and prediction of land use/land cover changes using CA-Markov chain model: A case study in Orkhon Province, Mongolia. In Remote Sensing Technologies and Applications in Urban Environments V; International Society for Optics and Photonics: Bellingham, WA, USA, 2020. [Google Scholar] [CrossRef]
Year | Producer’s Accuracy (%) | Overall Statistics | |||||
---|---|---|---|---|---|---|---|
Method | Built-Up | Rocky | Soil | Vegetation | Overall Accuracy (%) | Kappa Coefficient | |
MLC algorithm | 94.36 | 96.13 | 83.59 | 99.72 | 93.63 | 0.9149 | |
2000 | SAM algorithm | 91.12 | 80.8 | 70.12 | 71.94 | 78.5 | 0.7194 |
SVM algorithm | 96.64 | 96.59 | 82.2 | 99.86 | 94.13 | 0.9214 | |
MLC algorithm | 98.48 | 96.88 | 83.18 | 99.79 | 94.58 | 0.9248 | |
2010 | SAM algorithm | 77.31 | 75.19 | 70.7 | 90.44 | 78.41 | 0.71.78 |
SVM algorithm | 99.21 | 90.89 | 78.12 | 99.89 | 92 | 0.9086 | |
ML algorithm | 99.51 | 99.42 | 97.91 | 99.51 | 99.21 | 0.9894 | |
2020 | SAM algorithm | 80.71 | 87.87 | 70.53 | 79.27 | 80.32 | 0.7412 |
SVM algorithm | 99.09 | 99.62 | 94.41 | 99.59 | 98.57 | 0.9807 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zare Naghadehi, S.; Asadi, M.; Maleki, M.; Tavakkoli-Sabour, S.-M.; Van Genderen, J.L.; Saleh, S.-S. Prediction of Urban Area Expansion with Implementation of MLC, SAM and SVMs’ Classifiers Incorporating Artificial Neural Network Using Landsat Data. ISPRS Int. J. Geo-Inf. 2021, 10, 513. https://doi.org/10.3390/ijgi10080513
Zare Naghadehi S, Asadi M, Maleki M, Tavakkoli-Sabour S-M, Van Genderen JL, Saleh S-S. Prediction of Urban Area Expansion with Implementation of MLC, SAM and SVMs’ Classifiers Incorporating Artificial Neural Network Using Landsat Data. ISPRS International Journal of Geo-Information. 2021; 10(8):513. https://doi.org/10.3390/ijgi10080513
Chicago/Turabian StyleZare Naghadehi, Saeid, Milad Asadi, Mohammad Maleki, Seyed-Mohammad Tavakkoli-Sabour, John Lodewijk Van Genderen, and Samira-Sadat Saleh. 2021. "Prediction of Urban Area Expansion with Implementation of MLC, SAM and SVMs’ Classifiers Incorporating Artificial Neural Network Using Landsat Data" ISPRS International Journal of Geo-Information 10, no. 8: 513. https://doi.org/10.3390/ijgi10080513
APA StyleZare Naghadehi, S., Asadi, M., Maleki, M., Tavakkoli-Sabour, S.-M., Van Genderen, J. L., & Saleh, S.-S. (2021). Prediction of Urban Area Expansion with Implementation of MLC, SAM and SVMs’ Classifiers Incorporating Artificial Neural Network Using Landsat Data. ISPRS International Journal of Geo-Information, 10(8), 513. https://doi.org/10.3390/ijgi10080513