Mapping Coastal Flood Susceptible Areas Using Shannon’s Entropy Model: The Case of Muscat Governorate, Oman
Abstract
:1. Introduction
2. Study Area
3. Data Used and Methodology
3.1. Coastal Flood Influencing Factors
3.2. Entropy Model Implementation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Climate Change Effects—Coasts—Environment—European Commission. Available online: https://ec.europa.eu/environment/iczm/state_coast.htm (accessed on 17 January 2021).
- Samanta, R.K.; Bhunia, G.S.; Shit, P.K.; Pourghasemi, H.R. Flood Susceptibility Mapping Using Geospatial Frequency Ratio Technique: A Case Study of Subarnarekha River Basin, India. Model. Earth Syst. Environ. 2018, 4, 395–408. [Google Scholar] [CrossRef]
- Cred Crunch Newsletter, Issue No. 58 (April 2020)—Disaster 2019: Year in Review. Available online: https://reliefweb.int/report/world/cred-crunch-newsletter-issue-no-58-april-2020-disaster-2019-year-review (accessed on 5 April 2021).
- EM-DAT Glossary. Available online: https://www.emdat.be/Glossary#letter_c (accessed on 5 April 2021).
- The Centers for Disease Control and Prevention (CDC). Coastal Flooding, Climate Change, and Your Health: What You Can Do to Prepare; The Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2017. [Google Scholar]
- Tehrany, M.S.; Kumar, L.; Shabani, F. A Novel GIS-Based Ensemble Technique for Flood Susceptibility Mapping Using Evidential Belief Function and Support Vector Machine: Brisbane, Australia. PeerJ 2019, 7. [Google Scholar] [CrossRef]
- Abdalla, R. An Infrastructure Interdependency-Based Framework for Utilizing Network-Centric GIS as a Core Technology in Disaster Management, 1st ed.; Scholars’ Press: Mauritius, 2018; ISBN 978-620-2-31105-2. [Google Scholar]
- Rahman, M.; Ningsheng, C.; Islam, M.M.; Dewan, A.; Iqbal, J.; Washakh, R.M.A.; Shufeng, T. Flood Susceptibility Assessment in Bangladesh Using Machine Learning and Multi-Criteria Decision Analysis. Earth Syst. Environ. 2019, 3, 585–601. [Google Scholar] [CrossRef]
- Santangelo, N.; Santo, A.; Di Crescenzo, G.; Foscari, G.; Liuzza, V.; Sciarrotta, S.; Scorpio, V. Flood Susceptibility Assessment in a Highly Urbanized Alluvial Fan: The Case Study of Sala Consilina (Southern Italy). Nat. Hazards Earth Syst. Sci. 2011, 11, 2765–2780. [Google Scholar] [CrossRef] [Green Version]
- El-Haddad, B.A.; Youssef, A.M.; Pourghasemi, H.R.; Pradhan, B.; El-Shater, A.-H.; El-Khashab, M.H. Flood Susceptibility Prediction Using Four Machine Learning Techniques and Comparison of Their Performance at Wadi Qena Basin, Egypt. Nat. Hazards 2020, 105, 83–114. [Google Scholar] [CrossRef]
- Chowdhuri, I.; Pal, S.C.; Chakrabortty, R. Flood Susceptibility Mapping by Ensemble Evidential Belief Function and Binomial Logistic Regression Model on River Basin of Eastern India. Adv. Space Res. 2020, 65, 1466–1489. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Kumar, L.; Jebur, M.N.; Shabani, F. Evaluating the Application of the Statistical Index Method in Flood Susceptibility Mapping and Its Comparison with Frequency Ratio and Logistic Regression Methods. Geomat. Nat. Hazards Risk 2019, 10, 79–101. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the Essential Flood Conditioning Factors for Flood Prone Area Mapping Using Machine Learning Techniques. Catena 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Abu El-Magd, S.A.; Amer, R.A.; Embaby, A. Multi-Criteria Decision-Making for the Analysis of Flash Floods: A Case Study of Awlad Toq-Sherq, Southeast Sohag, Egypt. J. Afr. Earth Sci. 2020, 162, 103709. [Google Scholar] [CrossRef]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D. A Comparative Assessment of Decision Trees Algorithms for Flash Flood Susceptibility Modeling at Haraz Watershed, Northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Al-Hinai, H.Y.; Abdalla, R. Spatial Prediction of Coastal Flood Susceptible Areas in Muscat Governorate Using an Entropy Weighted Method. In WIT Transactions on Engineering Sciences; WIT Press: Southampton, UK, 2020; Volume 129, pp. 121–133. [Google Scholar]
- Liu, Y.B.; De Smedt, F. Flood Modeling for Complex Terrain Using GIS and Remote Sensed Information. Water Resour. Manag. 2005, 19, 605–624. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Avand, M.; Thuy Linh, N.T.; Vojtek, M.; Vojteková, J.; Lee, S.; Khoi, D.N.; Thao Nhi, P.T.; Dung, T.D. Novel Hybrid Models Between Bivariate Statistics, Artificial Neural Networks and Boosting Algorithms for Flood Susceptibility Assessment. J. Environ. Manag. 2020, 265, 110485. [Google Scholar] [CrossRef] [PubMed]
- Charlton, R.; Fealy, R.; Moore, S.; Sweeney, J.; Murphy, C. Assessing the Impact of Climate Change on Water Supply and Flood Hazard in Ireland Using Statistical Downscaling and Hydrological Modelling Techniques. Clim. Chang. 2006, 74, 475–491. [Google Scholar] [CrossRef]
- Liu, B. Modelling Multi-Hazard Risk Assessment: A Case Study in the Yangtze River Delta, China. Ph.D. Thesis, University of Leeds, Leeds, UK, 2015. [Google Scholar]
- Liu, B.; Siu, Y.L.; Mitchell, G. Hazard Interaction Analysis for Multi-Hazard Risk Assessment: A Systematic Classification Based on Hazard-Forming Environment. Nat. Hazards Earth Syst. Sci. 2016, 16, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.I.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Jaafari, A.; Najafi, A.; Pourghasemi, H.R.; Rezaeian, J.; Sattarian, A. GIS-Based Frequency Ratio and Index of Entropy Models For Landslide Susceptibility Assessment in the Caspian Forest, Northern Iran. Int. J. Environ. Sci. Technol. 2014, 11, 909–926. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Chen, Y.; Wu, J.; Gao, L.; Barrett, D.; Xu, T.; Li, X.; Li, L.; Huang, C.; Yu, J. Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard. Risk Anal. 2017, 37, 756–773. [Google Scholar] [CrossRef]
- Haghizadeh, A.; Siahkamari, S.; Haghiabi, A.H.; Rahmati, O. Forecasting Flood-Prone Areas Using Shannon’s Entropy Model. J. Earth Syst. Sci. 2017, 126, 39. [Google Scholar] [CrossRef]
- Siahkamari, S.; Haghizadeh, A.; Zeinivand, H.; Tahmasebipour, N.; Rahmati, O. Spatial Prediction of Flood-Susceptible Areas Using Frequency Ratio and Maximum Entropy Models. Geocarto Int. 2018, 33, 927–941. [Google Scholar] [CrossRef]
- Arora, A.; Pandey, M.; Siddiqui, M.A.; Hong, H.; Mishra, V.N. Spatial Flood Susceptibility Prediction in Middle Ganga Plain: Comparison of Frequency Ratio and Shannon’s Entropy Models. Geocarto Int. 2019, 1–32. [Google Scholar] [CrossRef]
- Hereher, M.E. Estimation of Monthly Surface Air Temperatures from MODIS LST Time Series Data: Application to the Deserts in the Sultanate of Oman. Environ. Monit. Assess. 2019, 191, 592. [Google Scholar] [CrossRef] [PubMed]
- Al-Awadhi, T. The use of RS and GIS to evaluate the effects of tropical cyclones: A case study from A’Seeb, Muscat after GONU cyclone. In WWRP 2010-2, Proceedings of the 1st WMO International Conference on Indian Ocean Tropical Cyclones and Climate Change, Muscat, Sultanate of Oman, 8–11 March 2009; World Meteorological Organization: Geneva, Switzerland, 2010; pp. 95–104. [Google Scholar]
- Ministry of Interior Web Site, Sultanate of Oman. Available online: https://www.moi.gov.om/ar-om/governorates/muscat (accessed on 5 April 2021).
- National Centre for Statistics and Information Population Dashboard. Available online: https://portal.ecensus.gov.om/ecen-portal/ (accessed on 16 January 2021).
- Al-Awadhi, T.; Choudri, B.S.; Charabi, Y. Growth of Coastal Population: Likely Exposure to Sea Level Rise and Associated Storm Surge Flooding in the Sultanate of Oman. J. Environ. Manag. Tour. 2016, 7. [Google Scholar] [CrossRef]
- Beuzen-Waller, T.; Stéphan, P.; Pavlopoulos, K.; Desruelles, S.; Marrast, A.; Puaud, S.; Giraud, J.; Fouache, É. Geoarchaeological Investigation of the Quriyat Coastal Plain (Oman). Quat. Int. 2019, 532, 98–115. [Google Scholar] [CrossRef]
- Kwarteng, A.Y. Remote sensing imagery assessment of areas severely affected by cyclone Gonu in Muscat, Sultanate of Oman. In Indian Ocean Tropical Cyclones and Climate Change; Charabi, Y., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 223–232. ISBN 978-90-481-3108-2. [Google Scholar]
- Al-Rawas, G.A.; Valeo, C.; Khan, U.T.; Al-Hafeedh, O.H. Effects of Urban Form on Wadi Flow Frequency Analysis in the Wadi Aday Watershed in Muscat, Oman. Urban Water J. 2015, 12, 263–274. [Google Scholar] [CrossRef]
- Al-Rawas, G.A. Flash Flood Modelling in Oman Wadis. Ph.D. Thesis, Department of Civil Engineering, University of Calgary, Calgary, AB, Canada, 2009. [Google Scholar]
- Al-Hinai, H.Y. Tsunami Risk Assessment along the Coast of the Sultanate of Oman Using Geospatial Technologies. Master’s Thesis, Arabian Gulf University, Manama, Bahrain, 2013. [Google Scholar]
- Al-Hatrushi, S.; Al-Alawi, H. Evaluating the impact of flood hazard caused by tropical cyclones on land use using remote sensing and GIS in Wadi Uday: Sultanate of Oman. In Proceedings of the 34th International Symposium on Remote Sensing of Environment-The GEOSS Era: Towards Operational Environmental Monitoring, Sidney, NSW, Australia, 10–15 April 2011. [Google Scholar]
- Byrne, D.E.; Sykes, L.R.; Davis, D.M. Great Thrust Earthquakes and Aseismic Slip along the Plate Boundary of the Makran Subduction Zone. J. Geophys. Res. Solid Earth 1992, 97, 449–478. [Google Scholar] [CrossRef]
- Okal, E.A.; Fritz, H.M.; Raad, P.E.; Synolakis, C.; Al-Shijbi, Y.; Al-Saifi, M. Oman Field Survey after the December 2004 Indian Ocean Tsunami. Earthq. Spectra 2006, 22, 203–218. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Kumar, L. The Application of a Dempster–Shafer-Based Evidential Belief Function in Flood Susceptibility Mapping and Comparison with Frequency Ratio and Logistic Regression Methods. Environ. Earth Sci. 2018, 77, 1–24. [Google Scholar] [CrossRef]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood Hazard Zoning in Yasooj Region, Iran, Using GIS and Multi-Criteria Decision Analysis. Geomat. Nat. Hazards Risk 2016, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-Based Flood Susceptibility Assessment and Its Mapping in Iran: A Comparison Between Frequency Ratio and Weights-of-Evidence Bivariate Statistical Models with Multi-Criteria Decision-Making Technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Ibrahim-Bathis, K.; Ahmed, S.A. Geospatial Technology for Delineating Groundwater Potential Zones in Doddahalla Watershed of Chitradurga District, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, R.D.; Hjelmfelt, A.T. Hydrologic Soil Group Assignment. Proc. Water Resour. Eng. 1998, 1297–1302. [Google Scholar]
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood Susceptibility Mapping Using Frequency Ratio and Weights-of-Evidence Models in the Golastan Province, Iran. Geocarto Int. 2016, 31, 42–70. [Google Scholar] [CrossRef]
- Al-Zahrani, M.; Al-Areeq, A.; Sharif, H.O. Estimating Urban Flooding Potential Near the Outlet of an Arid Catchment in Saudi Arabia. Geomat. Nat. Hazards Risk 2017, 8, 672–688. [Google Scholar] [CrossRef] [Green Version]
- Shuster, W.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of Impervious Surface on Watershed Hydrology: A Review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- National Center for Statistics and Information Oman. National Spatial Data Infrastructure (NSDI). Available online: https://ncsi.gov.om/Pages/NCSI.aspx (accessed on 5 April 2021).
- Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood Susceptibility Assessment Using GIS-Based Support Vector Machine Model with Different Kernel Types. Catena 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Data Classification Methods—ArcGIS Pro. Documentation. Available online: https://pro.arcgis.com/en/pro-app/help/mapping/layer-properties/data-classification-methods.htm (accessed on 27 April 2020).
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A Novel Hybrid Artificial Intelligence Approach for Flood Susceptibility Assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Jawarneh, R.N.; Almushaiki, S.S. Role of Physical Settings on Increasing Flood Hazard in Muscat Built-up Areas (2007–2015) Using GIS. J. Arts Soc. Sci. 2018, 9, 65–78. [Google Scholar] [CrossRef] [Green Version]
Factor | Classes | Area km2 | Rating |
---|---|---|---|
Ground Elevation (m) | −0.283–3.41 | 41.51 | 5—very high |
3.42–18.2 | 141.34 | 4—high | |
18.3–55.2 | 69.81 | 3—moderate | |
55.3–122 | 62.72 | 2—low | |
123–943 | 59.13 | 1—very low | |
Slope Angle (degree) | 0–0.99 | 63.18 | 5—very high |
1–2.6 | 91.28 | 4—high | |
2.7–8.2 | 79.41 | 3—moderate | |
8.3–28 | 70.35 | 2—low | |
29–84 | 70.27 | 1—very low | |
HSG | Group C | 221.2377 | 4—high |
Group B | 59.2654 | 3—moderate | |
Group A | 76.4368 | 2—low | |
Land Use | Built-Up Area | 120.7383 | 5—very high |
Others | 3.2249 | 4—high | |
Nature Reserve | 2.1427 | 3—moderate | |
Agriculture / Park | 9.1791 | 2—low | |
Dam | 0.0004 | 1—very low | |
Distance from Coast (m) | <500 | 104.3 | 5—very high |
500–750 | 45.237 | 4—high | |
750–1000 | 43.721 | 3—moderate | |
1000–1500 | 85.279 | 2—low | |
1500–2000 | 83.504 | 1—very low | |
Distance from Wadi (m) | 0–117.6 | 50.16 | 5—very high |
117.7–305.9 | 53.33 | 4—high | |
306–596.1 | 52.99 | 3—moderate | |
596.2–1075 | 51.9 | 2—low | |
1076–2000 | 51.65 | 1—very low | |
Distance from Road (m) | 0–31.37 | 63.84 | 5—very high |
31.38–133.3 | 73.71 | 4—high | |
133.4–345.1 | 69 | 3—moderate | |
345.2–729.4 | 67 | 2—low | |
729.5–2000 | 66.37 | 1—very low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hinai, H.; Abdalla, R. Mapping Coastal Flood Susceptible Areas Using Shannon’s Entropy Model: The Case of Muscat Governorate, Oman. ISPRS Int. J. Geo-Inf. 2021, 10, 252. https://doi.org/10.3390/ijgi10040252
Al-Hinai H, Abdalla R. Mapping Coastal Flood Susceptible Areas Using Shannon’s Entropy Model: The Case of Muscat Governorate, Oman. ISPRS International Journal of Geo-Information. 2021; 10(4):252. https://doi.org/10.3390/ijgi10040252
Chicago/Turabian StyleAl-Hinai, Hanan, and Rifaat Abdalla. 2021. "Mapping Coastal Flood Susceptible Areas Using Shannon’s Entropy Model: The Case of Muscat Governorate, Oman" ISPRS International Journal of Geo-Information 10, no. 4: 252. https://doi.org/10.3390/ijgi10040252
APA StyleAl-Hinai, H., & Abdalla, R. (2021). Mapping Coastal Flood Susceptible Areas Using Shannon’s Entropy Model: The Case of Muscat Governorate, Oman. ISPRS International Journal of Geo-Information, 10(4), 252. https://doi.org/10.3390/ijgi10040252