View-Dependent Progressive Transmission Method for 3D Building Models
Abstract
:1. Introduction
2. Related Work
2.1. Simplification and Refinement for 3D Models
2.2. Progressive Transmission Over The Internet
3. Methodology
3.1. Multi-Level Vertex Clustering
3.2. Fundamental Strategy of Progressive Transmission
3.3. Construction and Recoding of Vertex Tree
3.4. Extracting Related Triangles of Each Vertex
3.5. Data Scheduling and Model Refinement
4. Experiments
4.1. Overview
4.2. View-Dependent Effects
4.3. Performance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Döllner, J.; Buchholz, H. Continuous level-of-detail modeling of buildings in 3D city models. In Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, Arlington, VA, USA, 12–13 November 2004; pp. 173–181. [Google Scholar]
- Lin, H.; Zhu, Q. Virtual Geographic Environments; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Valkanova, N.; Jorda, S.; Moere, A.V. Public visualization displays of citizen data: Design, impact and implications. Int. J. Hum. Comput. Stud. 2015, 81, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Chen, X.; Zheng, Z. Future Prospects of UAV Tilt Photogrammetry Technology. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Yunnan, China, 2019; p. 032023. [Google Scholar]
- Schwarz, B. Mapping the world in 3D. Nat. Photonics 2010, 4, 429–430. [Google Scholar] [CrossRef]
- Luebke, D.; Reddy, M.; Cohen, J.D.; Varshney, A.; Watson, B.; Huebner, R. Level of Detail for 3D Graphics; Morgan Kaufmann: San Francisco, CA, USA, 2003. [Google Scholar]
- Chen, J.; Li, J.; Li, M. Progressive visualization of complex 3D models over the internet. Trans. GIS 2016, 20, 887–902. [Google Scholar] [CrossRef]
- Rossignac, J.; Borrel, P. Multi-resolution 3D approximations for rendering complex scenes. In Modeling in Computer Graphics; Springer: Berlin/Heidelberg, Germany, 1993; pp. 455–465. [Google Scholar]
- Schroeder, W.J.; Zarge, J.A.; Lorensen, W.E. Decimation of triangle meshes. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 21–25 July 2013; pp. 65–70. [Google Scholar]
- Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Mesh optimization. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 2–6 August 1993; pp. 19–26. [Google Scholar]
- Hinker, P.; Hansen, C. Geometric optimization. In Proceedings Visualization’93; IEEE: San Jose, CA, USA, 1993; pp. 189–195. [Google Scholar]
- Garland, M.; Heckbert, P.S. Surface simplification using quadric error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques; ACM Press: New York, NY, USA, 1997; pp. 209–216. [Google Scholar]
- Garland, M.; Heckbert, P.S. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings of the Proceedings Visualization’98 (Cat. No. 98CB36276); IEEE: Research Triangle Park, NC, USA, 1998; pp. 263–269. [Google Scholar]
- Zhao, J.; Zhu, Q.; Du, Z.; Feng, T.; Zhang, Y. Mathematical morphology-based generalization of complex 3D building models incorporating semantic relationships. ISPRS J. Photogramm. Remote Sens. 2012, 68, 95–111. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Yang, B.; Jiang, S. Geometric structure simplification of 3D building models. ISPRS J. Photogramm. Remote Sens. 2013, 84, 100–113. [Google Scholar] [CrossRef]
- She, J.; Gu, X.; Tan, J.; Tong, M.; Wang, C. An appearance-preserving simplification method for complex 3D building models. Trans. GIS 2019, 23, 275–293. [Google Scholar] [CrossRef]
- Xia, J.C.; Varshney, A. Dynamic view-dependent simplification for polygonal models. In Proceedings of the Seventh Annual IEEE Visualization’96, San Francisco, CA, USA, 27 October–1 November 1996; pp. 327–334. [Google Scholar]
- Hoppe, H. View-dependent refinement of progressive meshes. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 3–8 August 1997; pp. 189–198. [Google Scholar]
- Luebke, D.; Erikson, C. View-dependent simplification of arbitrary polygonal environments. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques; ACM Press: New York, NY, USA, 1997; pp. 199–208. [Google Scholar]
- Pajarola, R. Fastmesh: Efficient view-dependent meshing. In Proceedings of the Ninth Pacific Conference on Computer Graphics and Applications, Tokyo, Japan, 16–18 October 2001; pp. 22–30. [Google Scholar]
- Pajarola, R.; DeCoro, C. Efficient implementation of real-time view-dependent multiresolution meshing. IEEE Trans. Vis. Comput. Graph. 2004, 10, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Sander, P.V.; Hoppe, H. Parallel view-dependent refinement of progressive meshes. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games; ACM Press: Boston, MA, USA, 2009; pp. 169–176. [Google Scholar]
- Derzapf, E.; Guthe, M. Dependency-free parallel progressive meshes. In Proceedings of the Computer Graphics Forum; Blackwell Publishing: Oxford, UK, 2012; pp. 2288–2302. [Google Scholar]
- Yang, S.; Kim, C.-S.; Kuo, C.-C. A progressive view-dependent technique for interactive 3-D mesh transmission. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 1249–1264. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, J.; Xiang, Y. An improved progressive mesh and streaming transmission strategy. In Proceedings of the 2012 2nd International Conference on Computer Science and Network Technology, Changchun, China, 29–31 December 2012; pp. 2024–2028. [Google Scholar]
- Yang, B.-L.; Li, F.W.; Pan, Z.-G.; Wang, X. An effective error resilient packetization scheme for progressive mesh transmission over unreliable networks. J. Comput. Sci. Technol. 2008, 23, 1015–1025. [Google Scholar] [CrossRef]
- Xukun, S.; Xuewei, Z.; Qinping, Z. Feature-Preserved Progressive Texture-Mesh in Digital Museum. J. Comput. Res. Dev. 2007, 44, 1097. [Google Scholar]
- Kada, M. Progressive transmission of 3D building models based on string grammars and planar half-spaces. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xie, N.; Tang, K.; Jia, J. Lightweighting for Web3D visualization of large-scale BIM scenes in real-time. Graph. Models 2016, 88, 40–56. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Li, J. An improved texture-related vertex clustering algorithm for model simplification. Comput. Geosci. 2015, 83, 37–45. [Google Scholar] [CrossRef]
- Abdul-Rahman, A.; Pilouk, M. Spatial Data Modelling for 3D GIS; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Assarsson, U.; Moller, T. Optimized view frustum culling algorithms for bounding boxes. J. Graph. Tools 2000, 5, 9–22. [Google Scholar] [CrossRef]
- Bittner, J.; Wimmer, M.; Piringer, H.; Purgathofer, W. Coherent hierarchical culling: Hardware occlusion queries made useful. In Proceedings of the Computer Graphics Forum, Boston, MA, USA; Blackwell Publishing: Oxford, UK, 2004; pp. 615–624. [Google Scholar]
- Wang, R.; Qian, X. OpenSceneGraph 3.0: Beginner’s Guide; Packt Publishing Ltd.: Birmingham, UK, 2010. [Google Scholar]
Model Name | Vertex Num | Triangle Num | Data Volume | Thumbnail Images |
---|---|---|---|---|
Pavilion | 17,256 | 5752 | 1.6 MB | |
House | 35,031 | 11,677 | 2.4 MB | |
Palace | 153,174 | 51,058 | 15 MB | |
Station | 586,002 | 195,334 | 31 MB | |
City | 1,392,631 | 2,246,170 | 344 MB | |
Model Name | Roaming Time (s) | Discrete LOD | Chen’s Method | Our Method | |||
---|---|---|---|---|---|---|---|
Vertex | Index | Vertex | Index | Vertex | Index | ||
Pavilion | 28 | 63,366 | 21,122 | 17,256 | 21,122 | 17,256 | 6209 |
House | 35 | 72,111 | 24,037 | 35,019 | 24,037 | 33,871 | 13,166 |
Palace | 45 | 453,429 | 151,143 | 153,174 | 151,143 | 153,156 | 53,623 |
Station | 48 | 1,552,989 | 517,663 | 585,159 | 517,663 | 579,624 | 196,741 |
City | 149 | 3,938,442 | 5,485,256 | 1,385,838 | 5,485,256 | 1,375,208 | 2,218,943 |
Model Name | Request Frequency | Basic Model Loading (ms) | Average Time (ms) | Shortest Time (ms) | Longest Time (ms) | Median Time (ms) |
---|---|---|---|---|---|---|
Pavilion | 2.3 times/s | 92 | 8 | 3 | 36 | 6 |
House | 0.8 times/s | 16 | 13 | 5 | 78 | 5 |
Palace | 1.5 times/s | 341 | 28 | 1 | 143 | 6 |
Station | 0.8 times/s | 1703 | 129 | 5 | 516 | 31 |
City | 6.4 times/s | 3434 | 28 | 1 | 1183 | 8 |
Model Name | Roaming Time | Average FPS | Minimum FPS | Maximum FPS | Median FPS |
---|---|---|---|---|---|
Pavilion | 28s | 219 | 172 | 230 | 217 |
House | 35s | 218 | 173 | 235 | 219 |
Palace | 45s | 202 | 129 | 219 | 209 |
Station | 48s | 192 | 31 | 248 | 212 |
City | 149s | 91 | 48 | 210 | 83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Ma, J.; She, J.; Zhao, Q.; He, L. View-Dependent Progressive Transmission Method for 3D Building Models. ISPRS Int. J. Geo-Inf. 2021, 10, 228. https://doi.org/10.3390/ijgi10040228
Sun Y, Ma J, She J, Zhao Q, He L. View-Dependent Progressive Transmission Method for 3D Building Models. ISPRS International Journal of Geo-Information. 2021; 10(4):228. https://doi.org/10.3390/ijgi10040228
Chicago/Turabian StyleSun, Yuchang, Jingsong Ma, Jiangfeng She, Qiang Zhao, and Lixia He. 2021. "View-Dependent Progressive Transmission Method for 3D Building Models" ISPRS International Journal of Geo-Information 10, no. 4: 228. https://doi.org/10.3390/ijgi10040228
APA StyleSun, Y., Ma, J., She, J., Zhao, Q., & He, L. (2021). View-Dependent Progressive Transmission Method for 3D Building Models. ISPRS International Journal of Geo-Information, 10(4), 228. https://doi.org/10.3390/ijgi10040228