Detecting and Analyzing Urban Centers Based on the Localized Contour Tree Method Using Taxi Trajectory Data: A Case Study of Shanghai
Abstract
:1. Introduction
2. Related Work
2.1. Urban Structure Research
2.2. Taxi Trajectory Data Research Related to Urban Structure
3. Detecting Urban Centers by Using Taxi Trajectory Data
3.1. Taxi Trajectory Data Preprocessing
3.2. Contour Map Generation
3.3. Localized Contour Tree Construction and Simplification
3.4. Urban Center Identification
3.5. Calculation of Urban Center Attributes
4. Case Study and Results
4.1. Study Area and Data
4.2. Identification and Analysis of Urban Centers
4.3. Attributes of Urban Centers
4.4. Temporal Patterns of Urban Centers
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, C.D.; Ullman, E.L. The nature of cities. Ann. Am. Acad. Political Soc. Sci. 1945, 242, 7–17. [Google Scholar] [CrossRef]
- Burgess, E.W. The growth of the city: An introduction to a research project. In Urban Ecology: An International Perspective on the Interaction Between Humans and Nature; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: Boston, MA, USA, 2008; pp. 71–78. [Google Scholar]
- McDonald, J.F. The identification of urban employment subcenters. J. Urban Econ. 1987, 21, 242–258. [Google Scholar] [CrossRef]
- McDonald, J.F.; McMillen, D.P. Employment subcenters and land values in a polycentric urban area: The case of Chicago. Environ. Plan. A 1990, 22, 1561–1574. [Google Scholar] [CrossRef]
- Giuliano, G.; Small, K.A. Subcenters in the Los Angeles Region. Reg. Sci. Urban Econ. 1991, 21, 163–182. [Google Scholar] [CrossRef] [Green Version]
- Song, S. Modelling worker residence distribution in the Los Angeles region. Urban Stud. 1994, 31, 1533–1544. [Google Scholar] [CrossRef]
- Small, K.A.; Song, S. Population and employment densities: Structure and change. J. Urban Econ. 1994, 36, 292–313. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.F.; Prather, P.J. Suburban employment centres: The case of Chicago. Urban Stud. 1994, 31, 201–218. [Google Scholar] [CrossRef]
- Cervero, R.; Wu, K.-L. Polycentrism, commuting, and residential location in the San Francisco Bay area. Environ. Plan. A 1997, 29, 865–886. [Google Scholar] [CrossRef]
- McMillen, D.P.; McDonald, J.F. Suburban subcenters and employment density in metropolitan Chicago. J. Urban Econ. 1998, 43, 157–180. [Google Scholar] [CrossRef] [Green Version]
- McMillen, D.P. Nonparametric employment subcenter identification. J. Urban Econ. 2001, 50, 448–473. [Google Scholar] [CrossRef]
- Shearmur, R.; Coffey, W.J. A tale of four cities: Intrametropolitan employment distribution in Toronto, Montreal, Vancouver, and Ottawa–Hull, 1981–1996. Environ. Plan. A 2002, 34, 575–598. [Google Scholar] [CrossRef]
- McMillen, D.P. Identifying sub-centres using contiguity matrices. Urban Stud. 2003, 40, 57–69. [Google Scholar] [CrossRef]
- Redfearn, C.L. The topography of metropolitan employment: Identifying centers of employment in a polycentric urban area. J. Urban Econ. 2007, 61, 519–541. [Google Scholar] [CrossRef]
- Roca Cladera, J.; Marmolejo Duarte, C.R.; Moix, M. Urban structure and polycentrism: Towards a redefinition of the sub-centre concept. Urban Stud. 2009, 46, 2841–2868. [Google Scholar] [CrossRef]
- Hu, L.; Sun, T.; Wang, L. Evolving urban spatial structure and commuting patterns: A case study of Beijing, China. Transp. Res. Part D Transp. Environ. 2018, 59, 11–22. [Google Scholar] [CrossRef]
- Shen, Y.; Batty, M. Delineating the perceived functional regions of London from commuting flows. Environ. Plan. A Econ. Space 2019, 51, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Krehl, A.; Siedentop, S.; Taubenböck, H.; Wurm, M. A comprehensive view on urban spatial structure: Urban density patterns of German city regions. ISPRS Int. J. Geo Inf. 2016, 5, 76. [Google Scholar] [CrossRef] [Green Version]
- Taubenböck, H.; Standfuß, I.; Wurm, M.; Krehl, A.; Siedentop, S. Measuring morphological polycentricity-A comparative analysis of urban mass concentrations using remote sensing data. Comput. Environ. Urban Syst. 2017, 64, 42–56. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Jiang, Y.; Zhou, P.; Zhao, Y.; Xu, Y. On-Orbit Geometric Calibration and Validation of Luojia 1-01 Night-Light Satellite. Remote Sens. 2019, 11, 264. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Ye, M.; Tang, W.H.; Wong, S.C. Regulating taxi services in the presence of congestion externality. Transp. Res. Part A Policy Pract. 2005, 39, 17–40. [Google Scholar] [CrossRef]
- Castro, P.S.; Zhang, D.; Chen, C.; Li, S.; Pan, G. From taxi GPS traces to social and community dynamics: A survey. ACM Comput. Surv. 2013, 46, 1–34. [Google Scholar] [CrossRef]
- Pan, G.; Qi, G.; Zhang, W.; Li, S.; Wu, Z.; Yang, L.T. Trace analysis and mining for smart cities: Issues, methods, and applications. IEEE Commun. Mag. 2013, 51, 120–126. [Google Scholar] [CrossRef]
- Wu, H.; Huang, R.; You, L.; Xiang, L. Recent progress in taxi trajectory data mining. Acta Geod. Sin. 2019, 48, 1341–1356. [Google Scholar]
- Peng, C.; Jin, X.; Wong, K.-C.; Shi, M.; Liò, P. Collective human mobility pattern from taxi trips in urban area. PLoS ONE 2012, 7, e34487. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, S.; Pan, G. Mining the semantics of origin-destination flows using taxi traces. UbiComp 2012, 522, 943. [Google Scholar]
- Scholz, R.W.; Lu, Y. Detection of dynamic activity patterns at a collective level from large-volume trajectory data. Int. J. Geogr. Inf. Sci. 2014, 28, 946–963. [Google Scholar] [CrossRef]
- Tang, J.; Liu, F.; Wang, Y.; Wang, H. Uncovering urban human mobility from large scale taxi GPS data. Phys. A Stat. Mech. Appl. 2015, 438, 140–153. [Google Scholar] [CrossRef]
- Shen, J.; Liu, X.; Chen, M. Discovering spatial and temporal patterns from taxi-based Floating Car Data: A case study from Nanjing. Gisci. Remote Sens. 2017, 54, 617–638. [Google Scholar] [CrossRef]
- Kong, X.; Xia, F.; Wang, J.; Rahim, A.; Das, S.K. Time-location-relationship combined service recommendation based on taxi trajectory data. IEEE Trans. Ind. Inform. 2017, 13, 1202–1212. [Google Scholar] [CrossRef]
- Qi, G.; Li, X.; Li, S.; Pan, G.; Wang, Z.; Zhang, D. Measuring social functions of city regions from large-scale taxi behaviors. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March 2011; pp. 384–388. [Google Scholar] [CrossRef]
- Pan, G.; Qi, G.; Wu, Z.; Zhang, D.; Li, S. Land-use classification using taxi GPS traces. IEEE Trans. Intell. Transp. Syst. 2012, 14, 113–123. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 186–194. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Zhao, K.; Chinnasamy, M.P.; Tarkoma, S. Automatic city region analysis for urban routing. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; pp. 1136–1142. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wan, J.; He, Z.; Zhao, S.; Fan, K.; Park, S.O.; Jiang, Z. Identifying region-wide functions using urban taxicab trajectories. ACM Trans. Embed. Comput. Syst. 2016, 15, 1–19. [Google Scholar] [CrossRef]
- Hu, Y.; Miller, H.J.; Li, X. Detecting and analyzing mobility hotspots using surface networks. Trans. GIS 2014, 18, 911–935. [Google Scholar] [CrossRef]
- Models of Urban Structure. Available online: https://www.owen.k12.ky.us/userfiles/257/Classes/17727/APHGModelsofUrbanStructure.pdf (accessed on 20 July 2020).
- Adams, J.S.; Hoyt, H. 1939: The structure and growth of residential neighborhoods in American cities. Washington, DC: Federal Housing Administration. Prog. Hum. Geogr. 2005, 29, 321–325. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, H.; Li, M.; Zipf, A. Identifying the city center using human travel flows generated from location-based social networking data. Environ. Plan. B Plan. Des. 2016, 43, 480–498. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, F.; Mu, L.; Gao, Y.; Liu, Y. Urban function recognition by integrating social media and street-level imagery. Environ. Plan. B Urban Anal. City Sci. 2020. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Yuan, J.; Xie, X. Urban computing with taxicabs. In Proceedings of the 13th International Conference on Ubiquitous Computing, Beijing, China, 17–21 September 2011; pp. 89–98. [Google Scholar] [CrossRef]
- Boyell, R.L.; Ruston, H. Hybrid techniques for real-time radar simulation. In Proceedings of the Fall Joint Computer Conference, New York, NY, USA, 12–14 November 1963; pp. 445–458. [Google Scholar] [CrossRef]
- Freeman, H.; Morse, S. On searching a contour map for a given terrain elevation profile. J. Frankl. Inst. 1967, 284, 1–25. [Google Scholar] [CrossRef]
- Kweon, I.S.; Kanade, T. Extracting topographic terrain features from elevation maps. CVGIP Image Underst. 1994, 59, 171–182. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Wang, S.; Yu, B.; Beck, R.; Hinkel, K. A localized contour tree method for deriving geometric and topological properties of complex surface depressions based on high-resolution topographical data. Int. J. Geogr. Inf. Sci. 2015, 29, 2041–2060. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R. Delineation and quantification of wetland depressions in the Prairie Pothole Region of North Dakota. Wetlands 2016, 36, 215–227. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Sherman, D.; Gao, Y.; Wu, Q. An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes. Int. J. Geogr. Inf. Sci. 2010, 24, 1015–1041. [Google Scholar] [CrossRef]
- Yu, B.; Shu, S.; Liu, H.; Song, W.; Wu, J.; Wang, L.; Chen, Z. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of China. Int. J. Geogr. Inf. Sci. 2014, 28, 2328–2355. [Google Scholar] [CrossRef]
- Green, N. Functional polycentricity: A formal definition in terms of social network analysis. Urban Stud. 2007, 44, 2077–2103. [Google Scholar] [CrossRef]
- Liu, X.; Derudder, B.; Wu, K. Measuring polycentric urban development in China: An intercity transportation network perspective. Reg. Stud. 2016, 50, 1302–1315. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, B.; Li, W. The economic performance of urban structure: From the perspective of Polycentricity and Monocentricity. Cities 2017, 68, 18–24. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. How polycentric is urban China and why? A case study of 318 cities. Landsc. Urban Plan. 2016, 151, 10–20. [Google Scholar] [CrossRef]
- Statistical Communique of Shanghai on National Economic and Social Development in 2019. Available online: http://tjj.sh.gov.cn/tjgb/20200329/05f0f4abb2d448a69e4517f6a6448819.html (accessed on 31 March 2021).
- Shanghai Master Plan 2017–2035. Available online: http://www.shanghai.gov.cn/newshanghai/xxgkfj/2035001.pdf (accessed on 31 March 2021).
Attribute | Definition |
---|---|
Monocentric Urban Center (MUC) | |
Minimum Intensity () | |
Maximum Intensity () | |
Total Intensity () | |
Average Intensity () | |
Standard Deviation of Intensity () | |
Area () | Area within the boundary of a center |
Urban Development Orientation () | Angle between the x-axis and the long side of MBR (Minimum Bounding Rectangle) of the center |
Compactness Index () | |
Elongatedness () | |
Intensity Gradient () | Average slope within a center |
Polycentric Urban Center (PUC) | |
Polycentric Indicator () |
Date | Time | GPSID | Lon | Lat | S | D | State |
---|---|---|---|---|---|---|---|
20180604 | 6 | 10068 | 121.73326 | 31.035209 | 0 | 294 | 1 |
… | … | … | … | … | … | … | … |
20180604 | 122149 | 10142 | 121.801537 | 31.149965 | 10 | 97 | 0 |
Location(s) | MUCID (PUCID) 1 | Identified by Chen et al. 2 | Planned Activity Centers 3 | Location(s) | MUCID (PUCID) | Identified by Chen et al. | Planned Activity Centers |
---|---|---|---|---|---|---|---|
People’s Square, Shanghai Government, The Bund, Nanjing Road | 74(C) | ✓ | a | Jiangqiao Town | 25, 26 | c | |
Jing’an Temple, Jing’an Park | 73(C) | a | Taopu Town | 27 | c | ||
Ruijin Hospital, Huaihai Middle Road | 72(C) | a | Nanxiang Town | 28 | ✓ | c | |
Shanghai Railway Station, Sleepless City | 70(C) | ✓ | a | Kongjiang Road, Xinhua Hospital | 63(C) | c | |
Lujiazui | 67(C), 68(C) | ✓ | a | Gaoqing Road | 18(C) | c | |
Xujiahui | 66(C) | ✓ | a | Gubei, Caohejing Development Zone | 55(C) | c | |
Yangpu Riverside | 60(C) | a | Gucun Town | 30, 46(C), 47(C) | ✓ | c | |
Hongqiao Development Zone | 65(C) | a | Zhoupu Town | 33(C) | ✓ | c | |
Fengxian | 71(A), 75(A), 76(A) | b | Qibao Town | 34(C), 50(C) | c | ||
Zhangjiang Town, Zhangjiang Hi-tech Park | 41(B), 42(B),43(B) | ✓ | b | Kangqiao, Yuqiao | 36(C), 19(C) | c | |
Songjiang University Town, Songjiang New City | 6 | ✓ | b | Gongkang | 54(C) | c | |
Chuansha New Town | 22 | b | Daning | 62(C) | c | ||
Wusong | 31 | b | Wujing Town | 7 | |||
Jiangwan Stadium, Wujiaochang, Tongji University, Fudan University | 53(C), 61(C) | ✓ | b | Pudong International Airport | 12, 17 | ✓ | |
Huamu-Longyang Road | 56(C) | b | Shanghai Disney Resort | 16 | |||
Xinzhuang | 11, 32(C) | ✓ | b | Xujing Town | 20, 21 | ||
Jinqiao | 52(C) | ✓ | b | Hongqiao Railway Station, Hongqiao International Airport | 39(C), 40(C) | ✓ | |
Fengcheng Town | 1 | c | Renji Hospital | 64(C) | |||
Songjiang Old City | 4 | c | Changfeng Ecological Business District | 59(C) | ✓ | ||
Jiangchuan, Zizhu Science Park | 5 | ✓ | c | Government of Pudong New District, Shanghai Science and Technology Museum | 58(C) | ||
Pujiang Town, Renji Hospital | 8, 10 | ✓ | c | Songnan Town | 45(C) | ||
Zhuanqiao Town | 9 | c | National Convention and Exhibition Centre | 38(C) | |||
Sijing Town | 13 | c | Other (residential area, major road, etc.) | 2, 3, 14, 15(C), 24, 29(C), 35(C), 37(C), 44(C), 48(C), 49(C), 51(C), 57(C), 69(C) | |||
Tang Town | 23 | c |
Highest Level | Contour Tree | MUC Number | MUC Area (km2) | PUC Number | PUC Area (km2) | |
---|---|---|---|---|---|---|
Weekdays | 11 | 30 | 76 | 172.02 | 3 | 511.04 |
Weekends | 10 | 34 | 72 | 188.83 | 3 | 529.52 |
Highest Level | Contour Tree | MUC Number | MUC Area (km2) | PUC Number | PUC Area (km2) | |
---|---|---|---|---|---|---|
Mon. 7:00–10:00 | 8 | 40 | 95 | 264.13 | 3 | 602.12 |
Sun. 7:00–10:00 | 7 | 38 | 73 | 180.28 | 3 | 490.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Fan, H. Detecting and Analyzing Urban Centers Based on the Localized Contour Tree Method Using Taxi Trajectory Data: A Case Study of Shanghai. ISPRS Int. J. Geo-Inf. 2021, 10, 220. https://doi.org/10.3390/ijgi10040220
Sun M, Fan H. Detecting and Analyzing Urban Centers Based on the Localized Contour Tree Method Using Taxi Trajectory Data: A Case Study of Shanghai. ISPRS International Journal of Geo-Information. 2021; 10(4):220. https://doi.org/10.3390/ijgi10040220
Chicago/Turabian StyleSun, Mengqi, and Hongchao Fan. 2021. "Detecting and Analyzing Urban Centers Based on the Localized Contour Tree Method Using Taxi Trajectory Data: A Case Study of Shanghai" ISPRS International Journal of Geo-Information 10, no. 4: 220. https://doi.org/10.3390/ijgi10040220
APA StyleSun, M., & Fan, H. (2021). Detecting and Analyzing Urban Centers Based on the Localized Contour Tree Method Using Taxi Trajectory Data: A Case Study of Shanghai. ISPRS International Journal of Geo-Information, 10(4), 220. https://doi.org/10.3390/ijgi10040220