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Abstract: Urban structure is of vital importance to urban planning, transportation, economics and
other applications. Since detecting and analyzing urban centers is crucial for understanding urban
structure, a large number of studies on urban center extraction have been performed. In this paper, we
propose an analysis framework to identify urban centers by using taxi trajectory data. The proposed
approach differs from previous methods by employing a novel way to simulate taxi trajectory data
with the topographic surface. We extracted pick-up and drop-off spots from taxi trajectory data and
employed the localized contour tree method to delineate the boundaries and hierarchies of urban
centers. The experiments show that the proposed method can successfully detect urban centers and
analyze their temporal patterns in different periods in Shanghai, China.

Keywords: urban structure; urban center; taxi trajectory data

1. Introduction

Urban structure is defined as the spatial arrangement of different land uses in urban
areas [1]. It is an important part of urban geography and has major effects on urban plan-
ning, economics, transportation and many other aspects of cities. Given the acceleration
of urbanization in recent years, the study of urban structure is of great importance to
government decision-making and policy implementation.

In 1925, Burgess proposed the first monocentric model to describe the city structure [2].
Since then, many researchers have focused on studying urban structure, and most of them
have concentrated on structure models, urban centers, land use, functional areas, urban
density, etc. (detailed in Section 2.1).

In many early works, researchers referred to employment and population census data
to identify employment centers [3–17]. However, census data are always based on a preset
census tract. The preset shape of the census tract may prevent the identification of a center.
Therefore, the analysis results may be affected by the modifiable areal unit problem [18].

Since remote sensing can obtain a wide range of urban data, it has been used to
measure urban density [19] and polycentricity [20]. In 2017, Chen et al. employed nighttime
light (NTL) data to analyze urban structure using a localized contour tree method [18].
They successfully identified most of the centers specified in the master plan of Shanghai.
In addition, they inventively drew an analogy between the NTL intensity and topographic
surface. Then, they constructed a hierarchy of the detected urban centers and calculated
the attributes of each center. Although this is an innovative and effective approach, there
are still some limitations of using NTL data. Firstly, the spatial and temporal resolutions
of NTL data are not high. The NPP-VIIRS NTL data used by Chen et al. [18] only has a
resolution of 500 m. Although the spatial resolution of the latest Luojia-1 data is 130 m,
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the regression cycle takes 3–5 days and does not reflect the details of finer spatial and
temporal scales [21]. Secondly, NTL satellites only capture nighttime data, which means
that it can only reflect activities at night. Therefore, daytime activities cannot be inferred
from NTL data. Thirdly, the proximity of night light to human activities is rather weak in
certain places in the urban area; for instance, streetlights and many urban illuminations are
independent of human flow. In sum, NTL data are unable to completely reveal the urban
structure dynamic.

Urban centers and their functions are always connected to sociological and economical
activities in a city. As humans are the main body of social and economic activities, em-
ploying data that are more related to human mobility, e.g., taxi trajectory data, to identify
urban centers is more reasonable and reliable. Taxis are a large proportion of urban traffic
in most large cities and can even account for as much as 50–60% of the traffic in certain key
areas [22]. Taxi trajectory data provide precise information on citizens’ favorite departure
sites and destinations, and they are an important type of digital footprint for extracting
human activities [23]. Furthermore, taxi trajectory data have the advantages of wide
coverage, high sampling density, high position accuracy, large volume and information
richness [24,25]. Compared with NTL data, taxi data have flexible spatial and temporal
resolutions, are more related to human activities and can reflect these activities throughout
a 24-h period.

Previous studies using taxi trajectory data related to the urban structure have mostly
focused on human mobility [26–31], land use and functional regions [32–37] (detailed in
Section 2.2). Notably, by creatively using kernel density estimation (KDE) to transfer taxi
data to a continuous surface, Hu et al. proposed an algorithm to extract geometric features
from the surface, and they successfully detected and analyzed hotspots in Shanghai [38].
However, similar to many previous studies, the specific boundaries of the detected hotspots
were not delineated. Although researchers have delineated the boundaries of regions by
using a clustering algorithm [30], census tract [28] or pre-shaped partition [29,31,35–37],
we did not find any research that used taxi data to analyze the hierarchy and attributes of
urban centers.

Pick-up and drop-off spots extracted from taxi trajectory data have proven to be
related to urban land use [32,35]. Therefore, we assumed that the use of taxi trajectory
data could improve the identification of urban centers. Inspired by the work of Chen
et al. [18], in this study, we simulated taxi data with the topographic surface and employed
the localized contour tree method to identify urban centers with boundaries in Shanghai. In
addition, the hierarchy and attributes of the detected centers were analyzed and calculated.

In this work, the following research questions (RQ) are addressed:
RQ1: Can taxi trajectory data replace NTL data for the purpose of identifying urban centers?
RQ2: What are the advantages of using taxi trajectory data in urban center identification?
The remainder of this paper is organized as follows. A short review of previous

research on urban structure is provided in the next section. We introduce our proposed
methodology for identifying and analyzing urban centers in Section 3. In Section 4, we
present our analysis results, followed by a discussion of our results and methods in
Section 5. The conclusion of our work is given in Section 6.

2. Related Work

This section provides an overview of existing research approaches related to this work:
urban structure research (Section 2.1) and taxi trajectory data research related to urban
structure (Section 2.2).

2.1. Urban Structure Research

A city is a spatial combination of different land uses and functional areas. Initially,
researchers proposed monocentric models to describe the spatial distribution in a city. In
1925, Burgess introduced the concentric zone model [2]. This is the first model that explains
the urban structure. Five concentric functional zones, namely, the central business district
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(CBD), zone of transition, zone of workers’ homes, the residential area and the commuter
zone, were created to describe the urban structure of Chicago. This concentric model
matched the city pattern when America was influenced by the Industrial Revolution [39].
However, some urban areas have become more active, and they continuously grow and
expand. Therefore, in 1939, Hoyt proposed the sector model [40]. The sector model also has
a single center, but some functional areas can extend from the CBD to the urban edge. Harris
and Ullman developed the multiple nuclei model in 1945 [1]. According to the multiple
nuclei model, a city can contain several centers. The CBD is no longer in the dominant
position as it was before, and several sub-centers have been derived. Nevertheless, with
urban development and population growth in recent decades, the urban structure has
become complex, and it cannot be simply described by any traditional model.

Scholars employ different kinds of data to discover structures within cities. Census
data, such as employment data, population data and commuting flows, are the most
popular and are often used in urban structure analysis. In 1987, McDonald suggested that
gross employment density and the employment–population ratio were the best measures
of employment sub-centers [3]. Then, these measures were applied to identify sub-centers
in Chicago [3,4]. Giuliano and Small developed a method for identifying employment
sub-centers in Los Angeles using journey-to-work data [5]. They defined a sub-center
as a continuous set of zones with an employment density and total employment above
preset thresholds. Then, they analyzed the functions, distribution and commuting flows
associated with the detected centers. Following in their steps, numerous works based on
thresholds have been reported [6,7,9,10,12]. As noted by McMillen, the regression approach
is less sensitive to the analysis unit [11]; therefore, he used a two-stage regression procedure
to identify employment sub-centers in six cities. In contrast to the parametric regression
model proposed by McDonald and Prather [8], McMillen’s procedure is non-parametric,
and its identification of employment sub-centers can better adapt to the reality of the
urban structure [15]. Another work of McMillen proposed an algorithm using the standard
properties of contiguity matrices to identify sub-centers [13]. This algorithm combines
regression and threshold methods. Further work by Redfearn used the topography of the
employment density obtained by non-parametric regression methods to detect both the
sub-centers and their areas of influence, respectively [14,15]. Census data have still been
commonly used in recent studies. Hu et al. detected the urban spatial structure using
employment data and characterized the dynamic commuting patterns in Beijing, China [16].
Shen and Batty detected functional regions perceived by people with different occupations
using disaggregated flow data and thus showed differences across occupations [17].

Instead of census data, 3D building models derived from remote sensing data were
applied to measure the urban density [19] and analyze polycentricity [20] in four Ger-
man city regions. Since nighttime light (NTL) data are receiving increasing attention,
Chen et al. applied NTL data to delimit urban sub-centers and determine the topologi-
cal relationships between them by adopting a graph-theory-based localized contour tree
method [18]. In addition, as GPS is widely used, location-based data have become a
research hotspot. Location-based social network data were used to identify city centers
with precise boundaries [41] and distinguish urban functions [42]. Taxi trajectories are also
popular location-based data for studying urban structure (detailed in Section 2.2).

2.2. Taxi Trajectory Data Research Related to Urban Structure

Taxi trajectory data record routes based on GPS devices. Such data have significant
spatial and temporal characteristics and are closely related to human mobility, social-
economic activities and urban layout. Therefore, a large number of studies have used taxi
trajectory data to study human mobility, functional regions and land use.

In their work, Peng et al. analyzed taxi trips in Shanghai and found that people trav-
eled for three main purposes on workdays: commuting between home and the workplace,
traveling from workplace to workplace and traveling for other activities such as leisure [26].
Zhang et al. estimated origin–destination (OD) flows and mined their semantics based on
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periodic patterns [27]. In 2014, Scholz and Lu defined pick-up or drop-off spots as activity
locations, and they proposed a method to detect the dynamic patterns of activity hotspots
in a city [28]. After that, Tang et al. divided Harbin city into 400 transportation districts [29].
They clustered pick-up and drop-off locations using the DBSCAN algorithm and analyzed
human mobility on weekdays and weekends. Employing road nodes to generate Thiessen
polygons, Shen et al. analyzed the spatial distribution of pick-up and drop-off spots and
used Moran’s I index to explore the spatial autocorrelation of these regions, and hotspots
were found by clustering [30]. Moreover, Kong et al. proposed a time–location relationship
to find human mobility patterns in functional regions by analyzing pick-up and drop-off
locations [31].

Since Zheng et al. detected inadequacy in urban planning using taxi trajectory data in
2011 [43], many taxi data researchers have focused on studying urban structure. Combined
with points of interest (POIs), trajectory data were used to identify the different functions of
regions partitioned by major roads [34]. The association between traffic patterns extracted
from pick-up and drop-off spots and urban land uses in Shanghai has been revealed [35].
In addition, Qi et al. demonstrated that the social function of an urban region could be
characterized by temporal variation in the number of pick-ups/drop-offs [32]. Pan et al.
presented an improved DBSCAN algorithm for clustering pick-up and drop-off spots [33].
Then, they designed six features for regions extracted from clustering and classified these
regions into different land uses. Using three large taxi datasets from three cities, Zhao et al.
provided a new quad-tree region division method and then used the association rule to
identify four kinds of functional regions based on the human mobility patterns revealed
by taxi trips [36]. In 2016, Tong et al. used Voronoi decomposition to divide the city into
regions, which were then classified into different functional areas by incorporating pick-up
and drop-off information [37].

Thus far, in previous research work, pick-up and drop-off spots (origins and desti-
nations) have been used for the analysis of human mobility and functional areas since
these locations can reflect people’s travel preferences [26–29,31–33,36,37]. From this point
of view, it is logical to expect that pick-up and drop-off hotspots extracted from taxi tra-
jectory data can directly indicate the urban structure and can therefore be used to detect
urban centers.

3. Detecting Urban Centers by Using Taxi Trajectory Data

The main innovation of our proposed method is the adoption of a remote sensing
method to analyze taxi trajectory data and extract results with finer details. In comparison
with NTL data, taxi trajectory data are more related to human mobility and activities, as
mentioned in Section 1, so they can better reflect human activity intensity in urban areas. In
our analysis framework, we used a statistical grid of pick-up/drop-off spots and regarded it
as a topographic surface of human activity intensity. Thus, an analogy was drawn between
this surface and the statistical grid. The center of human activity is analogous to a peak
on the topographic surface. Since a peak is represented by concentric contour lines on the
topographic surface, an urban center can be detected by generating contour lines from the
statistical surface (statistical grid). With this analogy, a localized contour tree was applied
to our data to identify urban centers, analyze the hierarchy and calculate attributes. Our
approach consists of five steps: taxi trajectory data preprocessing, contour map generation,
localized contour tree construction and simplification, urban center identification and
attribute calculation. The complete analysis framework is presented in Figure 1.
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3.1. Taxi Trajectory Data Preprocessing

Taxi trajectory data are a set of points recorded by GPS devices. Each point has several
features, including GPSID, timestamp, coordinates, speed, direction, passenger status, etc.
After basic data cleaning, null and out-of-range values were eliminated. The remaining
data values were projected onto locations in a planar coordinate system.

As the pick-up and drop-off locations reflect people’s departure places and desti-
nations, we chose them to represent human activities. The passenger status of the taxi
trajectory data is 0 (vacant) or 1 (occupied). In order to extract pick-up and drop-off spots,
we established the following premise:

For taxi data with the same GPSID in chronological order, if the passenger status of
two adjacent records changes from 0 to 1, then the record with a passenger status of 0 is
set as a pick-up spot. On the other hand, if the passenger status of two adjacent records
changes from 1 to 0, then the record with a passenger status of 1 is set as a drop-off spot.

Following this premise, we extracted pick-up and drop-off spots from taxi trajectory
data. Then, as an analogy to spatial resolution, we drew square grids and counted the total
number of pick-up and drop-off spots in each grid. We calculated the hourly average of
the total number in each grid. Thus, each grid has an attribute that represents the human
activity intensity in that grid. The entire grid is similar to topography with peaks.

In order to compare this study with the work of Chen et al. [18], we chose a grid size of
500 m, which is equivalent to the pixel size of their NTL data. Pick-up and drop-off spot statistics
in different periods were also computed to analyze the temporal patterns of urban centers.

3.2. Contour Map Generation

As we treated the statistical grid as topography, we used it to generate contour lines.
To smooth noisy data, we applied a 5 × 5 Gaussian filter with a sigma value of 1 to our
statistical grid. The initial contour value was set to 1, and the contour interval was set to 1.

Since taxis mainly pick up and drop off passengers near entrances and exits, the
centers can be fragmentized into small areas. However, areas that are too small cannot
be considered as a center. Given these considerations, we defined the minimum area of
a detected center as 1 square kilometer. Therefore, we removed all closed contours with
areas less than 1 square kilometer. We believe that all major urban centers can be detected
with these preset parameters.

3.3. Localized Contour Tree Construction and Simplification

The contour tree was first used to store contour maps [44,45]. Then, in 1994, Kweon
and Kanade built a contour map from a digital elevation model (DEM) and then created
a connectivity tree to extract topographic features [46]. They called the resulting tree a
topographic change tree. The localized contour tree method was first described by Wu et al.
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to detect and delineate surface depressions [47,48]. They generated a contour tree from a
LiDAR DEM. Then, a localized fast priority search algorithm was applied over the contour
tree to identify depressions.

A contour tree is composed of nodes and links. Nodes represent contour lines, while
links represent topological inclusion relationships between adjacent contour lines. Ac-
cording to Wu et al. [47], the localized contour tree is constructed in a bottom-up manner.
Sample contour lines are shown in Figure 2, and sample contour trees based on Figure 2
are shown in Figure 3a. First, we identified seed contour lines. A seed contour line contains
no other contour lines and is a leaf node in a contour tree. In Figure 2, contours g, h, i, j are
seed contour lines. In Figure 3a, nodes g, h, i, j are leaf nodes. Starting from seed contour
lines, the rest of the contour trees can be constructed. If the external contour line contains
only one contour line or branch, then the former is considered to be at the same level as
the latter. Otherwise, the external contour line is considered to be at a higher level. As
shown in Figures 2 and 3a, contours g, h, i, j are at level 1. Contours d, e, f contain only
one contour line each, so they are also at level 1. However, contour c contains more than
one branch, so it is considered as level 2. Similarly, contour a contains two branches, and
contour b contains only one, so they are identified as level 3 and level 1, respectively. For
each branch, the outermost contour line is the root node. Following this rule, contour trees
were constructed as shown in Figure 3a.
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In order to find the hierarchy of contour lines and detect the urban center, the contour
trees were simplified. Adjacent contour lines at the same level were considered to be
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different locations of one peak, and we only kept the outermost contour line, i.e., the
highest node with the same level in the contour tree. Therefore, as shown in Figure 3b,
contours a, b, c, d, f , g are retained as the simplified contour tree.

3.4. Urban Center Identification

As mentioned above, we calculated the hourly average number of total pick-up and
drop-off spots to reflect human activity intensity. Urban centers are usually areas of high
human activity intensity. Since the contour lines define ranges with the same activity
intensity, they can be used to identify urban centers.

The simplified contour tree represents the entire hierarchy of all contour lines. In
Figure 3b, there are two sub-trees in the simplified contour tree. The root nodes are the
outermost contour lines of each sub-tree. Some sub-trees can have several branches, while
others may contain only one node, as shown in Figure 3b. In this paper, we regard each
leaf node, including one-node sub-trees, as a monocentric urban center (MUC). In addition,
sub-trees that contain more than one leaf node or branch are considered to be polycentric
urban centers (PUCs). The MUCs in a PUC are sub-centers, and the largest sub-center is
the main center of the PUC. For example, in Figure 3, there is one MUC, and one PUC
contains three sub-centers. We consider the main center in the largest contour tree to be
the main center of a city, and the number of levels can be regarded as a reference to the
complexity of PUCs.

3.5. Calculation of Urban Center Attributes

In order to better understand the characteristics of urban centers, we calculated several
attributes for each one. Since we used the hourly average number of pick-up and drop-
off spots to represent human activity intensity, for each MUC, the minimum intensity
(MinI), the maximum intensity (MaxI), the total intensity (TI), the average intensity (AveI)
and the standard deviation of intensity (StdI) were calculated as statistical attributes. In
addition, the area (S), urban development orientation (Φ), compactness index (C) and
elongatedness (E) [18] were calculated for MUCs as morphometric attributes to analyze
geometric characteristics [49,50]. Moreover, we used the slope of topography to calculate
the gradient (G) of activity intensity to identify intensity changes from the center to the
periphery of a center. For each PUC, we calculated a polycentric indicator (PI) to quantify
polycentricity [51,52]. The detailed definitions of the attributes are listed in Table 1.

In Table 1, n is the number of grids in a center, and xi is the hourly average number
of pick-up and drop-off spots in the ith grid. The compactness index (C) is designed to
quantify the compactness of the shape, and p is the perimeter of the center boundary. A
circle is the most compact shape in Euclidean space, and its C value is 1 [17]. Elongatedness
(E) also indicates the compactness of a shape. Len and Wid are the length and width of
the MBR (Minimum Bounding Rectangle) of the center. If a center has a high C and a
low E, then the center is regarded as compact. Otherwise, the center is incompact. When
calculating the polycentric indicator (PI), we consider all of the sub-centers in a PUC. nc
is the number of sub-centers in a PUC. Stdc is the standard deviation, and AveI is the
average of all AveI of those sub-centers. AveIi is the AveI of the ith sub-center. AveImax
is the maximum AveI of all sub-centers, and Stdmax is the standard deviation between
AveImax and an ideal sub-center with an AveI of 0. PI ranges from 0 to 1. If the PI of a
PUC is 0, then the PUC has a dominant main center, while if PI is 1, then the sub-centers
equally impact the PUC.
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Table 1. Definitions of urban center attributes.

Attribute Definition

Monocentric Urban Center (MUC)

Minimum Intensity (MinI) MinI = min{xi|i = 1, 2, . . . , n}
Maximum Intensity (MaxI) MaxI = max{xi|i = 1, 2, . . . , n}

Total Intensity (TI) TI = ∑n
i=1 xi

Average Intensity (AveI) AveI = TI/n

Standard Deviation of Intensity (StdI) StdI =
√

1
n ∑n

i=1(xi − AveI)2

Area (S) Area within the boundary of a center

Urban Development Orientation (Φ) Angle between the x-axis and the long side of MBR (Minimum
Bounding Rectangle) of the center

Compactness Index (C) C = 4πS/p2

Elongatedness (E) E = Len/Wid

Intensity Gradient (G) Average slope within a center

Polycentric Urban Center (PUC)

Polycentric Indicator (PI)

PI = 1− Stdc
Stdmax

Stdc =
√

1
nc

∑nc
i=1
(

AveIi − AveI
)2

Stdmax =
√

1
2 ((AveImax − AveImean)

2 + (0− AveImean)
2)

AveImean = AveImax+0
2

4. Case Study and Results

This section presents the results of our case study in Shanghai, China. We first
introduce our study area and data, and then we present the results of the localized contour
tree and urban center detection. Finally, we analyze the attributes and temporal patterns of
urban centers in Shanghai.

4.1. Study Area and Data

Researchers have verified that the polycentric planning strategy is beneficial to urban
economics in China [53]. Among the metropolitans in China, Shanghai has been demon-
strated to be a polycentric city, which is consistent with its master plan [18,54]. Shanghai is
located in the east of China. It is an international center of economics, trade, science and
technology. As shown in Figure 4, Shanghai has 16 districts (Huangpu, Xuhui, Changning,
Jing’an, Putuo, Hongkou, Yangpu, Minhang, Baoshan, Jiading, Pudong, Jinshan, Songjiang,
Qingpu, Fengxian and Chongming) with a total area of 6340.5 square kilometers, and its
population was over 24 million in 2019 according to national statistical data [55]. Shanghai
has three rings, which are connected by several roads and expressways. According to the
Shanghai master plan, the central area of Shanghai is within the outer ring road [56].
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According to the Shanghai Annual Report on Urban Traffic Operation in 2018, the
daily average number of passenger trips of cruising taxis is around 1.75 million, and that
of online car-hailing is around 1.05 million. Considering the daily average number of
passenger trips via underground transportation (around 10.16 million) and public buses
(around 5.76 million), taxis accounted for more than one-tenth of public transportation in
Shanghai in 2018.

In this case study, we used the taxi trajectory data in Shanghai provided by a local
company to verify our analysis framework. Our data include around 5500 taxis and cover
an ordinary week in 2018 (from Monday 4th of June to Sunday 10th of June). One of the
largest taxi companies, Qiangsheng, claimed that they had about 12,000 taxis in 2018, which
accounted for 25 percent of taxis in Shanghai. According to this information, our taxis
account for about one-tenth of taxis in Shanghai. The data include information on each
taxi, and the GPS sampling frequency is 10 s. Table 2 shows sample records from our taxi
trajectory data. The value of the field ‘Time’ ranges from 0 to 235,959, which represents
the time in 24-h format. The field ‘GPSID’ is the unique identification of each taxi. The
fields ‘Lon’ and ‘Lat’ are the longitude and latitude of the taxi. The fields ‘S’ and ‘D’ are the
instantaneous speed and direction of the taxi. The field ‘State’ indicates whether there are
passengers in the taxi and has a value of 0 (vacant) or 1 (occupied).

Table 2. Sample records of taxi trajectory data.

Date Time GPSID Lon Lat S D State

20180604 6 10068 121.73326 31.035209 0 294 1
. . . . . . . . . . . . . . . . . . . . . . . .

20180604 122149 10142 121.801537 31.149965 10 97 0
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We removed missing and outlier values from the raw data. The coordinates were
converted to locations in a projected coordinate system, which is WGS 1984 UTM Zone 51N
in this case study. The pick-up and drop-off spots were extracted following the method
described in Section 3.1. Each record in the pick-up and drop-off data was transferred to
a point in shapefile format. Square grids with sides of 500 m covering the whole study
area were drawn as shown in Figure 5. We calculated the total number of pick-up and
drop-off spots in each grid. We repeated the steps above for seven days of data, which
were separated into workday (Monday to Friday) and weekend (Saturday and Sunday)
data. The hourly average of the total number in each of the two data groups was calculated
in each grid. Then, we obtained the workday grids and weekend grids, which represent
the human activity intensity on workdays and weekends in Shanghai, respectively. As an
example, the statistical results for weekdays are shown in Figure 5 using graduated color.
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4.2. Identification and Analysis of Urban Centers

We generated contour lines from the resulting statistical grids. In this case study, we
used a 5 × 5 Gaussian filter with a sigma value of 1 to smooth the noisy data and set both
the initial contour value and contour interval to 1. A contour level of 1 means that the grid
has an average of 1 pick-up/drop-off spot within an hour. Similarly, a contour value of
60 means that the grid has an average of 60 pick-up/drop-off spots within an hour. The
contour map of the weekday grids is shown as an example in Figure 6. The outlined area
in the figure is enlarged in the lower-left corner to show the detailed contour lines since
they are dense in some areas. The contour values increase as the color changes from yellow
to blue. The contour lines are found to be much denser when the contour value is high.
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As mentioned in Section 3.2, we removed the closed contour lines with areas less than
1 square kilometer to eliminate potential centers that were too small. After that, we applied
the localized contour tree method to generate contour trees. Taking the simplified contour
tree for weekdays as an example, we obtained 30 sub-trees, as shown in Figure 7a. There
were 76 leaf nodes in total. Among these leaf nodes, 27 were one-node sub-trees (yellow
features in Figure 7a), and the others belonged to three complex sub-trees (blue features in
Figure 7a). One complex sub-tree had two levels, and another had three levels. The largest
sub-tree had 11 levels and covered most of Shanghai’s central area (within the outer ring
road), as shown in Figure 7b. As the largest sub-tree is too complex (Figure 7b) and the
space is limited, Fengxian District is used as an example to illustrate our tree construction
(Figure 7c). In Figure 7c, the sub-tree is a 3-level contour tree. Leaf nodes 2, 3 and 4 at
level 1 are three MUCs. Node 1 consists of nodes 3 and 4 and represents a PUC with two
sub-centers at level 2. Then, node 0 is a root node of this small sub-tree and represents a
more complex PUC than node 1. Even though nodes 2, 3 and 4 are all at level 1, Figure 7c
indicates that nodes 3 and 4 have closer relationships since they belong to node 1. When
verifying the map, we found a canal between nodes 1 and 2. This shows that the extracted
hierarchy is in line with the actual situation. Following these rules, the hierarchy within
the detected PUCs was analyzed.
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Continuing with weekday urban centers as an example, we detected 76 MUCs in total,
as illustrated in Figure 8. We compared our detected centers with points of interest (POIs)
and land use according to OpenStreetMap (https://www.openstreetmap.org/, accessed on
15 October 2020). PUC A is located in Fengxian District and consists of three MUCs. MUCs
71, 75 and 76 cover five commercial markets in Fengxian District, and PUC A covers almost
the entire commercial and industrial area of Fengxian New City, which is included in the
Shanghai City Master Plan (2017–2035) [56]. PUC B is located in Pudong New District and
is within the outer ring road of Shanghai. It includes MUCs 41, 42 and 43. They cover
most of Shanghai Zhangjiang Hi-Tech Park and several universities. PUC C is the largest
center and contains 43 MUCs. It covers most hotspots and landmarks in Shanghai’s central
area. MUCs 67 and 68 cover Lujiazui Financial Center, and MUC 70 contains Shanghai
Railway Station and Sleepless City. MUC 72 is close to Ruijin Hospital and Huaihai Middle
Road. MUC 74 includes People’s Square, Nanjing Road and the Shanghai Government.
MUC 66 comprises Xujiahui. Hongqiao Airport and Hongqiao Railway Station are covered
by MUCs 39 and 40 together. MUCs 53 and 61 contain Jiangwan Stadium, Wujiaochang,
Tongji University and Fudan University. In addition to the MUCs that belong to the three
PUCs, there are 27 individual MUCs. MUCs 12 and 17 are at Pudong International Airport.
MUC 16 is Shanghai Disney Resort, and MUCs 4 and 6 are near Songjiang University Town
and Songjiang Technological and Industrial Zone.

https://www.openstreetmap.org/
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To verify the accuracy of the proposed method, in addition to comparing our results
with those of Chen et al. [18], we also referred to the Shanghai City Master Plan (2017–
2035) [56]. The plan describes Shanghai’s four-level system of public activity centers (a.
the main center (central activity area); b. the sub-center; c. the district center; and d. the
community center). In Table 3, we list all 74 MUCs on weekdays, indicate the locations
covered by these MUCs and compare them with the planned activity centers in Shanghai.

As can be seen in Table 3, most of the 33 centers identified by the NTL data of
Chen et al. [18] are included in our results. Since the centers obtained from taxi data are
more detailed, multiple MUCs commonly correspond to one NTL center. For example, the
main center detected in NTL data was defined as the center of Lujiazui, People’s Square and
Shanghai Railway Station, whereas we had six MUCs covering this area, which includes
these landmarks.

Compared with Shanghai’s four-level system of public activity centers, we cover most
of the key locations in the planned central activity area (marked “a” in Table 3) and include
9 sub-centers out of 16 planned ones (marked “b” in Table 3) and 19 district centers (marked
“c” in Table 3).

Most of the undetected centers that are included in the two references are in suburban
areas such as Jiading District, Qingpu District, the northern part of Baoshan District, Jinshan
District, the southern part of Pudong New District and Chongming District. These are
areas outside the outer ring road of Shanghai, which are economically underdeveloped,
industrial or new planned development zones. The intensity of human activity is low in
these areas, and taxis are not the most economical mode of transportation for remote areas.
Since taxi drivers can choose their activity range independently, they may prefer to avoid
these areas.
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Table 3. Validation of urban centers.

Location(s) MUCID
(PUCID) 1

Identified by
Chen et al. 2

Planned Activity
Centers 3 Location(s) MUCID

(PUCID)
Identified by

Chen et al.
Planned Activity

Centers

People’s Square, Shanghai
Government, The Bund,

Nanjing Road
74(C) 3 a Jiangqiao Town 25, 26 c

Jing’an Temple, Jing’an Park 73(C) a Taopu Town 27 c

Ruijin Hospital, Huaihai
Middle Road 72(C) a Nanxiang Town 28 3 c

Shanghai Railway Station,
Sleepless City 70(C) 3 a Kongjiang Road, Xinhua

Hospital 63(C) c

Lujiazui 67(C), 68(C) 3 a Gaoqing Road 18(C) c

Xujiahui 66(C) 3 a Gubei, Caohejing Development
Zone 55(C) c

Yangpu Riverside 60(C) a Gucun Town 30, 46(C), 47(C) 3 c

Hongqiao Development
Zone 65(C) a Zhoupu Town 33(C) 3 c

Fengxian 71(A), 75(A),
76(A) b Qibao Town 34(C), 50(C) c

Zhangjiang Town,
Zhangjiang Hi-tech Park 41(B), 42(B),43(B) 3 b Kangqiao, Yuqiao 36(C), 19(C) c

Songjiang University Town,
Songjiang New City 6 3 b Gongkang 54(C) c

Chuansha New Town 22 b Daning 62(C) c

Wusong 31 b Wujing Town 7

Jiangwan Stadium,
Wujiaochang, Tongji

University, Fudan University
53(C), 61(C) 3 b Pudong International Airport 12, 17 3
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Table 3. Cont.

Huamu-Longyang Road 56(C) b Shanghai Disney Resort 16

Xinzhuang 11, 32(C) 3 b Xujing Town 20, 21

Jinqiao 52(C) 3 b Hongqiao Railway Station,
Hongqiao International Airport 39(C), 40(C) 3

Fengcheng Town 1 c Renji Hospital 64(C)

Songjiang Old City 4 c Changfeng Ecological Business
District 59(C) 3

Jiangchuan, Zizhu Science
Park 5 3 c

Government of Pudong New
District, Shanghai Science and

Technology Museum
58(C)

Pujiang Town, Renji
Hospital 8, 10 3 c Songnan Town 45(C)

Zhuanqiao Town 9 c National Convention and
Exhibition Centre 38(C)

Sijing Town 13 c Other (residential area, major
road, etc.)

2, 3, 14, 15(C), 24, 29(C),
35(C), 37(C), 44(C), 48(C),
49(C), 51(C), 57(C), 69(C)Tang Town 23 c

1 For example, 74(C) represents MUC 74, which is included in PUC C. 2 3 means that the center is detected in Chen et al. [18]. 3 a, b and c mean that the center is located in one of the first three levels of planned
activity centers (a. the main center (central activity area); b. the sub-center; c. the district center) mentioned in the Shanghai City Master Plan (2017–2035) [56].
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Furthermore, we detected some centers that are not mentioned in one or both refer-
ences, which are listed in Table 3. For example, Shanghai Disney Resort (MUC 16), Jing’an
Temple (MUC 73), Yangpu Riverside (MUC 60), Fengxian (MUCs 71, 75 and 76), some
towns, etc., are not included in the NTL results. Shanghai Disney Resort is an amusement
park that closes around 8:30 pm. Such areas are not illuminated for long at night, so they
cannot be captured by NTL data. As a result, NTL data cannot detect such centers, whereas
taxi data, which can capture 24-h human activity, can identify them.

Some small towns, as well as Shanghai Disney Resort (MUC 16), Hongqiao Railway
Station and Hongqiao International Airport (MUC 39, 40), Pudong International Airport
(MUC 12, 17), etc., are not mentioned by name in the first three levels of Shanghai’s public
activity center system. Although Shanghai Disney Resort is not explicitly named in the
Shanghai Master Plan, it is located near Chuansha New Town, which is planned as an
activity center. As railway stations and airports are traffic hubs in the city, we consider
them to be urban centers with transportation functions. Moreover, some MUCs do not
cover any distinct landmark, but they either include residential areas and small hospitals,
such as Pediatric Hospital of Fudan University (MUC 49), or encircle major roads, such as
the outer ring highway (MUC 15). They are all preferred destinations or routes used by
people in their daily activities.

Overall, except for suburban areas, our results are reliable, and most urban centers
can be successfully detected in more detail.

4.3. Attributes of Urban Centers

The five statistical attributes and areas of MUCs on weekdays are illustrated by box
plots in Figure 9a. The statistical attributes of 76 MUCs on weekdays show that the intensity
is not equal between MUCs, which means that the MUCs do not attract an equal degree
of activity due to their different locations. The three MUCs within PUC A have relatively
high intensity, as they are located in the important development center of Fengxian District.
Other MUCs with relatively high intensity are mostly transportation and commercial
centers such as Hongqiao Railway Station (MUC 39), Pudong International Airport (MUC
12), Lujiazui Financial Center (MUC 68), etc.

The total area of the MUCs detected on weekdays is 172.02 km2. The average area of
76 MUCs is 2.26 km2. Most MUCs have areas less than 4 km2, and only six MUCs
(MUCs 6, 54, 39, 22, 61, 32) are larger than 4 km2. The largest MUC is around Songjiang
University Town (MUC 6) and is 8 km2. The centers of Hongqiao Railway Station (MUC
39), Wujiaochang (MUC 61) and Chuansha New Town (MUC 22) are larger than 5 km2.
Additionally, MUC 32 covers a large region that encompasses residential areas in Xinzhuang
Town, and MUC 54 covers residential areas and a section of the north–south viaduct.

Among the three PUCs on weekdays, PUC C has an area of 511.04 km2 and covers
most parts inside the outer ring. According to the statistical data of Shanghai, the central
area within its outer ring is around 660 km2 [56]. Therefore, PUC C covers around 77% of
the central area of Shanghai.
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weekends; (b) a comparison between Monday and Sunday. The green triangle represents the mean,
and the orange line represents the median.

For the other four morphometric attributes, the Compactness Index (C) and Elongat-
edness (E) together reflect the compactness of MUCs. If the C value is large and the E value
is small, then the MUC’s shape is relatively compact. As shown in Figure 10a, most MUCs
on weekdays are relatively incompact, and the most compact MUC on weekdays is MUC
17 (Pudong International Airport). The Urban Development Orientation (Φ) reflects the
development orientation of MUCs. We find that, in Figure 11a, most urban centers develop
along the road or around intersections, such as the typical MUCs 15 and 48. Furthermore,
the shape and development direction of the urban center is related to the shape of the
building (e.g., MUC 39, Hongqiao Railway Station) and the shape of the town or residential
area (e.g., MUC 22, Shachuan New Town). The Intensity Gradient (G) reflects the changes
in activity intensity within each urban center. Figure 11a also shows that the G value is
relatively low in most urban centers, indicating that the intensity change is not very large
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inside the center. The three transportation centers (MUC 70 (Shanghai Railway Station),
MUCs 39 and 40 (Hongqiao Airport and Hongqiao Railway Station) and MUC 17 (Pudong
International Airport)) and some commercial (e.g., MUCs 71, 75 and 76 (Fengxian)) and
financial centers (e.g., MUC 68 (Lujiazui)) have high G values, which means that the activity
intensity changes sharply within these centers.
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The Polycentric Indicator (PI) was calculated for the three PUCs on weekdays. PUC
A has a PI value of 0.66. The largest PUC C has a PI value of 0.47, which indicates its
polycentricity. We believe that the polycentricity of PUC C is affected by certain MUCs
with high intensity. PUC B has a high PI value of 0.85, which means that the three MUCs
(MUCs 41, 42 and 43) within PUC B have a nearly equal impact.

4.4. Temporal Patterns of Urban Centers

We analyzed the urban centers detected on weekends to compare them with those on
weekdays. Figure 12a illustrates the urban centers on weekends. Compared with urban
centers on weekdays (Figure 12a), the overall range does not change significantly. Table
4 shows the basic information on weekday and weekend urban centers. The number of
contour trees on weekends is 34 (more than that on weekdays), but the highest level of the
largest contour tree is 10 (less than that on weekdays). The decrease in level means that the
largest contour tree on weekends is less complex than that on weekdays. There are fewer
MUCs on weekends than on weekdays, but the number of PUCs remains the same.
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Table 4. Basic information on urban centers on weekdays and weekends.

Highest
Level

Contour
Tree

MUC
Number

MUC Area
(km2)

PUC
Number

PUC Area
(km2)

Weekdays 11 30 76 172.02 3 511.04
Weekends 10 34 72 188.83 3 529.52

However, PUCs A’ and C’ on weekends shrink compared with PUC A and C on
weekdays. In addition, the area of PUC B’ on weekends is a part of PUC C on weekdays,
and PUC B on weekdays becomes a smaller MUC (MUC 24 (Zhangjiang Hi-tech Park) on
weekends in Figure 12a) on weekends. We find that a large number of MUCs on weekends
have almost the same positions and boundaries as those on weekdays, for example, MUCs
18 and 13 (Pudong International Airport) on weekends (corresponding to MUCs 17 and 12
on weekdays). These MUCs represent urban centers that do not change between weekdays
and weekends, such as transportation centers. There are still some MUCs on weekdays that
disappear on weekends (e.g., MUCs 14, 15, 19, 24, 29, 56, 57, 59, 62 and 68 on weekdays),
and other MUCs emerge on weekends but do not exist on weekdays (e.g., MUCs 3, 15, 19,
26, 31, 32, 34, 44, 57, 59 and 62 on weekends). Lujiazui, Changfeng Ecological Business
District and Hongqiao Development Zone (MUCs 68, 59 and 65 on weekdays) all disappear
on weekends. Some residential areas, such as Qibao Town (MUC 34 on weekdays), also
disappear. The centers that disappear on weekends are mostly employment centers (e.g.,
Lujiazui) and some residential areas. Three urban centers that are planned in the Shanghai
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City Master Plan (2017–2035) but are not detected on weekdays are delineated on weekends:
these centers are Zhenru, Luxun Park and Sichuan North Road, and Gaoqiao Town (MUCs
44, 62 and 32 on weekends). The new centers on weekends are mostly residential areas (e.g.,
Gaoqiao Town) and parks (e.g., Luxun Park). Some urban centers with commercial and
leisure functions, for instance, People’s Square, Shanghai Government, The Bund, Nanjing
Road, Jing’an Temple and Jing’an Park (MUCs 69 and 70 on weekdays), are expanded
compared with their sizes on weekdays. The most prominent one, MUC 64 on weekends,
extends from Xujiahui to Zhongshan Park. This is because people’s commuting needs
decrease significantly on the weekend, but leisure activities increase.

As shown in Figure 9a, the statistical attributes of MUCs on weekends are mostly
distributed in a lower range than those on weekdays. However, the total intensity of all
MUCs on weekends is 3953.94 and is higher than that on weekdays (3797.13). Even though
some MUCs on weekends have the same locations and boundaries as they do on weekdays,
their activity intensity is higher (e.g., People’s Square). Moreover, the total area of MUCs
and PUCs on weekends is larger than on weekdays. For morphometric attributes, the
most compact center on weekends is still Pudong International Airport. MUCs that have
high G values on weekdays have even higher G values on weekends. Overall, in terms
of the distributions of statistical attributes, many detected urban centers are less active
on weekends, but there are several vital centers, such as transportation and commercial
centers, that are even more active than on weekdays. This further reflects the increased
demand for leisure and entertainment on weekends.

In order to extract finer temporal patterns, we analyzed urban centers on Monday
and Sunday between 7:00 and 10:00, which is when people are on their way to work. The
detected urban centers on Monday and Sunday are shown in Figure 12b. The centers clearly
shrink on Sunday morning compared with Monday. The number and total area of MUCs
significantly decrease on Sunday morning as shown in Table 5. Many MUCs on Monday
morning disappear on Sunday morning, and those that still exist on Sunday morning mostly
shrink. The MUCs that disappear on Sunday morning are mostly residential areas, towns,
some major roads, intersections and viaducts. There are also some new MUCs on Sunday
morning compared with Monday, for instance, Zhenru (MUC 33), Zhongshan Park (MUC
67), Shanghai Botanical Garden (MUC 54), Shanghai World Expo Park (MUC 55), etc., which
shows that people tend to travel to leisure and entertainment destinations on Sunday.

Table 5. Basic information on urban centers on Monday and Sunday.

Highest Level Contour Tree MUC Number MUC Area (km2) PUC Number PUC Area (km2)

Mon. 7:00–10:00 8 40 95 264.13 3 602.12
Sun. 7:00–10:00 7 38 73 180.28 3 490.72

The statistical and morphometric attributes of MUCs on Monday and Sunday morning
are illustrated in Figures 9b, 10b and 11c,d. The statistical attributes on Monday have a
higher mean value than on Sunday. The total activity intensity on Monday morning is
5061.33 and is much higher than that on Sunday morning (3526), which means that Shang-
hai is much more active on Monday morning than on Sunday morning. The compactness,
urban development orientation and intensity gradient of the centers do not vary much
between Monday and Sunday. Overall, there are more centers on Monday morning due
to commuting demands, but vital urban centers, such as transportation centers, are not
influenced by temporal factors.
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5. Discussion

Summarizing the results of our case study (Section 4), the urban centers of Shanghai
were successfully detected and analyzed by applying our analysis framework (Section 3).
We focused on the attributes and locations of monocentric urban centers (MUCs). The
hierarchy and polycentricity of polycentric urban centers (PUCs) were also revealed. There
were fewer urban centers on weekends than on weekdays, but the total area and activity
intensity of the centers were larger and higher. In addition, we detected urban centers
during the commuting period (7:00–10:00) on Monday and Sunday. The number and area
of centers both increased on Monday relative to those on Sunday, which fits the typical
lifestyle. Furthermore, the results also suggest that major urban centers are not affected by
temporal factors.

We used our proposed analysis framework to apply taxi trajectory data to detect urban
centers. The detected urban centers were mostly small in range but large enough to cover
key hotspots, which is suitable for analyzing urban centers on small scales. Our results
covered more than half of the 33 urban centers detected by nighttime light (NTL) data [18],
as listed in Table 3. We identified a greater number of centers; for instance, 76 MUCs were
detected on weekdays. Most of the delineated centers were relatively small compared with
the NTL results. To be more specific, several detected centers corresponded to one center
detected from NTL data. Therefore, our results were more detailed. Among our detected
centers, some were not included in the NTL results, such as Fengxian New City in Fengxian
District and several other residential areas, as explained in Section 4.2 and listed in Table 3.

Those centers that we did not identify were all located in the suburban areas of Shanghai
or along the coastline, such as Jiading District, Qingpu District, the northern part of Baoshan
District, etc. This omission is due to the lack of taxis in suburban areas. Since taxi drivers
can choose their activity ranges independently, they naturally choose areas with high human
activity intensity so that they can serve more passengers. This, in turn, will result in high taxi
numbers in these areas, making them more likely to be urban centers.

Our results demonstrate the advantages of flexible resolution, high sampling frequency
and rich semantic information for taxi trajectory data. First, we used the average number
of pick-up/drop-off spots in a week to extract urban centers to eliminate deviations caused
by a special event on a certain day. The average data in a long period can produce more
generalizable results. In this study, some urban centers were found to be time-dependent.
For example, Zhenru (MUC 44 on weekends in Figure 12a and MUC 33 on Sunday in
Figure 12b) was only detected on weekends and Sunday morning. In addition, the results
for Monday and Sunday morning show that most urban centers, with the exception of
some major centers such as transportation centers, are strongly affected by time. Therefore,
dynamic urban centers can be analyzed by dividing taxi trajectory data into more detailed
time ranges, which cannot be done with NTL data.

However, there are still limitations in our method. This paper is based on the premise
that our taxi data can represent all taxis in Shanghai and that taxis travel to every corner of
the city. Unfortunately, as shown in our results, taxis are distributed unevenly and cannot
cover the city completely. The taxis tend to be sparse in suburban areas. This is why we
detected few centers in suburban areas. In addition, taxis are limited by road networks and
buildings, so some places are inaccessible to them. Thus, further work should be conducted
to address these limitations.

6. Conclusions and Future Work

In this paper, we propose an analysis framework to detect urban centers with bound-
aries from taxi trajectory data. We simulated taxi trajectory data with the topographic
surface and generated contour maps. Then, we employed the localized contour tree method
to delineate the boundaries of urban centers and analyzed the hierarchy within polycentric
urban centers. We calculated the attributes of the detected urban centers and compared
the results between different periods. We integrated a remote sensing method and taxi
trajectory data to provide a new perspective for analyzing urban centers.
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The work in this paper provides an affirmative answer to RQ1 raised in the Intro-
duction. Taxi trajectory data can be used as a replacement for NTL data when detecting
urban centers. In the presented study, we identified 76 monocentric urban centers (MUCs)
on weekdays, and most of them agree with Shanghai’s actual situation and the master
plan, as illustrated in Section 4.2. The results are more detailed than those of NTL data,
and we performed our method for different time periods to analyze temporal patterns
of urban centers. Although urban centers in suburban areas were rarely detected due to
the limitations of taxi trajectory data, as discussed in Section 5, the results are still reliable
and representative.

In answer to RQ2, the advantages of using taxi trajectory data for urban center de-
tection are apparent. The topographic surface simulated by taxi trajectory data has an
unrestricted spatial and temporal resolution. We used grids with sides of 500 m in this
analysis, but theoretically speaking, our analysis framework is suitable for grids with
any side length. In addition, more detailed urban centers can be analyzed by using taxi
trajectory data, as detected centers with small areas are more likely to correspond to actual
landmarks. Moreover, the detection of urban centers is not limited by time period since
taxi trajectory data can reflect human activity throughout a 24-h period. Therefore, urban
centers can be extracted at finer temporal scales. Finally, due to the rich semantic informa-
tion of taxi trajectory data, different statistical parameters can be designed according to
different purposes. Then, different simulative topographic surfaces can be obtained, and
centers with different meanings can be extracted.

There is much work to do in the future. The effects of the limitations of taxi trajectory
data can be reduced by adding more taxis, using data from a longer period and including
data on other forms of transportation. In addition to addressing the limitations of taxi
trajectory data, as one of the future research directions, dynamic urban centers can be ana-
lyzed by using our analysis framework over shorter periods. Moreover, urban functional
areas can be detected directly through spatiotemporal variation in urban centers. We can
also verify the degree of completion of the city master plan by analyzing urban centers in
different years. Overall, the analysis framework that we propose can be applied to study
urban structure, urban transportation and many other aspects.
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