Next Article in Journal
Escaping from Cities during the COVID-19 Crisis: Using Mobile Phone Data to Trace Mobility in Finland
Previous Article in Journal
Urban Growth, Real Estate Development and Indigenous Property: Simulating the Expansion Process in the City of Temuco, Chile
Previous Article in Special Issue
Multi-View Instance Matching with Learned Geometric Soft-Constraints
Open AccessArticle

Machine Learning-Based Processing Proof-of-Concept Pipeline for Semi-Automatic Sentinel-2 Imagery Download, Cloudiness Filtering, Classifications, and Updates of Open Land Use/Land Cover Datasets

Department of Geography, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
*
Author to whom correspondence should be addressed.
Academic Editors: Wolfgang Kainz and Stamatis Kalogirou
ISPRS Int. J. Geo-Inf. 2021, 10(2), 102; https://doi.org/10.3390/ijgi10020102 (registering DOI)
Received: 16 December 2020 / Revised: 10 February 2021 / Accepted: 19 February 2021 / Published: 23 February 2021
Land use and land cover are continuously changing in today’s world. Both domains, therefore, have to rely on updates of external information sources from which the relevant land use/land cover (classification) is extracted. Satellite images are frequent candidates due to their temporal and spatial resolution. On the contrary, the extraction of relevant land use/land cover information is demanding in terms of knowledge base and time. The presented approach offers a proof-of-concept machine-learning pipeline that takes care of the entire complex process in the following manner. The relevant Sentinel-2 images are obtained through the pipeline. Later, cloud masking is performed, including the linear interpolation of merged-feature time frames. Subsequently, four-dimensional arrays are created with all potential training data to become a basis for estimators from the scikit-learn library; the LightGBM estimator is then used. Finally, the classified content is applied to the open land use and open land cover databases. The verification of the provided experiment was conducted against detailed cadastral data, to which Shannon’s entropy was applied since the number of cadaster information classes was naturally consistent. The experiment showed a good overall accuracy (OA) of 85.9%. It yielded a classified land use/land cover map of the study area consisting of 7188 km2 in the southern part of the South Moravian Region in the Czech Republic. The developed proof-of-concept machine-learning pipeline is replicable to any other area of interest so far as the requirements for input data are met. View Full-Text
Keywords: machine learning; land use; land cover; satellite imagery; Sentinel 2; image classification; cloud masking; LightGBM estimator machine learning; land use; land cover; satellite imagery; Sentinel 2; image classification; cloud masking; LightGBM estimator
Show Figures

Figure 1

MDPI and ACS Style

Řezník, T.; Chytrý, J.; Trojanová, K. Machine Learning-Based Processing Proof-of-Concept Pipeline for Semi-Automatic Sentinel-2 Imagery Download, Cloudiness Filtering, Classifications, and Updates of Open Land Use/Land Cover Datasets. ISPRS Int. J. Geo-Inf. 2021, 10, 102. https://doi.org/10.3390/ijgi10020102

AMA Style

Řezník T, Chytrý J, Trojanová K. Machine Learning-Based Processing Proof-of-Concept Pipeline for Semi-Automatic Sentinel-2 Imagery Download, Cloudiness Filtering, Classifications, and Updates of Open Land Use/Land Cover Datasets. ISPRS International Journal of Geo-Information. 2021; 10(2):102. https://doi.org/10.3390/ijgi10020102

Chicago/Turabian Style

Řezník, Tomáš; Chytrý, Jan; Trojanová, Kateřina. 2021. "Machine Learning-Based Processing Proof-of-Concept Pipeline for Semi-Automatic Sentinel-2 Imagery Download, Cloudiness Filtering, Classifications, and Updates of Open Land Use/Land Cover Datasets" ISPRS Int. J. Geo-Inf. 10, no. 2: 102. https://doi.org/10.3390/ijgi10020102

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop