Multi-Modal Sensing and Robotic Manipulation of Non-Rigid Objects: A Survey
Abstract
:1. Introduction
2. Sensing and Data Processing
2.1. Vision-Only Sensing
2.2. Tactile-Only Sensing
2.3. Multi-Modal Sensing
3. Description of Non-Rigid Objects
3.1. Model-Based Approaches
3.1.1. Physical Models
3.1.2. Geometric Models
3.1.3. Learned Models
3.1.4. Hybrid Models
3.2. Model-Free Approaches
4. Control of Robotic Manipulation for Non-Rigid Objects
4.1. Linear Objects
4.2. Planar Objects
4.3. 2D Projection of Objects
4.4. 3D Objects
4.5. Learned Control
4.6. Other Control Strategies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khalil, F.F.; Payeur, P. Dexterous Robotic Manipulation of Deformable Objects with Multi-Sensory Feedback—A Review. In Robot Manipulators, Trends and Development; InTech: London, UK, 2010; pp. 587–621. [Google Scholar]
- Jiménez, P. Survey on Model-Based Manipulation Planning of Deformable Objects. Robot. Comput. Integr. Manuf. 2012, 28, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.; Corrales, J.A.; Bouzgarrou, B.C.; Mezouar, Y. Robotic Manipulation and Sensing of Deformable Objects in Domestic and Industrial Applications: A Survey. Int. J. Robot. Res. 2018. [Google Scholar] [CrossRef]
- Cretu, A.M.; Payeur, P. Harnessing Vision and Touch for Compliant Robotic Interaction with Soft or Rigid Objects. In Advanced Interfacing Techniques for Sensors; Springer: Cham, Switzerland, 2017; Volume 25, pp. 269–290. [Google Scholar]
- Güler, P.; Pauwels, K.; Pieropan, A.; Kjellstrom, H.; Kragic, D. Estimating the Deformability of Elastic Materials Using Optical Flow and Position-Based Dynamics. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea, 3–5 November 2015; IEEE: Seoul, Korea, 2015; pp. 965–971. [Google Scholar]
- Hui, F.; Payeur, P.; Cretu, A.M. Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing. Robotics 2017, 6, 5. [Google Scholar] [CrossRef]
- Jordt, A.; Schiller, I.; Bruenger, J.; Koch, R. High-Resolution Object Deformation Reconstruction with Active Range Camera. In Pattern Recognition; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6376. [Google Scholar]
- Jordt, A.; Koch, R. Fast Tracking of Deformable Objects in Depth and Colour Video. In Proceedings of the British Machine Vision Conference, Dundee, UK, 29 August–2 September 2011. [Google Scholar]
- Fugl, A.R.; Jordt, A.; Petersen, H.G.; Willatzen, M.; Koch, R. Simultaneous Estimation of Material Properties and Pose for Deformable Objects from Depth and Color Images. In Pattern Recognition; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7476, pp. 165–174. [Google Scholar]
- Leizea, I.; Mendizabal, A.; Alvarez, H.; Aguinaga, I.; Borro, D.; Sanchez, E. Real-Time Visual Tracking of Deformable Objects in Robot-Assisted Surgery. IEEE Comput. Gr. Appl. 2017, 37, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Guo, F.; Wang, F.; Jia, Y.B. Picking up a Soft 3D Object by “Feeling” the Grip. Int. J. Robot. Res. 2015, 34, 1361–1384. [Google Scholar] [CrossRef]
- Navarro-Alarcon, D.; Yip, H.M.; Wang, Z.; Liu, Y.H.; Zhong, F.; Zhang, T.; Li, P. Automatic 3-D Manipulation of Soft Objects by Robotic Arms with an Adaptive Deformation Model. IEEE Trans. Robot. 2016, 32, 429–441. [Google Scholar] [CrossRef]
- Alambeigi, F.; Wang, Z.; Hegeman, R.; Liu, Y.H.; Armand, M. A Robust Data-Driven Approach for Online Learning and Manipulation of Unmodeled 3-D Heterogeneous Compliant Objects. IEEE Robot. Autom. Lett. 2018, 3, 4140–4147. [Google Scholar] [CrossRef]
- Drimus, A.; Kootstra, G.; Bilberg, A.; Kragic, D. Classification of Rigid and Deformable Objects Using a Novel Tactile Sensor. In Proceedings of the 2011 15th International Conference on Advanced Robotics (ICAR), Tallinn, Estonia, 20–23 June 2011; IEEE: Tallinn, Estonia, 2011; pp. 427–434. [Google Scholar]
- Drimus, A.; Kootstra, G.; Bilberg, A.; Kragic, D. Design of a Flexible Tactile Sensor for Classification of Rigid and Deformable Objects. Robot. Auton. Syst. 2014, 62, 3–15. [Google Scholar] [CrossRef]
- Mira, D.; Delgado, A.; Mateo, C.M.; Puente, S.T.; Candelas, F.A.; Torres, F. Study of Dexterous Robotic Grasping for Deformable Objects Manipulation. In Proceedings of the 2015 23rd Mediterranean Conference on Control and Automation (MED), Torremolinos, Spain, 16–19 June 2015; IEEE: Torremolinos, Spain, 2015; pp. 262–266. [Google Scholar]
- Delgado, A.; Jara, C.; Mira, D.; Torres, F. A Tactile-Based Grasping Strategy for Deformable Objects’ Manipulation and Deformability Estimation. In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics, Colmar, France, 21–23 July 2015; SCITEPRESS—Science and and Technology Publications: Colmar, France, 2015; pp. 369–374. [Google Scholar]
- Delgado, A.; Jara, C.A.; Torres, F. Adaptive Tactile Control for In-Hand Manipulation Tasks of Deformable Objects. Int. J. Adv. Manuf. Technol. 2017, 91, 4127–4140. [Google Scholar] [CrossRef]
- Zaidi, L.; Corrales, J.A.; Bouzgarrou, B.C.; Mezouar, Y.; Sabourin, L. Model-Based Strategy for Grasping 3D Deformable Objects Using a Multi-Fingered Robotic Hand. Robot. Auton. Syst. 2017, 95, 196–206. [Google Scholar] [CrossRef]
- Kappassov, Z.; Corrales, J.A.; Perdereau, V. Tactile Sensing in Dexterous Robot Hands—Review. Robot. Auton. Syst. 2015, 74, 195–220. [Google Scholar] [CrossRef]
- Arriola-Rios, V.E.; Wyatt, J.L. A Multimodal Model of Object Deformation Under Robotic Pushing. IEEE Trans. Cognit. Dev. Syst. 2017, 9, 153–169. [Google Scholar] [CrossRef]
- Cretu, A.M.; Payeur, P.; Petriu, E.M. Soft Object Deformation Monitoring and Learning for Model-Based Robotic Hand Manipulation. IEEE Trans. Syst. Man Cybern. B (Cybern.) 2012, 42, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Khalil, F.; Payeur, P.; Cretu, A.M. Integrated Multisensory Robotic Hand System for Deformable Object Manipulation. In IASTED Technology Conferences / 705: ARP / 706: RA / 707: NANA / 728: CompBIO; Acta Press: Cambridge, MA, USA, 2010. [Google Scholar] [Green Version]
- Frank, B.; Schmedding, R.; Stachniss, C.; Teschner, M.; Burgard, W. Learning the Elasticity Parameters of Deformable Objects with a Manipulation Robot. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; IEEE: Taipei, Taiwan, 2010; pp. 1877–1883. [Google Scholar]
- Frank, B.; Stachniss, C.; Schmedding, R.; Teschner, M.; Burgard, W. Learning Object Deformation Models for Robot Motion Planning. Robot. Auton. Syst. 2014, 62, 1153–1174. [Google Scholar] [CrossRef]
- Petit, A.; Ficuciello, F.; Fontanelli, G.A.; Villani, L.; Siciliano, B. Using Physical Modeling and RGB-D Registration for Contact Force Sensing on Deformable Objects. In Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Madrid, Spain, 26–28 July 2017; SciTePress: Madrid, Spain, 2017; Volume 2, pp. 24–33. [Google Scholar]
- Petit, A.; Lippiello, V.; Siciliano, B. Real-Time Tracking of 3D Elastic Objects with an RGB-D Sensor. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; IEEE: Hamburg, Germany, 2015; pp. 3914–3921. [Google Scholar]
- Gil, P.; Mateo, C.M.; Delgado, A.; Torres, F. Visual/Tactile Sensing to Monitor Grasps with Robot-Hand for Planar Elastic Objects. In Proceedings of the ISR 2016: 47st International Symposium on Robotics, Munich, Germany, 21–22 June 2016; VDE: Munich, Germany, 2016; p. 7. [Google Scholar]
- Caccamo, S.; Güler, P.; Kjellstrom, H.; Kragic, D. Active Perception and Modeling of Deformable Surfaces Using Gaussian Processes and Position-Based Dynamics. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; IEEE: Cancun, Mexico, 2016; pp. 530–537. [Google Scholar]
- Montagnat, J.; Delingette, H.; Ayache, N. A Review of Deformable Surfaces: Topology, Geometry and Deformation. Image Vis. Comput. 2001, 19, 1023–1040. [Google Scholar] [CrossRef]
- Salzmann, M.; Fua, P. Deformable Surface 3D Reconstruction from Monocular Images. Synth. Lect. Comput. Vis. 2010, 2, 1–113. [Google Scholar] [CrossRef] [Green Version]
- Fugl, A.R.; Petersen, H.G.; Willatzen, M. Simulation of Flexible Objects in Robotics. Lect. Notes Comput. Sci. 2012, 7628 LNAI, 89–100. [Google Scholar] [CrossRef]
- Petit, A.; Lippiello, V.; Siciliano, B. Tracking Fractures of Deformable Objects in Real-Time with an RGB-D Sensor. In Proceedings of the 2015 International Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 632–639. [Google Scholar]
- Lin, H.; Guo, F.; Wang, F.; Jia, Y.B. Picking up Soft 3D Objects with Two Fingers. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3656–3661. [Google Scholar]
- Jia, Y.B.; Guo, F.; Lin, H. Grasping Deformable Planar Objects: Squeeze, Stick/Slip Analysis, and Energy-Based Optimalities. Int. J. Robot. Res. 2014, 33, 866–897. [Google Scholar] [CrossRef]
- Lazher, Z.; Belhassen-Chedli, B.; Sabourin, L.; Youcef, M. Modeling and Analysis of 3D Deformable Object Grasping. In Proceedings of the 2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), Smolenice, Slovakia, 3–5 September 2014; pp. 1–8. [Google Scholar]
- Muller, M.; Heidelberger, B.; Teschner, M.; Gross, M. Meshless Deformations Based on Shape Matching. ACM Trans. Graphics 2005, 24, 471–478. [Google Scholar] [CrossRef]
- Mateo, C.M.; Gil, P.; Mira, D.; Torres, F. Analysis of Shapes to Measure Surfaces—An Approach for Detection of Deformations; SCITEPRESS—Science and and Technology Publications: Setúbal, Portugal, 2015; pp. 60–65. [Google Scholar]
- Mateo, C.M.; Gil, P.; Torres, F. Visual Perception for the 3D Recognition of Geometric Pieces in Robotic Manipulation. Int. J. Adv. Manuf. Technol. 2016, 83, 1999–2013. [Google Scholar] [CrossRef] [Green Version]
- Mateo, C.M.; Gil, P.; Torres, F. Computation of Curvature Skeleton to Measure Deformations in Surfaces. In Informatics in Control, Automation and Robotics, Proceedings of the 12th International Conference, ICINCO 2015 Colmar, France, 21–23 July 2015; Filipe, J., Madani, K., Gusikhin, O., Sasiadek, J., Eds.; Springer: Cham, Switzerland, 2016; Volume 383, pp. 197–207. [Google Scholar]
- Hui, F.; Payeur, P.; Cretu, A. In-Hand Object Material Characterization with Fast Level Set in Log-Polar Domain and Dynamic Time Warping. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017; pp. 1–6. [Google Scholar]
- Tawbe, B.; Cretu, A.M. Data-Driven Representation of Soft Deformable Objects Based on Force-Torque Data and 3D Vision Measurements. Proceedings 2016, 1, 22. [Google Scholar] [CrossRef]
- Tawbe, B.; Cretu, A.M. Acquisition and Neural Network Prediction of 3D Deformable Object Shape Using a Kinect and a Force-Torque Sensor. Sensors 2017, 17, 1083. [Google Scholar] [CrossRef] [PubMed]
- Teschner, M.; Heidelberger, B.; Muller, M.; Gross, M. A Versatile and Robust Model for Geometrically Complex Deformable Solids. In Proceedings of the Computer Graphics International, Crete, Greece, 16–19 June 2004; pp. 312–319. [Google Scholar]
- Cherubini, A.I.; Leitner, J.; Ortenzi, V.; Corke, P.I. Towards Vision-Based Manipulation of Plastic Materials. In Proceedings of the IEEE/RSJ IROS, Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Bodenhagen, L.; Fugl, A.R.; Jordt, A.; Willatzen, M.; Andersen, K.A.; Olsen, M.M.; Koch, R.; Petersen, H.G.; Krüger, N. An Adaptable Robot Vision System Performing Manipulation Actions with Flexible Objects. IEEE Trans. Autom. Sci. Eng. 2014, 11, 749–765. [Google Scholar] [CrossRef]
- Güler, P.; Pieropan, A.; Ishikawa, M.; Kragic, D. Estimating Deformability of Objects Using Meshless Shape Matching. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 5941–5948. [Google Scholar]
- Wakamatsu, H.; Arai, E.; Hirai, S. Knotting/Unknotting Manipulation of Deformable Linear Objects. Int. J. Robot. Res. 2006, 25, 371–395. [Google Scholar] [CrossRef]
- Saha, M.; Isto, P. Manipulation Planning for Deformable Linear Objects. IEEE Trans. Robot. 2007, 23, 1141–1150. [Google Scholar] [CrossRef]
- Bell, M. Flexible Object Manipulation. Ph.D. Thesis, Dartmouth College, Hanover, NH, USA, 2010. [Google Scholar]
- Wang, W. Constraint-Based Robot Knot Tying. Ph.D. Thesis, Dartmouth College, Hanover, NH, USA, 2016. [Google Scholar]
- Moll, M.; Kavraki, L. Path Planning for Deformable Linear Objects. IEEE Trans. Robot. 2006, 22, 625–636. [Google Scholar] [CrossRef]
- Tavasoli, A.; Eghtesad, M.; Jafarian, H. Two-Time Scale Control and Observer Design for Trajectory Tracking of Two Cooperating Robot Manipulators Moving a Flexible Beam. Robot. Auton. Syst. 2009, 57, 212–221. [Google Scholar] [CrossRef]
- Ding, F.; Huang, J.; Wang, Y.; Matsuno, T.; Fukuda, T. Vibration Damping in Manipulation of Deformable Linear Objects Using Sliding Mode Control. Adv. Robot. 2014, 28, 157–172. [Google Scholar] [CrossRef]
- Shah, A.J.; Shah, J.A. Towards Manipulation Planning for Multiple Interlinked Deformable Linear Objects. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3908–3915. [Google Scholar]
- Maitin-Shepard, J.; Cusumano-Towner, M.; Lei, J.; Abbeel, P. Cloth Grasp Point Detection Based on Multiple-View Geometric Cues with Application to Robotic Towel Folding. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 4–8 May 2010; pp. 2308–2315. [Google Scholar]
- Cusumano-Towner, M.; Singh, A.; Miller, S.; O’Brien, J.F.; Abbeel, P. Bringing Clothing into Desired Configurations with Limited Perception. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3893–3900. [Google Scholar]
- Bersch, C.; Pitzer, B.; Kammel, S. Bimanual Robotic Cloth Manipulation for Laundry Folding. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1413–1419. [Google Scholar]
- Miller, S.; van den Berg, J.; Fritz, M.; Darrell, T.; Goldberg, K.; Abbeel, P. A Geometric Approach to Robotic Laundry Folding. Int. J. Robot. Res. 2012, 31, 249–267. [Google Scholar] [CrossRef]
- Willimon, R.B. Sensing Highly Non-Rigid Objects with RGBD Sensors for Robotic Systems. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2013. [Google Scholar]
- Li, Y.; Yue, Y.; Xu, D.; Grinspun, E.; Allen, P.K. Folding Deformable Objects Using Predictive Simulation and Trajectory Optimization. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 6000–6006. [Google Scholar]
- Doumanoglou, A.; Stria, J.; Peleka, G.; Mariolis, I.; Petrík, V.; Kargakos, A.; Wagner, L.; Hlaváč, V.; Kim, T.K.; Malassiotis, S. Folding Clothes Autonomously: A Complete Pipeline. IEEE Trans. Robot. 2016, 32, 1461–1478. [Google Scholar] [CrossRef]
- Sannapaneni, B.; Shaswat, M.; Kumaar, A.A.N. Learning from Demonstration Algorithm for Cloth Folding Manipulator. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Manipal, India, 13–16 September 2017; pp. 1339–1398. [Google Scholar]
- Yang, P.C.; Sasaki, K.; Suzuki, K.; Kase, K.; Sugano, S.; Ogata, T. Repeatable Folding Task by Humanoid Robot Worker Using Deep Learning. IEEE Robot. Autom. Lett. 2017, 2, 397–403. [Google Scholar] [CrossRef]
- Jia, B.; Hu, Z.; Pan, J.; Manocha, D. Manipulating Highly Deformable Materials Using a Visual Feedback Dictionary. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 239–246. [Google Scholar]
- Yamazaki, K.; Oya, R.; Nagahama, K.; Okada, K.; Inaba, M. Bottom Dressing by a Dual-Arm Robot Using a Clothing State Estimation Based on Dynamic Shape Changes. Int. J. Adv. Robot. Syst. 2016, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Chang, H.J.; Demiris, Y. Iterative Path Optimisation for Personalised Dressing Assistance Using Vision and Force Information. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4398–4403. [Google Scholar]
- Zhang, F.; Cully, A.; Demiris, Y. Personalized Robot-Assisted Dressing Using User Modeling in Latent Spaces. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3603–3610. [Google Scholar]
- Flixeder, S.; Glück, T.; Kugi, A. Modeling and Force Control for the Collaborative Manipulation of Deformable Strip-Like Materials. IFAC-PapersOnLine 2016, 49, 95–102. [Google Scholar] [CrossRef]
- Flixeder, S.; Glück, T.; Kugi, A. Force-Based Cooperative Handling and Lay-up of Deformable Materials: Mechatronic Design, Modeling, and Control of a Demonstrator. Mechatronics 2017, 47, 246–261. [Google Scholar] [CrossRef]
- Li, X.; Su, X.; Liu, Y. Adaptive Region Control for Robotic Soldering of Flexible PCBs. In Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 10–12 July 2017; pp. 216–221. [Google Scholar]
- Li, X.; Su, X.; Liu, Y. Cooperative Robotic Soldering of Flexible PCBs. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1651–1656. [Google Scholar]
- Park, E.J.; Mills, J.K. Static Shape and Vibration Control of Flexible Payloads with Applications to Robotic Assembly. IEEE/ASME Trans. Mechatron. 2005, 10, 675–687. [Google Scholar] [CrossRef]
- Zacharia, P.; Aspragathos, N.; Mariolis, I.; Dermatas, E. A Robotic System Based on Fuzzy Visual Servoing for Handling Flexible Sheets Lying on a Table. Ind. Robot Int. J. 2009, 36, 489–496. [Google Scholar] [CrossRef]
- Shibata, M.; Ota, T.; Hirai, S. Wiping Motion for Deformable Object Handling. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 134–139. [Google Scholar]
- Kinio, S.; Patriciu, A. A Comparative Study of H_infinity and PID Control for Indirect Deformable Object Manipulation. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 414–420. [Google Scholar]
- Elbrechter, C.; Haschke, R.; Ritter, H. Folding Paper with Anthropomorphic Robot Hands Using Real-Time Physics-Based Modeling. In Proceedings of the 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), Osaka, Japan, 29 November–1 December 2012; pp. 210–215. [Google Scholar]
- Kruse, D.; Radke, R.J.; Wen, J.T. Collaborative Human-Robot Manipulation of Highly Deformable Materials. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3782–3787. [Google Scholar]
- Kruse, D.; Radke, R.J.; Wen, J.T. Human-Robot Collaborative Handling of Highly Deformable Materials. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 1511–1516. [Google Scholar]
- Dang, P.; Lewis, F.L.; Subbarao, K.; Stephanou, H. Shape Control of Flexible Structure Using Potential Field Method. In Proceedings of the 2008 IEEE International Conference on Control Applications, San Antonio, TX, USA, 3–5 September 2008; pp. 540–546. [Google Scholar]
- Patil, S.; Alterovitz, R. Toward Automated Tissue Retraction in Robot-Assisted Surgery. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 4–8 May 2010; pp. 2088–2094. [Google Scholar]
- Inahara, T.; Higashimori, M.; Tadakuma, K.; Kaneko, M. Dynamic Nonprehensile Shaping of a Thin Rheological Object. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1392–1397. [Google Scholar]
- Higashimori, M.; Inahara, T.; Kaneko, M. Dynamic Nonprehensile Shaping of a Deformable Object by Using Its Gait-like Behaviors. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3251–3256. [Google Scholar]
- Bai, Y.; Yu, W.; Liu, C.K. Dexterous Manipulation of Cloth. Comput. Graphics Forum 2016, 35, 523–532. [Google Scholar] [CrossRef]
- Cocuzza, S.; Yan, X.T. First Engineering Framework for the Out-of-Plane Robotic Shaping of Thin Rheological Objects. Robot. Comput. Integr. Manuf. 2018, 53, 108–121. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Goldberg, K. D-Space and Deform Closure Grasps of Deformable Parts. Int. J. Robot. Res. 2005, 24, 899–910. [Google Scholar] [CrossRef]
- Das, J. Robotic Control of Deformable Continua and Objects Therein. Ph.D. Thesis, Vanderbilt University, Nashville, TN, USA, 2010. [Google Scholar]
- Higashimori, M.; Yoshimoto, K.; Kaneko, M. Active Shaping of an Unknown Rheological Object Based on Deformation Decomposition into Elasticity and Plasticity. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 4–8 May 2010; pp. 5120–5126. [Google Scholar]
- Yoshimoto, K.; Higashimori, M.; Tadakuma, K.; Kaneko, M. Active Outline Shaping of a Rheological Object Based on Plastic Deformation Distribution. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1386–1391. [Google Scholar]
- Das, J.; Sarkar, N. Autonomous Shape Control of a Deformable Object by Multiple Manipulators. J. Intell. Robot. Syst. 2011, 62, 3–27. [Google Scholar] [CrossRef]
- Das, J.; Sarkar, N. Robust Shape Control of Deformable Objects Using Model-Based Techniques. Adv. Robot. 2012, 25, 2099–2123. [Google Scholar] [CrossRef]
- Das, J.; Sarkar, N. Passivity-Based Target Manipulation inside a Deformable Object by a Robotic System with Noncollocated Feedback. Adv. Robot. 2013, 27, 861–875. [Google Scholar] [CrossRef]
- Alonso-Mora, J.; Knepper, R.; Siegwart, R.; Rus, D. Local Motion Planning for Collaborative Multi-Robot Manipulation of Deformable Objects. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5495–5502. [Google Scholar]
- Navarro-Alarcon, D.; Liu, Y.H. Fourier-Based Shape Servoing: A New Feedback Method to Actively Deform Soft Objects into Desired 2-D Image Contours. IEEE Trans. Robot. 2018, 34, 272–279. [Google Scholar] [CrossRef]
- Navarro-Alarcon, D.; Liu, Y.; Romero, J.G.; Li, P. Visually Servoed Deformation Control by Robot Manipulators. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5259–5264. [Google Scholar]
- Navarro-Alarcón, D.; Liu, Y.H.; Romero, J.G.; Li, P. Model-Free Visually Servoed Deformation Control of Elastic Objects by Robot Manipulators. IEEE Trans. Robot. 2013, 29, 1457–1468. [Google Scholar] [CrossRef]
- Navarro-Alarcon, D.; Liu, Y.H. Uncalibrated Vision-Based Deformation Control of Compliant Objects with Online Estimation of the Jacobian Matrix. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4977–4982. [Google Scholar]
- Navarro-Alarcon, D.; Liu, Y.H.; Romero, J.G.; Li, P. On the Visual Deformation Servoing of Compliant Objects: Uncalibrated Control Methods and Experiments. Int. J. Robot. Res. 2014, 33, 1462–1480. [Google Scholar] [CrossRef]
- Navarro-Alarcon, D.; Liu, Y.H. A Dynamic and Uncalibrated Method to Visually Servo-Control Elastic Deformations by Fully-Constrained Robotic Grippers. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 4457–4462. [Google Scholar]
- Delgado, A.; Jara, C.A.; Torres, F. In-Hand Recognition and Manipulation of Elastic Objects Using a Servo-Tactile Control Strategy. Robot. Comput. Integr. Manuf. 2017, 48, 102–112. [Google Scholar] [CrossRef]
- Delgado, A.; Corrales, J.; Mezouar, Y.; Lequievre, L.; Jara, C.; Torres, F. Tactile Control Based on Gaussian Images and Its Application in Bi-Manual Manipulation of Deformable Objects. Robot. Auton. Syst. 2017, 94, 148–161. [Google Scholar] [CrossRef]
- Lee, A.X.; Lu, H.; Gupta, A.; Levine, S.; Abbeel, P. Learning Force-Based Manipulation of Deformable Objects from Multiple Demonstrations. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 177–184. [Google Scholar]
- Tang, T.; Liu, C.; Chen, W.; Tomizuka, M. Robotic Manipulation of Deformable Objects by Tangent Space Mapping and Non-Rigid Registration. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2689–2696. [Google Scholar]
- Langsfeld, J.D. Learning Task Models for Robotic Manipulation of Nonrigid Objects. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2017. [Google Scholar]
- Hu, Z.; Sun, P.; Pan, J. Three-Dimensional Deformable Object Manipulation Using Fast Online Gaussian Process Regression. IEEE Robot. Autom. Lett. 2018, 3, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.; Patriciu, A. Deformation Planning for Robotic Soft Tissue Manipulation. In Proceedings of the 2009 Second International Conferences on Advances in Computer-Human Interactions, Cancun, Mexico, 1–7 February 2009; pp. 199–204. [Google Scholar]
- Goldman, R.E.; Bajo, A.; Simaan, N. Algorithms for Autonomous Exploration and Estimation in Compliant Environments. Robotica 2013, 31, 71–87. [Google Scholar] [CrossRef]
- Sugaiwa, T.; Fujii, G.; Iwata, H.; Sugano, S. A Methodology for Setting Grasping Force for Picking up an Object with Unknown Weight, Friction, and Stiffness. In Proceedings of the 2010 10th IEEE RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; pp. 288–293. [Google Scholar]
- Berenson, D. Manipulation of Deformable Objects without Modeling and Simulating Deformation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4525–4532. [Google Scholar]
- Essahbi, N.; Bouzgarrou, B.C.; Gogu, G. Soft Material Modeling for Robotic Task Formulation and Control in the Muscle Separation Process. Robot. Comput. Integr. Manuf. 2015, 32, 37–53. [Google Scholar] [CrossRef]
- Langsfeld, J.D.; Kabir, A.M.; Kaipa, K.N.; Gupta, S.K. Robotic Bimanual Cleaning of Deformable Objects with Online Learning of Part and Tool Models. In Proceedings of the 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–24 August 2016; pp. 626–632. [Google Scholar]
- Langsfeld, J.D.; Kabir, A.M.; Kaipa, K.N.; Gupta, S.K. Integration of Planning and Deformation Model Estimation for Robotic Cleaning of Elastically Deformable Objects. IEEE Robot. Autom. Lett. 2018, 3, 352–359. [Google Scholar] [CrossRef]
- Wnuk, M.; Pott, A.; Xu, W.; Lechler, A.; Verl, A. Concept for a Simulation-Based Approach towards Automated Handling of Deformable Objects—A Bin Picking Scenario. In Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 21–23 November 2017; pp. 1–6. [Google Scholar]
Robot | Sensor Features | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gripper | Vision | Tactile | |||||||
Manipulator | One-Finger | Two-Finger | Multi-Finger | 2D | 3D | Force | Pressure | Biomimetic | |
Fugl et al. [9] | ✓ | ✓ | ✓ | ||||||
Frank et al. [25] | ✓ | ✓ | ✓ | ✓ | |||||
Leizea et al. [10] | ✓ | ✓ | ✓ | ||||||
Petit et al. [26] | ✓ | ✓ | ✓ | ✓ | |||||
Lin et al. [11] | ✓ | ✓ | |||||||
Güler et al. [5] | ✓ | ✓ | |||||||
Caccamo et al. [29] | ✓ | ✓ | ✓ | ✓ | |||||
Hui et al. [6] | ✓ | ✓ | |||||||
Cretu et al. [22] | ✓ | ✓ | ✓ | ||||||
Arriola-Rios and Wyatt [21] | ✓ | ✓ | ✓ | ||||||
Drimus et al. [14] | ✓ | ✓ | ✓ | ||||||
Mira et al. [16] | ✓ | ✓ | ✓ | ✓ | |||||
Delgado et al. [18] | ✓ | ✓ | ✓ | ||||||
Navarro-Alarcon et al. [12] | ✓ | ✓ | ✓ | ||||||
Alambeigi et al. [13] | ✓ | ✓ | ✓ |
Object | Descriptor | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Type | Interaction | Dimension | Complexity | Deformation | |||||||
Planar | Volumetric | Single-Point | Multiple-Point | 2D | 3D | Linear | Non-Linear | Elastic | Plastic | All-Purpose 1 | |
Fugl et al. [9] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Frank et al. [25] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Leizea et al. [10] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Petit et al. [26] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Lin et al. [11] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Jia et al. [35] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Zaidi et al. [19] | ✓ | ✓ | ✓ | ✓ | |||||||
Güler et al. [5] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Gil et al. [28] | ✓ | ✓ | ✓ | ✓ | |||||||
Mateo et al. [39] | ✓ | ✓ | ✓ | ✓ | |||||||
Hui et al. [6] | ✓ | ✓ | ✓ | ✓ | |||||||
Cretu et al. [22] | ✓ | ✓ | ✓ | ✓ | |||||||
Tawbe and Cretu [43] | ✓ | ✓ | ✓ | ✓ | |||||||
Arriola-Rios and Wyatt [21] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Cherubini et al. [45] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Bodenhagen et al. [46] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Güler et al. [47] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Mira et al. [16] | ✓ | ✓ | |||||||||
Delgado et al. [18] | ✓ | ✓ | |||||||||
Navarro-Alarcon et al. [12] | ✓ | ✓ | ✓ | ||||||||
Alambeigi et al. [13] | ✓ | ✓ | ✓ | ✓ | ✓ |
Linear Objects | Knotting | Wakamatsu et al. [48] Saha and Isto [49] Bell [50] Wang [51] |
Routing & Shaping | Moll and Kavraki [52] Tavasoli et al. [53] Ding et al. [54] Shah and Shah [55] | |
Planar Objects | Folding Laundry | Bell [50] Maitin-Shepard et al. [56] Cusumano-Towner et al. [57] Bersch et al. [58] Miller et al. [59] Willimon [60] Li et al. [61] Doumanoglou et al. [62] Sannapaneni et al. [63] Yang et al. [64] Jia et al. [65] |
Assisted Dressing | Yamazaki et al. [66] Gao et al. [67] Zhang et al. [68] | |
Cancelling Deformations | Li et al. [71,72] Park and Mills [73] | |
Other Cloth-like Materials | Flixeder et al. [69,70] Zacharia et al. [74] Shibata et al. [75] Kruse et al. [78,79] | |
Nonprehensile Manipulation, Rheological Objects | Inahara et al. [82] Higashimori et al. [83] Cocuzza and Yan [85] | |
Others | Kinio and Patriciu [76] Elbrechter et al. [77] Bodenhagen et al. [46] Dang et al. [80] Patil and Alterovitz [81] Bai et al. [84] | |
2D Projection of Objects | Contour Shaping | Das [87] Higashimori et al. [88] Yoshimoto et al. [89] Das and Sarkar [90,91] Alonso-Mora et al. [93] Navarro-Alarcon and Liu [94] |
Internal Target Point Manipulation | Das [87] Das and Sarkar [92] | |
3D Objects | Visual Shaping | Navarro-Alarcon et al. [12,95,96,97,98,99] |
Tactile Control | Delgado et al. [18,100,101] | |
Grasping | Gopalakrishnan and Goldberg [86] Patil and Alterovitz [81] Bersch et al. [58] Sugaiwa et al. [108] | |
Learning | Li et al. [61] Lee et al. [102] Tang et al. [103] Sannapaneni et al. [63] Yang et al. [64] Langsfeld [104] Hu et al. [105] | |
Others | Smolen and Patriciu [106] Goldman et al. [107] Berenson [109] Frank et al. [25] Essahbi et al. [110] Langsfeld et al. [111,112] Wnuk et al. [113] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadon, F.; Valencia, A.J.; Payeur, P. Multi-Modal Sensing and Robotic Manipulation of Non-Rigid Objects: A Survey. Robotics 2018, 7, 74. https://doi.org/10.3390/robotics7040074
Nadon F, Valencia AJ, Payeur P. Multi-Modal Sensing and Robotic Manipulation of Non-Rigid Objects: A Survey. Robotics. 2018; 7(4):74. https://doi.org/10.3390/robotics7040074
Chicago/Turabian StyleNadon, Félix, Angel J. Valencia, and Pierre Payeur. 2018. "Multi-Modal Sensing and Robotic Manipulation of Non-Rigid Objects: A Survey" Robotics 7, no. 4: 74. https://doi.org/10.3390/robotics7040074
APA StyleNadon, F., Valencia, A. J., & Payeur, P. (2018). Multi-Modal Sensing and Robotic Manipulation of Non-Rigid Objects: A Survey. Robotics, 7(4), 74. https://doi.org/10.3390/robotics7040074