Amylase Binding to Oral Streptococci: A Key Interaction for Human Oral Microbial Ecology, Adaptation and Fitness
Abstract
1. Introduction
2. The Genetic Basis and Diversity of ABPs
2.1. abpA-srtB Operon: System for Processing and Display in ABS
2.2. Multiple ABPs: Convergent Evolution and Horizontal Gene Transfer
3. Functional Characterization of ABPs
3.1. Canonical Functions: Adhesion and Nutrition
3.2. Potential Roles for AbpA Beyond Adhesion and Nutrition
3.3. AbpA-CTM Axis: Pathway for Oxidative Stress Resistance
4. Ecological and Evolutionary Considerations
4.1. Co-Evolution: Interactions of Diet, Genes and Microbiome
4.2. Amylase-Binding Bacteria in Other Mammals
5. Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABS | Amylase-Binding Streptococci |
| HSAmy | Human Alpha-amylase |
| AbpA | Amylase-binding Protein A |
| AbpB | Amylase-binding Protein B |
References
- Scannapieco, F.A.; Ruhl, S. The Oral Environment. In Oral Microbiology and Immunology, 3rd ed.; Richard, J., Lamont, G.N.H., Koo, H., Jenkinson, H.F., Eds.; ASM Press: Washington, DC, USA, 2019. [Google Scholar]
- Scannapieco, F.A. Saliva-bacterium interactions in oral microbial ecology. Crit. Rev. Oral Biol. Med. 1994, 5, 203–248. [Google Scholar] [CrossRef] [PubMed]
- Nikitkova, A.E.; Haase, E.M.; Scannapieco, F.A. Taking the starch out of oral biofilm formation: Molecular basis and functional significance of salivary alpha-amylase binding to oral streptococci. Appl. Environ. Microbiol. 2013, 79, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Douglas, C.W. The binding of human salivary alpha-amylase by oral strains of streptococcal bacteria. Arch. Oral Biol. 1983, 28, 567–573. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J. Characterization of salivary alpha-amylase binding to Streptococcus sanguis. Infect. Immun. 1989, 57, 2853–2863. [Google Scholar] [CrossRef]
- Rogers, J.D.; Palmer, R.J., Jr.; Kolenbrander, P.E.; Scannapieco, F.A. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect. Immun. 2001, 69, 7046–7056. [Google Scholar] [CrossRef] [PubMed]
- Ragunath, C.; Manuel, S.G.; Venkataraman, V.; Sait, H.B.; Kasinathan, C.; Ramasubbu, N. Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary alpha-amylase in substrate hydrolysis and bacterial binding. J. Mol. Biol. 2008, 384, 1232–1248. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Bhandary, K.; Ramasubbu, N.; Levine, M.J. Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase. Biochem. Biophys. Res. Commun. 1990, 173, 1109–1115. [Google Scholar] [CrossRef]
- Tanzer, J.M.; Baranowski, L.K.; Rogers, J.D.; Haase, E.M.; Scannapieco, F.A. Oral colonization and cariogenicity of Streptococcus gordonii in specific pathogen-free TAN:SPFOM(OM)BR rats consuming starch or sucrose diets. Arch. Oral Biol. 2001, 46, 323–333. [Google Scholar] [CrossRef]
- Tanzer, J.M.; Grant, L.; Thompson, A.; Li, L.; Rogers, J.D.; Haase, E.M.; Scannapieco, F.A. Amylase-binding proteins A (AbpA) and B (AbpB) differentially affect colonization of rats’ teeth by Streptococcus gordonii. Microbiology 2003, 149 Pt 9, 2653–2660. [Google Scholar] [CrossRef]
- Tanzer, J.M.; Thompson, A.M.; Grant, L.P.; Vickerman, M.M.; Scannapieco, F.A. Streptococcus gordonii’s sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Arch. Oral Biol. 2008, 53, 133–140. [Google Scholar] [CrossRef]
- Tanzer, J.M.; Thompson, A.; Sharma, K.; Vickerman, M.M.; Haase, E.M.; Scannapieco, F.A. Streptococcus mutans out-competes Streptococcus gordonii in vivo. J. Dent. Res. 2012, 91, 513–519. [Google Scholar] [CrossRef]
- Fellows Yates, J.A.; Velsko, I.M.; Aron, F.; Posth, C.; Hofman, C.A.; Austin, R.M.; Parker, C.E.; Mann, A.E.; Nagele, K.; Arthur, K.W.; et al. The evolution and changing ecology of the African hominid oral microbiome. Proc. Natl. Acad. Sci. USA 2021, 118, e2021655118. [Google Scholar] [CrossRef] [PubMed]
- Velsko, I.M.; Warinner, C. Streptococcus abundance and oral site tropism in humans and non-human primates reflects host and lifestyle differences. NPJ Biofilms Microbiomes 2025, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Haase, E.M.; Feng, X.; Pan, J.; Miecznikowski, J.C.; Scannapieco, F.A. Dynamics of the Streptococcus gordonii Transcriptome in Response to Medium, Salivary alpha-Amylase, and Starch. Appl. Environ. Microbiol. 2015, 81, 5363–5374. [Google Scholar] [CrossRef]
- Nikitkova, A.E.; Haase, E.M.; Vickerman, M.M.; Gill, S.R.; Scannapieco, F.A. Response of fatty acid synthesis genes to the binding of human salivary amylase by Streptococcus gordonii. Appl. Environ. Microbiol. 2012, 78, 1865–1875. [Google Scholar] [CrossRef]
- Kreth, J.; Merritt, J.; Qi, F. Bacterial and host interactions of oral streptococci. DNA Cell Biol. 2009, 28, 397–403. [Google Scholar] [CrossRef]
- Rogers, J.D.; Haase, E.M.; Brown, A.E.; Douglas, C.W.; Gwynn, J.P.; Scannapieco, F.A. Identification and analysis of a gene (abpA) encoding a major amylase-binding protein in Streptococcus gordonii. Microbiology 1998, 144 Pt 5, 1223–1233. [Google Scholar] [CrossRef]
- Liang, X.; Liu, B.; Zhu, F.; Scannapieco, F.A.; Haase, E.M.; Matthews, S.; Wu, H. A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property. Sci. Rep. 2016, 6, 30966. [Google Scholar] [CrossRef]
- Ton-That, H.; Marraffini, L.A.; Schneewind, O. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta 2004, 1694, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Haase, E.M.; Kou, Y.; Sabharwal, A.; Liao, Y.C.; Lan, T.; Lindqvist, C.; Scannapieco, F.A. Comparative genomics and evolution of the amylase-binding proteins of oral streptococci. BMC Microbiol. 2017, 17, 94. [Google Scholar]
- Douglas, C.W.; Pease, A.A.; Whiley, R.A. Amylase-binding as a discriminator among oral streptococci. FEMS Microbiol. Lett. 1990, 54, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tanzer, J.M.; Scannapieco, F.A. Identification and analysis of the amylase-binding protein B (AbpB) and gene (abpB) from Streptococcus gordonii. FEMS Microbiol. Lett. 2002, 212, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Nikitkova, A.E.; Haase, E.M.; Scannapieco, F.A. Effect of starch and amylase on the expression of amylase-binding protein A in Streptococcus gordonii. Mol. Oral Microbiol. 2012, 27, 284–294. [Google Scholar] [CrossRef]
- Briggs, N.S.; Bruce, K.E.; Naskar, S.; Winkler, M.E.; Roper, D.I. The pneumococcal divisome: Dynamic control of Streptococcus pneumoniae cell division. Front. Microbiol. 2021, 12, 737396. [Google Scholar] [CrossRef] [PubMed]
- Fleurie, A.; Lesterlin, C.; Manuse, S.; Zhao, C.; Cluzel, C.; Lavergne, J.P.; Franz-Wachtel, M.; Macek, B.; Combet, C.; Kuru, E.; et al. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 2014, 516, 259–262. [Google Scholar] [CrossRef]
- Berg, K.H.; Stamsas, G.A.; Straume, D.; Havarstein, L.S. Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6. J. Bacteriol. 2013, 195, 4342–4354. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Haraszthy, G.G.; Cho, M.I.; Levine, M.J. Characterization of an amylase-binding component of Streptococcus gordonii G9B. Infect. Immun. 1992, 60, 4726–4733. [Google Scholar] [CrossRef]
- Andisi, V.F.; Hinojosa, C.A.; de Jong, A.; Kuipers, O.P.; Orihuela, C.J.; Bijlsma, J.J. Pneumococcal gene complex involved in resistance to extracellular oxidative stress. Infect. Immun. 2012, 80, 1037–1049. [Google Scholar] [CrossRef]
- Saleh, M.; Bartual, S.G.; Abdullah, M.R.; Jensch, I.; Asmat, T.M.; Petruschka, L.; Pribyl, T.; Gellert, M.; Lillig, C.H.; Antelmann, H.; et al. Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol. Med. 2013, 5, 1852–1870. [Google Scholar] [CrossRef]
- Jalal, N.; Lee, S.F. The MsrAB reducing pathway of Streptococcus gordonii is needed for oxidative stress tolerance, biofilm formation, and oral colonization in mice. PLoS ONE 2020, 15, e0229375. [Google Scholar] [CrossRef]
- Kim, H.Y. The methionine sulfoxide reduction system: Selenium utilization and methionine sulfoxide reductase enzymes and their functions. Antioxid. Redox Signal 2013, 19, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M. Effector Molecules and Regulatory Proteins: Applications. Trends Biotechnol. 2016, 34, 777–780. [Google Scholar] [CrossRef]
- Liu, Y.; Burne, R.A. Multiple two-component systems modulate alkali generation in Streptococcus gordonii in response to environmental stresses. J. Bacteriol. 2009, 191, 7353–7362. [Google Scholar] [CrossRef]
- Zhu, L.; Kreth, J. The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxid. Med. Cell Longev. 2012, 2012, 717843. [Google Scholar] [CrossRef]
- Bolognini, D.; Halgren, A.; Lou, R.N.; Raveane, A.; Rocha, J.L.; Guarracino, A.; Soranzo, N.; Chin, C.S.; Garrison, E.; Sudmant, P.H. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature 2024, 634, 617–625. [Google Scholar] [CrossRef]
- Perry, G.H.; Dominy, N.J.; Claw, K.G.; Lee, A.S.; Fiegler, H.; Redon, R.; Werner, J.; Villanea, F.A.; Mountain, J.L.; Misra, R.; et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 2007, 39, 1256–1260. [Google Scholar] [CrossRef]
- Pajic, P.; Pavlidis, P.; Dean, K.; Neznanova, L.; Romano, R.A.; Garneau, D.; Daugherity, E.; Globig, A.; Ruhl, S.; Gokcumen, O. Independent amylase gene copy number bursts correlate with dietary preferences in mammals. eLife 2019, 8, e44628. [Google Scholar] [CrossRef]
- Adler, C.J.; Dobney, K.; Weyrich, L.S.; Kaidonis, J.; Walker, A.W.; Haak, W.; Bradshaw, C.J.; Townsend, G.; Soltysiak, A.; Alt, K.W.; et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 2013, 45, 450–455.e1. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Solomon, L.; Wadenya, R.O. Emergence in human dental plaque and host distribution of amylase-binding streptococci. J. Dent. Res. 1994, 73, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Votsch, D.; Willenborg, M.; Weldearegay, Y.B.; Valentin-Weigand, P. Streptococcus suis—The “Two Faces” of a Pathobiont in the Porcine Respiratory Tract. Front. Microbiol. 2018, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Kouki, A.; Haataja, S.; Loimaranta, V.; Pulliainen, A.T.; Nilsson, U.J.; Finne, J. Identification of a novel streptococcal adhesin P (SadP) protein recognizing galactosyl-alpha1-4-galactose-containing glycoconjugates: Convergent evolution of bacterial pathogens to binding of the same host receptor. J. Biol. Chem. 2011, 286, 38854–38864. [Google Scholar] [CrossRef]
- Ferrando, M.L.; Fuentes, S.; de Greeff, A.; Smith, H.; Wells, J.M. ApuA, a multifunctional alpha-glucan-degrading enzyme of Streptococcus suis, mediates adhesion to porcine epithelium and mucus. Microbiology 2010, 156 Pt 9, 2818–2828. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Feng, Y.; Zheng, F.; Dong, Y.; Pan, X.; Cheng, G.; Dong, R.; Hu, D.; Feng, X.; et al. The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch. Microbiol. 2009, 191, 23–33. [Google Scholar] [CrossRef]
- Jenkinson, H.F. Cell-surface proteins of Streptococcus sanguis associated with cell hydrophobicity and coaggregation properties. J. Gen. Microbiol. 1986, 132, 1575–1589. [Google Scholar] [CrossRef]
- Loo, C.Y.; Corliss, D.A.; Ganeshkumar, N. Streptococcus gordonii biofilm formation: Identification of genes that code for biofilm phenotypes. J. Bacteriol. 2000, 182, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.D.; Scannapieco, F.A. Catabolite repression and regulation of the amylase-binding protein gene of Streptococcus gordonii. J. Bacteriol. 2001, 183, 3521–3525. [Google Scholar] [CrossRef]
- Sulavik, M.C.; Tardif, G.; Clewell, D.B. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J. Bacteriol. 1992, 174, 3577–3586. [Google Scholar] [CrossRef] [PubMed]
- Jakubovics, N.S.; Smith, A.W.; Jenkinson, H.F. Oxidative stress tolerance is manganese (Mn(2+)) regulated in Streptococcus gordonii. Microbiology 2002, 148 Pt 10, 3255–3263. [Google Scholar] [CrossRef]
- Flannagan, R.S.; Jaumouille, V.; Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 2012, 7, 61–98. [Google Scholar] [CrossRef]
- Vaudaux, P.; Waldvogel, F.A. Gentamicin antibacterial activity in the presence of human polymorphonuclear leukocytes. Antimicrob. Agents Chemother. 1979, 16, 743–749. [Google Scholar] [CrossRef] [PubMed]


| ABP families | |
| ABP family | Features |
| AbpA | ~20 kDa; amylase-binding adhesin; SrtB anchored; novel sorting motif |
| AbpB | ~87 kDa, dipeptidase; binds amylase but not essential for surface binding |
| Other | ~20 to 87 kDa; homologous to peptidoglycan-binding proteins, glutamine ABC transporters and choline-binding proteins |
| AbpA-SrtB operon and processing | |
| Component | |
| abpA | Co-transcription with srtB |
| srtB | Dedicated sortase that anchors AbpA via novel motif; distinct from SrtA |
| Functional roles of ABPs | |
| Function | |
| Adhesion | AbpA enhances adhesion to HSAmy-coated surfaces |
| Nutrition | Starch is converted to maltose and maltotriose and AbpA- mutants cannot grow on starch only |
| Regulation | Amylase triggers gene expression changes via AbpA; increase in fatty acid synthesis and stress tolerance |
| Cell division | Putative divisome links (FtsZ, PBP2b); septal localization; microscopic observation of AbpA at septum and chain length change in AbpA- mutants |
| AbpA and oxidative stress | |
| Gene | |
| ccdA1 | Redox homeostasis; downregulated in AbpA- mutants |
| tlpA (etrx1) | Thioredoxin-like; downregulated in AbpA- mutants |
| msrB (msrAB) | Repairs methionine sulfoxide; AbpA- mutants sensitive to external H2O2 |
| Histidine kinase/response regulator | Sense and regulate; operon-like; gradient downregulation |
| Ecological and evolutionary aspects | |
| Evidence | Observation and implication |
| AMY1 copy number | High-starch groups have increased AMY1 and salivary amylase; selects for ABS niche |
| Ancient human calculus | ABS present in Neanderthals/Late Pleistocene humans and predates agriculture |
| Non-human mammals | ABS abundant in several amylase-secretors; absent otherwise; physiologic adaptation of microbiome |
| S. suis analogs | SadP/ApuA (SrtA) with alpha-amylase activity; convergence without AbpA/SrtB |
| Sequence | Protein BLAST (2.7.1) | Max Score | Matched Sequence | SGO# | Recurrence |
|---|---|---|---|---|---|
| TSNNNLL | cell division protein (FtsZ) | 21.8 | SNNNLL | SGO_0675 | (1/64 phages) |
| IVTQIPM | beta-ketoacyl-ACP reductase (FabG) | 18 | QIPM | SGO_1693 | (1/64 phages) |
| TGSTRPW | beta-ketoacyl-ACP reductase (FabG) | 17.6 | TGSTR | SGO_1693 | (4/64 phages) |
| EKKNMMN | sensor histidine kinase | 16.8 | +MMN | SGO_1174 | (3/64 phages) |
| SSHSVQR | penicillin-binding protein 2B (PBP2b) | 16.3 | SHSVQ+R | SGO_1449 | (20/64 phages) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabharwal, A.; Haase, E.M.; Scannapieco, F.A. Amylase Binding to Oral Streptococci: A Key Interaction for Human Oral Microbial Ecology, Adaptation and Fitness. Biomolecules 2025, 15, 1616. https://doi.org/10.3390/biom15111616
Sabharwal A, Haase EM, Scannapieco FA. Amylase Binding to Oral Streptococci: A Key Interaction for Human Oral Microbial Ecology, Adaptation and Fitness. Biomolecules. 2025; 15(11):1616. https://doi.org/10.3390/biom15111616
Chicago/Turabian StyleSabharwal, Amarpreet, Elaine M. Haase, and Frank A. Scannapieco. 2025. "Amylase Binding to Oral Streptococci: A Key Interaction for Human Oral Microbial Ecology, Adaptation and Fitness" Biomolecules 15, no. 11: 1616. https://doi.org/10.3390/biom15111616
APA StyleSabharwal, A., Haase, E. M., & Scannapieco, F. A. (2025). Amylase Binding to Oral Streptococci: A Key Interaction for Human Oral Microbial Ecology, Adaptation and Fitness. Biomolecules, 15(11), 1616. https://doi.org/10.3390/biom15111616

