Gender-Related Differences on Polyamine Metabolome in Liquid Biopsies by a Simple and Sensitive Two-Step Liquid-Liquid Extraction and LC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvents, Reagents, and Standards
2.2. Preparation of Stock Solutions and Calibration Standards
2.3. Serum and Urine Samples
2.4. Sample Preparation
2.4.1. Protein Precipitation
2.4.2. Derivatization
2.4.3. Purification
2.5. Liquid Chromatography and Mass Spectrometry Conditions
2.6. Method Validation
3. Results and Discussion
3.1. Optimization of Chromatography and Mass Spectrometry Conditions
3.2. Sample Extraction Optimization
3.2.1. Derivatization with Dansyl Chloride and an Alkaline pH
3.2.2. Purification of the Derivatized Analytes
3.2.3. Protein Precipitation and Matrix Effect
3.3. Identification
3.4. Method Validation
3.5. Method Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Moinard, C.; Cynober, L.; de Bandt, J.P. Polyamines: Metabolism and implications in human diseases. Clin. Nutr. 2005, 24, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Casero, R.A.; Marton, L.J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 2007, 6, 373–390. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Igarashi, K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol. Ther. 2013, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, Q.; Ma, R.; Lin, X.; Xu, H.; Bi, K. Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography–tandem mass spectrometry method: Application to identify potential markers for human hepatic cancer. Anal. Chim. Acta 2013, 791, 36–45. [Google Scholar] [CrossRef]
- Takahashi, Y.; Sakaguchi, K.; Horio, H.; Hiramatsu, K.; Moriya, S.; Takahashi, K.; Kawakita, M. Urinary N1, N12-diacetylspermine is a non-invasive marker for the diagnosis and prognosis of non-small-cell lung cancer. Br. J. Cancer 2015, 113, 1493–1501. [Google Scholar] [CrossRef]
- Kawakita, M.; Hiramatsu, K. Diacetylated Derivatives of Spermine and Spermidine as Novel Promising Tumor Markers. J. Biochem. 2006, 139, 315–322. [Google Scholar] [CrossRef]
- Kato, M.; Onishi, H.; Matsumoto, K.; Motoshita, J.; Tsuruta, N.; Higuchi, K.; Katano, M. Prognostic significance of urine N1, N12-diacetylspermine in patients with non-small cell lung cancer. Anticancer Res. 2014, 34, 3053–3059. [Google Scholar]
- Takahashi, Y.; Horio, H.; Sakaguchi, K.; Hiramatsu, K.; Kawakita, M. Significant correlation between urinary N1, N12-diacetylspermine and tumor invasiveness in patients with clinical stage IA non-small cell lung cancer. BMC Cancer 2015, 15, 65. [Google Scholar] [CrossRef]
- Liu, R.; Li, P.; Bi, C.W.; Ma, R.; Yin, Y.; Bi, K.; Li, Q. Plasma N-acetylputrescine, cadaverine and 1,3-diaminopropane: Potential biomarkers of lung cancer used to evaluate the efficacy of anticancer drugs. Oncotarget 2017, 8, 88575–88585. [Google Scholar] [CrossRef]
- Ramos-Molina, B.; Queipo-Ortuño, M.I.; Lambertos, A.; Tinahones, F.J.; Peñafiel, R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front. Nutr. 2019, 6, 24. [Google Scholar] [CrossRef]
- Schuster, I.; Bernhardt, R. Interactions of natural polyamines with mammalian proteins. Biomol. Concepts 2011, 2, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Liu, R.; Xie, C.; Zhang, Q.; Yin, Y.; Bi, K.; Li, Q. Quantification of free polyamines and their metabolites in biofluids and liver tissue by UHPLC-MS/MS: Application to identify the potential biomarkers of hepatocellular carcinoma. Anal. Bioanal. Chem. 2015, 407, 6891–6897. [Google Scholar] [CrossRef] [PubMed]
- Paik, M.J.; Kuon, D.; Cho, J.; Kim, K.R. Altered urinary polyamine patterns of cancer patients under acupuncture therapy. Amino Acids 2009, 37, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Paik, M.J.; Lee, S.; Cho, K.H.; Kim, K.R. Urinary polyamines and N-acetylated polyamines in four patients with Alzheimer’s disease as their N-ethoxycarbonyl-N-pentafluoropropionyl derivatives by gas chromatography–mass spectrometry in selected ion monitoring mode. Anal. Chim. Acta 2006, 576, 55–60. [Google Scholar] [CrossRef]
- Garthwaite, I.; Stead, A.D.; Rider, C.C. Assay of the polyamine spermine by a monoclonal antibody-based ELISA. J. Immunol. Methods 1993, 162, 175–178. [Google Scholar] [CrossRef]
- Faulkner, A.J.; Veening, H.; Becker, H.D. 2-(9-Anthryl)ethyl chloroformate: A precolumn derivatizing reagent for polyamines determined by liquid chromatography and fluorescence detection. Anal. Chem. 1991, 63, 292–296. [Google Scholar] [CrossRef]
- Nohta, H.; Satozono, H.; Koiso, K.; Yoshida, H.; Ishida, J.; Yamaguchi, M. Highly selective fluorometric determination of polyamines based on intramolecular excimer-forming derivatization with a pyrene-labeling reagent. Anal. Chem. 2000, 72, 4199–4204. [Google Scholar] [CrossRef]
- Stevens, A.P.; Dettmer, K.; Kirovski, G.; Samejima, K.; Hellerbrand, C.; Bosserhoff, A.K.; Oefner, P.J. Quantification of intermediates of the methionine and polyamine metabolism by liquid chromatography–tandem mass spectrometry in cultured tumor cells and liver biopsies. J. Chromatogr. A 2010, 1217, 3282–3288. [Google Scholar] [CrossRef]
- Liu, R.; Lin, X.; Li, Z.; Li, Q.; Bi, K. Quantitative metabolomics for investigating the value of polyamines in the early diagnosis and therapy of colorectal cancer. Oncotarget 2018, 9, 4583–4592. [Google Scholar] [CrossRef]
- Häkkinen, M.R.; Roine, A.; Auriola, S.; Tuokko, A.; Veskimäe, E.; Keinänen, T.A.; Lehtimäki, T.; Oksala, N.; Vepsäläinen, J. Analysis of free, mono- and diacetylated polyamines from human urine by LC–MS/MS. J. Chromatogr. B 2013, 941, 81–89. [Google Scholar] [CrossRef]
- Tomita, A.; Mori, M.; Hiwatari, K.; Yamaguchi, E.; Itoi, T.; Sunamura, M.; Soga, T.; Tomita, M.; Sugimoto, M. Effect of storage conditions on salivary polyamines quantified via liquid chromatography-mass spectrometry. Sci. Rep. 2018, 8, 12075. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, S.Å.; Samskog, J.; Markides, K.E.; Långström, B. Studies of signal suppression in liquid chromatography–electrospray ionization mass spectrometry using volatile ion-pairing reagents. J. Chromatogr. A 2001, 937, 41–47. [Google Scholar] [CrossRef]
- Liu, R.; Jia, Y.; Cheng, W.; Ling, J.; Liu, L.; Bi, K.; Li, Q. Determination of polyamines in human urine by precolumn derivatization with benzoyl chloride and high-performance liquid chromatography coupled with Q-time-of-flight mass spectrometry. Talanta 2011, 83, 751–756. [Google Scholar] [CrossRef]
- Wong, J.M.T.; Malec, P.A.; Mabrouk, O.S.; Ro, J.; Dus, M.; Kennedy, R.T. Benzoyl chloride derivatization with liquid chromatography–mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J. Chromatogr. A 2016, 1446, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.X.; Liu, R.; Zhou, Y.; Jia, Y.; Wang, X.L.; Hu, Y.; Bi, K.S.; Li, Q. Study on changes of polyamine levels in mice with the development of U14 cervical cancer. J. Pharm. Anal. 2013, 3, 20–27. [Google Scholar] [CrossRef]
- Byun, J.A.; Lee, S.H.; Jung, B.H.; Choi, M.H.; Moon, M.H.; Chung, B.C. Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography–tandem mass spectrometry. Biomed. Chromatogr. 2008, 22, 73–80. [Google Scholar] [CrossRef]
- Magnes, C.; Fauland, A.; Gander, E.; Narath, S.; Ratzer, M.; Eisenberg, T.; Madeo, F.; Pieber, T.; Sinner, F. Polyamines in biological samples: Rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2014, 1331, 44–51. [Google Scholar] [CrossRef]
- Xiong, X.; Zhai, S. Rapid and Simultaneous Quantification of Polyamines in Human Plasma by LC–MS/MS After Pre-column Derivatization with N-(9-Fluorenylmethoxycarbonyloxy)succinimide. Chromatographia 2016, 79, 561–570. [Google Scholar] [CrossRef]
- Takayama, T.; Tsutsui, H.; Shimizu, I.; Toyama, T.; Yoshimoto, N.; Endo, Y.; Inoue, K.; Todoroki, K.; Min, J.Z.; Mizuno, H.; et al. Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clin. Chim. Acta 2016, 452, 18–26. [Google Scholar] [CrossRef]
- Min, J.Z.; Matsumoto, A.; Li, G.; Jiang, Y.Z.; Yu, H.; Todoroki, K.; Inoue, K.; Toyo’oka, T. A quantitative analysis of the polyamine in lung cancer patient fingernails by LC-ESI-MS/MS. Biomed. Chromatogr. 2014, 28, 492–499. [Google Scholar] [CrossRef]
- Jin, D.; Wang, L.; Lee, Y.I. Determination of the polyamines in human toenails as 1-(5-fluoro-2,4-dinitrophenyl)-4-methylpiperazine derivatives using high-performance liquid chromatography. Microchem. J. 2013, 110, 568–574. [Google Scholar] [CrossRef]
- Cai, H.L.; Zhu, R.H.; Li, H.D. Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography–electrospray ionization tandem mass spectrometry. Anal. Biochem. 2010, 396, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liang, Y.; Wang, Y.; Fan, M.; Sun, Y.; Liu, J.; Zhang, N. Simultaneous determination of ten kinds of biogenic amines in rat plasma using high-performance liquid chromatography coupled with fluorescence detection. Biomed. Chromatogr. 2018, 32, e4211. [Google Scholar] [CrossRef] [PubMed]
- Cardeano, J.C. Quantification and Analysis of Biogenic Amines Using a Liquid Chromatographic Tandem Mass Spectrometric Method. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2016. [Google Scholar]
- Ducros, V.; Ruffieux, D.; Belva-Besnet, H.; de Fraipont, F.; Berger, F.; Favier, A. Determination of dansylated polyamines in red blood cells by liquid chromatography–tandem mass spectrometry. Anal. Biochem. 2009, 390, 46–51. [Google Scholar] [CrossRef]
- Gaboriau, F.; Havouis, R.; Moulinoux, J.P.; Delcros, J.G. Atmospheric pressure chemical ionization-mass spectrometry method to improve the determination of dansylated polyamines. Anal. Biochem. 2003, 318, 212–220. [Google Scholar] [CrossRef]
- Molins-Legua, C.; Campíns-Falcó, P.; Sevillano-Cabeza, A.; Pedrón-Pons, M. Urine polyamines determination using dansyl chloride derivatization in solid-phase extraction cartridges and HPLC. Analyst 1999, 124, 477–482. [Google Scholar] [CrossRef]
- Acheampong, P. Polyamines: Effect of Diet on Blood Concentrations and Evaluation of Their Role as Biomarkers of Stroke. Ph.D. Thesis, University of Aberdeen, Aberdeen, UK, 2010. [Google Scholar]
- Samejima, K.; Hiramatsu, K.; Takahashi, K.; Kawakita, M.; Kobayashi, M.; Tsumoto, H.; Kohda, K. Identification and determination of urinary acetylpolyamines in cancer patients by electrospray ionization and time-of-flight mass spectrometry. Anal. Biochem. 2010, 401, 22–29. [Google Scholar] [CrossRef]
- Ubhi, B.K.; Davenport, P.W.; Welch, M.; Riley, J.; Griffin, J.L.; Connor, S.C. Analysis of chloroformate-derivatised amino acids, dipeptides and polyamines by LC–MS/MS. J. Chromatogr. B 2013, 934, 79–88. [Google Scholar] [CrossRef]
- Fitzgerald, B.L.; Mahapatra, S.; Farmer, D.K.; McNeil, M.R.; Casero, R.A.; Belisle, J.T.; Belisle, J.T. Elucidating the Structure of N1-Acetylisoputreanine: A Novel Polyamine Catabolite in Human Urine. ACS Omega 2017, 2, 3921–3930. [Google Scholar] [CrossRef] [Green Version]
- Feistner, G.J. Liquid chromatography-electrospray tandem mass spectrometry of dansylated polyamines and basic amino acids. J. Mass Spectrom. 1995, 30, 1546–1552. [Google Scholar] [CrossRef]
- Gros, C.; Labouesse, B. Study of the dansylation reaction of amino acids, peptides and proteins. Eur. J. Biochem. 1969, 7, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Srivastava, N.K.; Pradhan, S.; Mittal, B.; Kumar, R.; Pandey, C.M.; Gowda, G.A.N. Novel corrective equations for complete estimation of human tissue lipids after their partial destruction by perchloric acid pre-treatment: High-resolution1H-NMR-based study. NMR Biomed. 2008, 21, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Fukunaga, K.; Munemura, S.; Tsuruta, Y. Simultaneous determination of free and N-acetylated polyamines in urine by semimicro high-performance liquid chromatography using 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride as a fluorescent labeling reagent. Anal. Biochem. 2005, 339, 191–197. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Zainulabdeen, J.A.; Jasim, H.M. The Significance of Spermidine and Spermine in Association with Atherosclerosis in Sera of Iraqi Patients. Biomed. Pharmacol. J. 2018, 11, 1389–1396. [Google Scholar] [CrossRef]
Analyte | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | CE | IS |
---|---|---|---|---|---|
ARG | 5.2 | 408.1 | 70.1 | 40 | ARG-lab |
170.3 | 32 | ||||
AGM | 5.7 | 364.1 | 347.2 | 20 | ARG-lab |
170.1 | 28 | ||||
155.2 | 52 | ||||
N-AcDAP | 6.9 | 350.0 | 100.0 | 20 | N8-AcSPD-lab |
170.0 | 20 | ||||
308.0 | 20 | ||||
N-AcPUT | 7.4 | 364.1 | 322.0 | 15 | N8-AcSPD-lab |
170.1 | 28 | ||||
234.0 | 15 | ||||
GABA | 7.4 | 337.1 | 170.0 | 20 | ARG-lab |
296.0 | 8 | ||||
157.0 | 36 | ||||
N1,N8-DiAcSPD | 7.5 | 463.0 | 100.1 | 28 | N1,N8-DiAcSPD-lab |
114.1 | 28 | ||||
170.2 | 40 | ||||
N1-AcIsoPUTR | 7.5 | 436.1 | 100.0 | 10 | ARG-lab |
126.2 | 20 | ||||
170.0 | 30 | ||||
N-AcCAD | 7.9 | 378.1 | 86.0 | 20 | N8-AcSPD-lab |
155.0 | 50 | ||||
335.9 | 20 | ||||
ORN | 11.5 | 599.1 | 170.1 | 48 | LYS-lab |
303.1 | 24 | ||||
N1,N12-DiAcSPM | 11.6 | 753.1 | 100.1 | 32 | N1,N8-DiAcSPD-lab |
502.3 | 40 | ||||
170.0 | 60 | ||||
LYS | 12.1 | 613.1 | 170.1 | 52 | LYS-lab |
317.1 | 24 | ||||
N1-AcSPD | 12.4 | 654.1 | 100.1 | 20 | N8-AcSPD-lab |
305.1 | 20 | ||||
N8-AcSPD | 12.4 | 654.1 | 114.1 | 20 | N8-AcSPD-lab |
541.1 | 20 | ||||
1,3-DAP | 12.9 | 541.1 | 307.0 | 24 | SPD-lab |
170.2 | 36 | ||||
220.0 | 24 | ||||
PUT | 13.3 | 555.2 | 219.9 | 28 | PUT-lab |
170.1 | 44 | ||||
CAD | 13.8 | 569.1 | 84.2 | 36 | PUT-lab |
170.2 | 44 | ||||
186.0 | 36 | ||||
N1-AcSPM | 15.7 | 944.1 | 100.0 | 44 | SPM-lab |
693.3 | 52 | ||||
360.2 | 56 | ||||
SPD | 16.3 | 845.4 | 360.1 | 40 | SPD-lab |
170.1 | 60 | ||||
SPM | 17.5 | 1135.6 | 360.1 | 56 | SPM-lab |
170.1 | 60 | ||||
ARG-lab | 5.2 | 418.1 | 170.3 | 32 | N/A |
LYS-lab | 12.1 | 621.1 | 170.1 | 52 | N/A |
N8-AcSPD-lab | 12.4 | 657.0 | 117.2 | 40 | N/A |
170.0 | 60 | ||||
362.2 | 40 | ||||
N1,N8-DiAcSPD-lab | 7.5 | 469.0 | 103.1 | 28 | N/A |
117.1 | 28 | ||||
170.1 | 40 | ||||
PUT-lab | 13.3 | 563.2 | 219.9 | 28 | N/A |
170.1 | 44 | ||||
SPD-lab | 16.3 | 851.1 | 366.2 | 40 | N/A |
170.2 | 60 | ||||
SPM-lab | 17.5 | 1155.6 | 373.1 | 56 | N/A |
170.1 | 60 |
Analyte | LLE:EA * | LLE:EA + TFA | SPE |
---|---|---|---|
ARG | 4 ± 3 | 75 ± 11 | 20 ± 8 |
AGM | 108 ± 6 | 97 ± 7 | 50 ± 5 |
N-AcPUT | 97 ± 6 | 93 ± 13 | 46 ± 6 |
GABA | 1 ± 2 | 153 ± 37 | 115 ± 10 |
ORN | 120 ± 15 | 92 ± 8 | 92 ± 7 |
LYS | 171 ± 62 | 128 ± 10 | 124 ± 8 |
N1-AcSPD | 99 ± 11 | 81 ± 7 | 75 ± 5 |
N8-AcSPD | 90 ± 8 | 73 ± 5 | 66 ± 9 |
1,3-DAP | 94 ± 7 | 64 ± 8 | 62 ± 7 |
PUT | 108 ± 9 | 83 ± 11 | 83 ± 4 |
CAD | 105 ± 9 | 83 ± 9 | 82 ± 5 |
N1-AcSPM | 96 ± 11 | 66 ± 6 | 57 ± 7 |
SPD | 161 ± 53 | 100 ± 7 | 98 ± 6 |
SPM | 108 ± 7 | 52 ± 5 | 37 ± 3 |
Analyte | Recovery (%, n = 5) | Accuracy (% n = 3) | MDL 1 (nM) | MQL 2 (nM) | Repeatability (%RSD n = 5) | Reproducibility (%RSD n = 3) | Linear Range (nM) | R2 |
---|---|---|---|---|---|---|---|---|
ARG | 82 ± 2.4 | 114.7 ± 2.2 | 22.14 | 73.81 | 4.3 | 1.0 | 75937.4–759373.5 | 0.9998 |
AGM | 103 ± 7.1 | 84.3 ± 6.5 | 0.04 | 0.14 | 6.7 | 15.6 | 7.7–15.4 | 0.9961 |
N-AcDAP | N/A | N/A | N/A | N/A | 9.8 | 12.9 | N/A | N/A |
N-AcPUT | 98 ± 6.7 | 115.2 ± 10.1 | 0.10 | 0.35 | 8.8 | 1.9 | 18.0–180.0 | 0.9983 |
GABA | 110 ± 3.7 | 95.7 ± 14.9 | 1.08 | 3.60 | 5.7 | 3.7 | 290.9–581.8 | 0.9944 |
N1,N8-DiAcSPD | 107 ± 8.3 | 101.3 ± 4.3 | 0.01 | 0.03 | 9.1 | 1.3 | 0.9–43.6 | 0.9999 |
N1-AcIsoPUTR | N/A | N/A | N/A | N/A | 18.3 | 12.8 | N/A | N/A |
N-AcCAD | N/A | N/A | N/A | N/A | 3.3 | 1.2 | N/A | N/A |
ORN | 92 ± 4.1 | 109 ± 3.8 | 0.84 | 2.81 | 2.5 | 1.3 | 94887.9–948879.1 | 0.9936 |
N1,N12-DiAcSPM | 111 ± 4.8 | 101.2 ± 7.2 | 0.004 | 0.01 | 4.3 | 1.3 | 0.6–5.6 | 0.9962 |
LYS | 121 ± 3.4 | 107.9 ± 1.6 | 1.99 | 6.66 | 2.4 | 5.9 | 109446.6–1094466.1 | 0.9959 |
N1-AcSPD | 95 ± 4.5 | 101.4 ± 14.3 | 0.02 | 0.08 | 3.5 | 3.3 | 115.3–5764.8 | 0.9995 |
N8-AcSPD | 88 ± 5.1 | 98.3 ± 3.5 | 0.01 | 0.03 | 4.2 | 6.1 | 115.3–230.6 | 0.9999 |
1,3-DAP | 96 ± 11.2 | 119.7 ± 5 | 0.41 | 1.38 | 3.7 | 21.2 | 20.4–102.0 | 0.9855 |
PUT | 93 ± 8.1 | 99.5 ± 3.8 | 0.15 | 0.51 | 4.2 | 3.6 | 113.4–567.2 | 0.9990 |
CAD | 93 ± 4.8 | 101.2 ± 3.9 | 0.03 | 0.09 | 3.6 | 7.8 | 9.8–19.6 | 0.9998 |
N1-AcSPM | 87 ± 7.8 | 104.4 ± 6.6 | 0.02 | 0.08 | 5.6 | 8.8 | 2.8–14.1 | 0.9999 |
SPD | 98 ± 5.8 | 115.7 ± 3.9 | 0.01 | 0.05 | 7.1 | 12.1 | 68.8–3442.3 | 0.9999 |
SPM | 100 ± 5.6 | 118.4 ± 6.5 | 0.04 | 0.14 | 2.1 | 0.9 | 14.8–296.5 | 0.9992 |
Analyte (Mean ± SD) | Serum (nM) | Urine (nmol/mg Creatinine) | ||||||
---|---|---|---|---|---|---|---|---|
Obese Male Patients | Obese Female Patients | FC 1 | p-Value | Obese Male Patients | Obese Female Patients | FC | p-Value | |
ARG | 117.3 × 103 ± 27.6 × 103 | 114.9 × 103 ± 19.9 × 103 | - | >0.05 | 28.0 ± 25.1 | 24.4 ± 15.6 | - | >0.05 |
AGM | 0.1 ± 0.1 | 0.1 ± 0.1 | - | >0.05 | 0.2 × 10−3 ± 0.3 × 10−3 | 0.8 × 10−3 ± 3.4 × 10−3 | - | >0.05 |
N-AcDAP | 1.7 ± 0.6 | 1.8 ± 0.6 | - | >0.05 | 0.6 ± 0.4 | 0.8 ± 0.4 | - | >0.05 |
N-AcPUT | 22.5 ± 8.4 | 23.6 ± 8.0 | - | >0.05 | 14.7 ± 6.5 | 16.8 ± 7.0 | - | >0.05 |
GABA | 214.9 ± 60.4 | 192.5 ± 50.5 | - | >0.05 | 0.5 ± 0.2 | 0.9 ± 0.4 | 1.54 | ≤0.05 * |
N1,N8-DiAcSPD | 0.8 ± 0.6 | 0.8 ± 0.5 | - | >0.05 | 0.9 ± 0.4 | 1.0 ± 0.5 | - | >0.05 |
N1-AcIsoPUTR | 10.1 ± 6.3 | 8.0 ± 5.2 | - | >0.05 | 0.4 ± 0.2 | 0.4 ± 0.3 | - | >0.05 |
N-AcCAD | 9.3 ± 12.3 | 13.6 ± 19.9 | - | >0.05 | 5.2 ± 7.3 | 11.0 ± 14.5 | 2.08 | ≤0.05 * |
ORN | 151.7 × 103 ± 29.7 × 103 | 155.7 × 103 ± 30.0 × 103 | - | >0.05 | 22.8 ± 43.4 | 14.8 ± 6.9 | - | >0.05 |
N1,N12-DiAcSPM | 0.7 ± 0.4 | 0.7 ± 0.4 | - | >0.05 | 0.2 ± 0.2 | 0.2 ± 0.1 | - | >0.05 |
LYS | 308.7 × 103 ± 44.9 × 103 | 323.9 × 103 ± 41.6 × 103 | - | >0.05 | 0.3 × 103 ± 0.4 × 103 | 0.1 × 103 ± 0.1 × 103 | - | >0.05 |
N1-AcSPD | 81.3 ± 22.8 | 73.5 ± 29.9 | - | >0.05 | 4.5 ± 2.2 | 5.4 ± 2.3 | - | >0.05 |
N8-AcSPD | 37.0 ± 8.3 | 34.2 ± 7.6 | - | >0.05 | 4.7 ± 1.4 | 5.8 ± 1.3 | 1.24 | ≤0.05 * |
1,3-DAP | 8.4 ± 2.5 | 9.1 ± 4.0 | - | >0.05 | 0.1 ± 0.1 | 0.2 ± 0.1 | 1.91 | ≤0.01 ** |
PUT | 76.5 ± 28.5 | 78.6 ± 28.1 | - | >0.05 | 0.7 ± 0.6 | 1.4 ± 1.0 | 2.51 | ≤0.01 ** |
CAD | 1.1 ± 0.8 | 1.3 ± 1.0 | - | >0.05 | 0.1 ± 0.2 | 0.6 ± 0.8 | 7.32 | ≤0.01 ** |
N1-AcSPM | 1.8 ± 0.7 | 1.4 ± 0.5 | 1.33 | ≤0.05 * | 4.7 × 10−3 ± 4.9 × 10−3 | 8.8 × 10−3 ± 11.1 × 10−3 | - | >0.05 |
SPD | 176.8 ± 79.3 | 134.5 ± 40.6 | - | >0.05 | 0.3 ± 0.3 | 0.2 ± 0.2 | - | >0.05 |
SPM | 31.6 ± 9.8 | 20.9 ± 7.4 | 1.52 | ≤0.01 ** | 3.0 ± 3.7 | 0.1 ± 0.1 | 14.38 | ≤0.01 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarra, I.; Ramos-Molina, B.; Queipo-Ortuño, M.I.; Tinahones, F.J.; Arola, L.; Delpino-Rius, A.; Herrero, P.; Canela, N. Gender-Related Differences on Polyamine Metabolome in Liquid Biopsies by a Simple and Sensitive Two-Step Liquid-Liquid Extraction and LC-MS/MS. Biomolecules 2019, 9, 779. https://doi.org/10.3390/biom9120779
Samarra I, Ramos-Molina B, Queipo-Ortuño MI, Tinahones FJ, Arola L, Delpino-Rius A, Herrero P, Canela N. Gender-Related Differences on Polyamine Metabolome in Liquid Biopsies by a Simple and Sensitive Two-Step Liquid-Liquid Extraction and LC-MS/MS. Biomolecules. 2019; 9(12):779. https://doi.org/10.3390/biom9120779
Chicago/Turabian StyleSamarra, Iris, Bruno Ramos-Molina, M Isabel Queipo-Ortuño, Francisco J Tinahones, Lluís Arola, Antoni Delpino-Rius, Pol Herrero, and Núria Canela. 2019. "Gender-Related Differences on Polyamine Metabolome in Liquid Biopsies by a Simple and Sensitive Two-Step Liquid-Liquid Extraction and LC-MS/MS" Biomolecules 9, no. 12: 779. https://doi.org/10.3390/biom9120779