Antifungal Agents in Agriculture: Friends and Foes of Public Health
Abstract
:1. Introduction
2. Agricultural Fungicides
2.1. The Use of Antifungal Agents in Agriculture Poses a Potential Threat to Human Health
2.2. Antifungal Resistance
2.2.1. Methyl Benzimidazole Carbamate (MBC)
2.2.2. Succinate Dehydrogenase Inhibitor (SDHI)
2.2.3. Anilinopyrimidine (AP)
2.2.4. Qo Inhibitor (QoI)
2.2.5. Morpholine
2.3. Azole Resistance of Aspergillus: Implications in Clinic and Fields
3. New Antifungal Strategies
3.1. Endophytic Fungi in Agriculture
3.2. Chemoinformatics Approaches for Obtaining New Fungicides
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Redecker, D. Glomalean Fungi from the Ordovician. Science 2000, 289, 1920–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackwell, M. The Fungi: 1, 2, 3 … 5.1 million species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef]
- Jampilek, J. Potential of agricultural fungicides for antifungal drug discovery. Expert. Opin. Drug Discov. 2016, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Ahmadjian, V.; Alexopoulos, C.J. Fungus. Encyclopaedia Britannica, 2018. Available online: https://www.britannica.com/science/fungus/Importance-of-fungi (accessed on 10 January 2019).
- Köhler, J.R.; Casadevall, A.; Perfect, J. The Spectrum of Fungi That Infects Humans. Cold Spring Harb. Perspect. Med. 2014, 5, a019273. [Google Scholar] [CrossRef] [PubMed]
- Mazu, T.K.; Bricker, B.A.; Flores-Rozas, H.; Ablordeppey, S.Y. The Mechanistic Targets of Antifungal Agents: An Overview. Mini Rev. Med. Chem. 2016, 16, 555–578. [Google Scholar] [CrossRef] [PubMed]
- Pal, M. Morbity and Moratality Due to Fungal Infections. J. Appl. Microbiol. Biochem. 2017, 1, 1–3. [Google Scholar]
- Maertens, J.; Vrebos, M.; Boogaerts, M. Assessing risk factors for systemic fungal infections. Eur. J. Cancer Care 2001, 10, 56–62. [Google Scholar] [CrossRef]
- Almeida, F.; Rodrigues, M.L.; Coelho, C. The Still Underestimated Problem of Fungal Diseases Worldwide. Front. Microbiol. 2019, 10, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selb, R.; Fuchs, V.; Graf, B.; Hamprecht, A.; Hogardt, M.; Sedlacek, L.; Schwarz, R.; Idelevich, E.A.; Becker, S.L.; Held, J.; et al. Molecular typing and in vitro resistance of Cryptococcus neoformans clinical isolates obtained in Germany between 2011 and 2017. Int. J. Med. Microbiol. 2019, 309, 151336. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Scorzoni, L.; de Paula e Silva, A.C.; Marcos, C.M.; Assato, P.A.; De Melo, W.C.M.A.; De Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front. Microbiol. 2017, 8, 271. [Google Scholar] [CrossRef] [PubMed]
- Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Verweij, P.E.; Snelders, E.; Kema, G.H.; Mellado, E.; Melchers, W.J. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Heal. 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Silva, M.F.d.O.e.; Costa, L.M.d. A indústria de defensivos agrícolas. Agrícolas. BNDES 2012, 35, 233–276. [Google Scholar]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of Fungicide Resistance. Adv. Virus Res. 2015, 90, 29–92. [Google Scholar]
- James, C. Global Status of Commercialized Biotech/GM Crops: 2010. The International Service for the Acquisition of Agri-biotech Applications (ISAAA): Ithaca, NY, USA, 2010. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org/ (accessed on 17 December 2018).
- Shuping, D.S.S.; Eloff, J.N. The Use of Plants to Protect Plants and Food Against Fungal Pathogens: A Review. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Doehlemann, G.; Okmen, B.; Zhu, W.; Sharon, A. Plant Pathogenic Fungi. Microbiol. Spectr. 2017, 5. [Google Scholar]
- Hof, H. Critical Annotations to the Use of Azole Antifungals for Plant Protection. Antimicrob. Agents Chemother. 2001, 45, 2987–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas, A.D.R.E.; Spolti, P.; Del Ponte, E.M.; Donato, K.Z.; Schrekker, H.; Fuentefria, A.M. Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review. Braz. J. Microbiol. 2016, 47, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa-Rojas, R.; Sosa-Morales, M.; López-Malo, A.; Tang, J. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree. Int. J. Food Microbiol. 2012, 155, 269–272. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.K.; Rutkoski, J.; Hodson, D.P.; He, X.; Jørgensen, L.N.; Hovmøller, M.S.; Huerta-Espino, J.; Jørgenssen, L.N. Disease Impact on Wheat Yield Potential and Prospects of Genetic Control. Annu. Rev. Phytopathol. 2016, 54, 303–322. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.J. A Review on Colletotrichum spp. Virulence mechanism against host plant defensive factors. J. Med. Plants Stud. 2018, 6, 64–67. [Google Scholar] [CrossRef]
- Griffiths, S.A.; Cox, R.J.; Overdijk, E.J.R.; Mesarich, C.H.; Saccomanno, B.; Lazarus, C.M.; de Wit, P.J.G.M.; Collemare, J. Assignment of a dubious gene cluster to melanin biosynthesis in the tomato fungal pathogen Cladosporium fulvum. PLoS ONE 2019, 13, e0209600. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Yin, Q.-S.; Qu, Y.; Li, G.-Z.; Hao, L. Arbuscular mycorrhiza-mediated resistance in tomato against Cladosporium fulvum-induced mould disease. J. Phytopathol. 2018, 166, 67–74. [Google Scholar] [CrossRef]
- Nikitin, M.; Deych, K.; Grevtseva, I.; Girsova, N.; Kuznetsova, M.; Pridannikov, M.; Dzhavakhiya, V.; Statsyuk, N.; Golikov, A. Preserved Microarrays for Simultaneous Detection and Identification of Six Fungal Potato Pathogens with the Use of Real-Time PCR in Matrix Format. Biosensors 2018, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Saremi, H. Fusarium diseases as the main soil borne fungal pathogen on plants and their control management with soil solarization in Iran. Afr. J. Biotechnol. 2011, 10, 18391–18398. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Mason-D’Croz, D.; Robinson, S. Food system consequences of a fungal disease epidemic in a major crop. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150467. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yan, M.; Jiang, J.; Zhang, Z.; Huang, J.; Zhang, L.; Deng, Y.; Zhou, X.; He, F. Mycophenolic Acid as a Promising Fungal Dimorphism Inhibitor to Control Sugar Cane Disease Caused by Sporisorium scitamineum. J. Agric. Food Chem. 2019, 67, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Barnabas, L.; Ashwin, N.M.R.; Kaverinathan, K.; Trentin, A.R.; Pivato, M.; Sundar, A.R.; Malathi, P.; Viswanathan, R.; Rosana, O.O.B.; Neethukrishna, K.; et al. Proteomic analysis of a compatible interaction between sugarcane andSporisorium scitamineum. Proteomic 2016, 16, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Large, E.C. Control of Potato Blight (Phytophthora infestans) by Spraying with Suspensions of Metallic Copper. Nature 1943, 151, 80–81. [Google Scholar] [CrossRef]
- Klittich, C.J. Milestones in Fungicide Discovery: Chemistry that Changed Agriculture. Plant Heal. Prog. 2008, 9, 31. [Google Scholar] [CrossRef]
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 2918. [Google Scholar] [CrossRef] [PubMed]
- Deising, H.B.; Reimann, S.; Pascholati, S.F. Mechanisms and significance of fungicide resistance. Braz. J. Microbiol. 2008, 39, 286–295. [Google Scholar] [CrossRef]
- SINDIVEG. National Union of theProduct Industry for Plant Protection. Available online: http://www.sindiveg.org.br/ (accessed on 17 October 2018).
- Munger, R.; Isacson, P.; Hu, S.; Burns, T.; Hanson, J.; Lynch, C.F.; Cherryholmes, K.; Van Dorpe, P.; Hausler, W.J. Intrauterine growth retardation in Iowa communities with herbicide-contaminated drinking water supplies. Environ. Heal. Perspect. 1997, 105, 308–314. [Google Scholar] [CrossRef]
- Igbedioh, S.O. Effects of Agricultural Pesticides on Humans, Animals, and Higher Plants in Developing Countries. Arch. Environ. Heal. Int. J. 1991, 46, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Lari, S.Z.; Khan, N.A.; Gandhi, K.N.; Meshram, T.S.; Thacker, N.P. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. J. Environ. Heal. Sci. Eng. 2014, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Vincelli, P. Some Principles of Fungal Resistance. Plant Pathology Extension. 2014, pp. 1–10. Available online: https://plantpathology.ca.uky.edu/files/ppfs-misc-02.pdf (accessed on 10 January 2019).
- Cowen, L.E. The evolution of fungal drug resistance: Modulating the trajectory from genotype to phenotype. Nat. Rev. Genet. 2008, 6, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. Overcoming antifungal resistance. Drug Discov. Today Technol. 2014, 11, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brent, K.J.; Hollomon, D.W.; Shaw, M.W. Predicting the Evolution of Fungicide Resistance. ACS Symposium Series 1990, 421, 303–319. [Google Scholar]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? The Fungicide Resistance Action Committee: Brussels, Belgium, 2007. [Google Scholar]
- Sanglard, D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front. Med. 2016, 3, 165. [Google Scholar] [CrossRef] [PubMed]
- Davidse, L.C. Benzimidazole Fungicides: Mechanism of Action and Biological Impact. Annu. Rev. Phytopathol. 1986, 24, 43–65. [Google Scholar] [CrossRef]
- Gupta, P.K.; Aggarwal, M. CHAPTER 52—Toxicity of fungicides. In Veterinary Toxicology; Gupta, R.C., Ed.; Academic Press: Oxford, UK, 2007; pp. 587–601. [Google Scholar]
- Leroux, P.; Chapeland, F.; Desbrosses, D.; Gredt, M. Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop. Prot. 1999, 18, 687–697. [Google Scholar] [CrossRef]
- Koenraadt, H. Characterization of Mutations in the Beta-Tubulin Gene of Benomyl-Resistant Field Strains of Venturia inaequalis and Other Plant Pathogenic Fungi. Phytopathology 1992, 82, 1348. [Google Scholar] [CrossRef]
- Ma, Z.; Michailides, T.J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop. Prot. 2005, 24, 853–863. [Google Scholar] [CrossRef]
- Avenot, H.F.; Michailides, T.J. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop. Prot. 2010, 29, 643–651. [Google Scholar] [CrossRef]
- Sierotzki, H.; Scalliet, G. A Review of Current Knowledge of Resistance Aspects for the Next-Generation Succinate Dehydrogenase Inhibitor Fungicides. Phytopathology 2013, 103, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Bardas, G.A.; Veloukas, T.; Koutita, O.; Karaoglanidis, G.S. Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag. Sci. 2010, 66, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Avenot, H.F.; Michailides, T.J. Resistance to Boscalid Fungicide in Alternaria alternata Isolates from Pistachio in California. Plant Dis. 2007, 91, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.H.; Hagerty, G.C.; Follas, G.B.; Moore, M.S.; Christie, M.S.; Beresford, R.M. Succinate dehydrogenase inhibitor (SDHI) fungicide resistance prevention strategy. New Zealand Plant Prot. 2011, 64, 119–124. [Google Scholar] [Green Version]
- Miyamoto, T.; Ishii, H.; Seko, T.; Kobori, S.; Tomita, Y. Occurrence of Corynespora cassiicola isolates resistant to boscalid on cucumber in Ibaraki Prefecture, Japan. Plant Pathol. 2009, 58, 1144–1151. [Google Scholar] [CrossRef]
- Chapeland, F.; Fritz, R.; Lanen, C.; Gredt, M.; Leroux, P. Inheritance and Mechanisms of Resistance to Anilinopyrimidine Fungicides in Botrytis Cinerea (Botryotinia Fuckeliana). Pestic. Biochem. Physiol. 1999, 64, 85–100. [Google Scholar] [CrossRef]
- FRAC. Fungicide Resistance Action Committee. Available online: http://www.frac.info/home (accessed on 10 January 2019).
- Latorre, B.; Spadaro, I.; Rioja, M. Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop. Prot. 2002, 21, 957–961. [Google Scholar] [CrossRef]
- Fiaccadori, R.; Cicognani, E.; Collina, M.; Brunelli, A. Study on the sensitivity of Venturia inaequalis to anilinopyrimidine fungicides in Italy. Commun. Agric. Appl. Biol. Sci. 2007, 72, 997–1001. [Google Scholar]
- Mosbach, A.; Edel, D.; Farmer, A.D.; Widdison, S.; Barchietto, T.; Dietrich, R.A.; Corran, A.; Scalliet, G. Anilinopyrimidine Resistance in Botrytis cinerea Is Linked to Mitochondrial Function. Front. Microbiol. 2017, 8, 2361. [Google Scholar] [CrossRef]
- Leroux, P.; Albertini, C.; Lanen, C.; Bach, J.; Gredt, M.; Chapeland, F.; Chapeland-Leclerc, F. Mechanisms of resistance to fungicides in field strains ofBotrytis cinerea. Pest Manag. Sci. 2002, 58, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ortuño, D.; Torés, J.A.; De Vicente, A.; Pérez-García, A. Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. Int. Microbiol. 2008, 11, 1–9. [Google Scholar] [PubMed]
- Price, C.L.; Parker, J.E.; Warrilow, A.G.; Kelly, D.E.; Kelly, S.L. Azole fungicides—Understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag. Sci. 2015, 71, 1054–1058. [Google Scholar] [CrossRef]
- Cools, H.J.; Hawkins, N.; Fraaije, B.A. Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathol. 2013, 62, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin; Yar, M.S.; Mazumder, A. Benzimidazoles: A biologically active compounds. Arab. J. Chem. 2017, 10, S157–S173. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Pandurangan, A.; Rana, K.; Anand, P.; Ahamad, A.; Tiwari, A.K. Benzimidazole: A short review of their antimicrobial activities. Int. Curr. Pharm. J. 2012, 1, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Vela-Corcía, D.; Romero, D.; de Vicente, A.; Pérez-García, A. Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Sci. Rep. 2018, 8, 7161. [Google Scholar] [CrossRef] [PubMed]
- Ermler, S.; Scholze, M.; Kortenkamp, A. Seven benzimidazole pesticides combined at sub-threshold levels induce micronuclei in vitro. Mutagenesis 2013, 28, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, N.J.; Fraaije, B.A. Predicting Resistance by Mutagenesis: Lessons from 45 Years of MBC Resistance. Front. Microbiol. 2016, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.W.; Clough, J.M.; Godwin, J.R.; Hall, A.A.; Hamer, M.; Parr-Dobrzanski, B. The strobilurin fungicides. Pest Manag. Sci. 2002, 58, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Balba, H. Review of strobilurin fungicide chemicals. J. Environ. Sci. Heal. Part B 2007, 42, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ortuño, D.; Torés, J.A.; Antonio; Vicente, D.; Pérez-García, A. The QoI Fungicides, the Rise and Fall of a Successful Class of Agricultural Fungicides; Odile Carisse: Rijeka, Croatia, 2010. [Google Scholar]
- Grasso, V.; Palermo, S.; Sierotzki, H.; Garibaldi, A.; Gisi, U. Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. Pest Manag. Sci. 2006, 62, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Ishii, H. Impact of Fungicide Resistance in Plant Pathogens on Crop Disease Control and Agricultural Environment. Jpn. Agric. Res. Q. JARQ 2006, 40, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Gisi, U.; Sierotzki, H.; Cook, A.; McCaffery, A. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag. Sci. 2002, 58, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Naim, M.J.; Alam, O.; Alam, M.J.; Alam, P.; Shrivastava, N. A review on pharmacological profile of morpholine derivates. Int. J. Pharmacol. Pharm. Sci. 2015, 3, 40–51. [Google Scholar]
- Mercer, E.I. Morpholine antifungals and their mode of action. Biochem. Soc. Trans. 1991, 19, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Lago, M.; Aguiar, A.; Natário, A.; Fernandes, C.; Faria, M.; Pinto, E. Does fungicide application in vineyards induce resistance to medical azoles in Aspergillus species? Environ. Monit. Assess. 2014, 186, 5581–5593. [Google Scholar] [CrossRef]
- Azevedo, M.-M.; Faria-Ramos, I.; Cruz, L.C.; Pina-Vaz, C.; Rodrigues, A.G. Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings. J. Agric. Food Chem. 2015, 63, 7463–7468. [Google Scholar] [CrossRef]
- Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol. 2018, 45, 70–76. [Google Scholar] [CrossRef]
- Hollomon, D. Does agricultural use of azole fungicides contribute to resistance in the human pathogen Aspergillus fumigatus? Pest Manag. Sci. 2017, 73, 1987–1993. [Google Scholar] [CrossRef]
- Enserink, M. Infectious diseases. Farm fungicides linked to resistance in a human pathogen. Science 2009, 326, 1173. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Sugui, J.A. Aspergillus fumigatus—What Makes the Species a Ubiquitous Human Fungal Pathogen? PLoS Pathog. 2013, 9, e1003743. [Google Scholar] [CrossRef] [PubMed]
- Misch, E.A.; Safdar, N. Updated guidelines for the diagnosis and management of aspergillosis. J. Thorac. Dis. 2016, 8, E1771–E1776. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; El Chazli, Y.; Babu, A.F.; Coste, A.T. Azole Resistance in Aspergillus fumigatus: A Consequence of Antifungal Use in Agriculture? Front. Microbiol. 2017, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Snelders, E.; van der Lee, H.A.; Kuijpers, J.; Rijs, A.J.; Varga, J.; Samson, R.A.; Mellado, E.; Donders, A.R.; Melchers, W.J.; Verweij, P.E. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008, 5, e219. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Mellado, E.; Cuenca-Estrella, M. Triazole Resistance in Aspergillus spp.: A Worldwide Problem? J. Fungi 2016, 2, 21. [Google Scholar] [CrossRef]
- Hagiwara, D.; Watanabe, A.; Kamei, K.; Goldman, G.H. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in. Front. Microbiol. 2016, 7, 1382. [Google Scholar] [CrossRef]
- Bustamante, B.; Illescas, L.R.; Posadas, A.; Campos, P.E. Azole resistance among clinical isolates of Aspergillus fumigatus in Lima-Peru. Med. Mycol. 2019. [Google Scholar] [CrossRef]
- Verweij, P.E.; Chowdhary, A.; Melchers, W.J.; Meis, J.F. Azole Resistance in Aspergillus fumigatus: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles? Clin. Infect. Dis. 2016, 62, 362–368. [Google Scholar] [CrossRef]
- Van der Linden, J.W.; Snelders, E.; Kampinga, G.A.; Rijnders, B.J.; Mattsson, E.; Debets-Ossenkopp, Y.J.; Kuijper, E.J.; Van Tiel, F.H.; Melchers, W.J.; Verweij, P.E. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009. Emerg. Infect. Dis. 2011, 17, 1846–1854. [Google Scholar] [CrossRef]
- Meireles, L.M.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Scherer, R. Change in the clinical antifungal sensitivity profile of Aspergillus flavus induced by azole and a benzimidazole fungicide exposure. Diagn. Microbiol. Infect. Dis. 2019, 95, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, T.F.; Silva, L.P.; de Castro, P.A.; do Carmo, R.A.; Marini, M.M.; da Silveira, J.F.; Ferreira, B.H.; Rodrigues, F.; Lind, A.L.; Rokas, A.; et al. The Aspergillus fumigatus Mismatch Repair MSH2 Homolog Is Important for Virulence and Azole Resistance. mSphere 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Latgé, J.-P. Aspergillus fumigatus and Aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350. [Google Scholar] [CrossRef] [PubMed]
- OERKE, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Hahn, M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Boil. 2014, 7, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagpure, A.; Choudhary, B.; Gupta, R.K. Chitinases: In agriculture and human healthcare. Crit. Rev. Biotechnol. 2014, 34, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater. Lett. 2013, 115, 13–17. [Google Scholar] [CrossRef]
- Faúndez, G.; Troncoso, M.; Navarrete, P.; Figueroa, G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 2004, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.; Bhadauria, S.; Gaur, M.S.; Pasricha, R. Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM 2010, 62, 102–104. [Google Scholar] [CrossRef] [Green Version]
- Borkow, G.; Gabbay, J. Copper as a biocidal tool. Curr. Med. Chem. 2005, 12, 2163–2175. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Kohl, J.; Jones, J.B.; Aubertot, J.-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, P.; Saha, M.; Maiti, D. Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostructure Chem. 2014, 4, 86. [Google Scholar] [CrossRef]
- Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci. 2015, 9, 7–12. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Cao, X.; Ma, C.; Zhang, Z.; Zhao, N.; Ali, A.; Hou, T.; Xiang, Z.; Zhuang, J.; Wu, S.; et al. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals. Front. Plant Sci. 2017, 8, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servin, A.; Elmer, W.; Mukherjee, A.; De La Torre-Roche, R.; Hamdi, H.; White, J.C.; Bindraban, P.; Dimkpa, C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanoparticle Res. 2015, 17, 92. [Google Scholar] [CrossRef]
- Ditta, A.; Arshad, M. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol. Rev. 2016, 5, 209. [Google Scholar] [CrossRef]
- Altintas, A.; Tabanca, N.; Tyihak, E.; Ott, P.G.; Moricz, A.M.; Mincsovics, E.; Wedge, D.E. Characterization of volatile constituents from Origanum onites and their antifungal and antibacterial activity. J. AOAC Int. 2013, 96, 1200–1208. [Google Scholar] [CrossRef]
- Jurick, W.M., 2nd; Macarisin, O.; Gaskins, V.L.; Park, E.; Yu, J.; Janisiewicz, W.; Peter, K.A. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates from Commercially Stored Apple Fruit. Phytopathology 2017, 107, 362–368. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Molefi, M.; Chofle, A.A.; Molloy, S.F.; Kalluvya, S.; Changalucha, J.M.; Cainelli, F.; Leeme, T.; Lekwape, N.; Goldberg, D.W.; Haverkamp, M.; et al. AMBITION-cm: Intermittent high dose AmBisome on a high dose fluconazole backbone for cryptococcal meningitis induction therapy in sub-Saharan Africa: Study protocol for a randomized controlled trial. Trials 2015, 16, 525. [Google Scholar] [CrossRef] [PubMed]
- Dooley, H.; Shaw, M.W.; Spink, J.; Kildea, S.; Shaw, M. Effect of azole fungicide mixtures, alternations and dose on azole sensitivity in the wheat pathogenZymoseptoria tritici. Plant Pathol. 2015, 65, 124–136. [Google Scholar] [CrossRef]
- Ratajczak, M.Z.; Ratajczak, J. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin. Transl. Med. 2016, 5, 1487. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Weiberg, A.; Lin, F.-M.; Thomma, B.P.H.J.; Huang, H.-D.; Jin, H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef] [PubMed]
- Card, S.; Johnson, L.; Teasdale, S.; Caradus, J. Deciphering endophyte behaviour: The link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol. 2016, 92, 114. [Google Scholar] [CrossRef] [PubMed]
- Backman, P.A.; Sikora, R.A. Endophytes: An emerging tool for biological control. Boil. Control. 2008, 46, 1–3. [Google Scholar] [CrossRef]
- Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu. Rev. Genet. 2016, 50, 211–234. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.K.; Gupta, M.K.; Prakash, V.; Saxena, S. Endophytic Fungi: A Source of Potential Antifungal Compounds. J. Fungi 2018, 4, 77. [Google Scholar] [CrossRef]
- Cai, R.; Jiang, H.; Zang, Z.; Li, C.; She, Z. New Benzofuranoids and Phenylpropanoids from the Mangrove Endophytic Fungus, Aspergillus sp. ZJ-68. Mar. Drugs 2019, 17, 478. [Google Scholar] [CrossRef]
- Xu, Z.; Xiong, B.; Xu, J. Chemical Investigation of Secondary Metabolites Produced By Mangrove Endophytic Fungus Phyllosticta Capitalensis. Nat. Prod. Res. 2019, 1–5. [Google Scholar] [CrossRef]
- Chauhan, N.M.; Gutama, A.D.; Aysa, A. Endophytic fungal diversity isolated from different agro-ecosystem of Enset (Ensete ventericosum) in Gedeo zone, SNNPRS, Ethiopia. BMC Microbiol. 2019, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Mafezoli, J.; Xu, Y.M.; Hilario, F.; Freidhof, B.; Espinosa-Artiles, P.; Dos Santos, L.C.; de Oliveira, M.C.F.; Gunatilaka, A.A.L. Modulation of polyketide biosynthetic pathway of the endophytic fungus, Anteaglonium sp. FL0768, by copper (II) and anacardic acid. Phytochem. Lett. 2018, 28, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, M.; Saikkonen, K.; Helander, M.; Pirttilä, A.M.; Wäli, P.R. Epichloë grass endophytes in sustainable agriculture. Nat. Plants 2016, 2, 15224. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Genet. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, R.W.; Rahul, M.S.; Ambalal, N.S.; Waghund, R.R.; Shelake, R.M.; Sabalpara, A.N. Trichoderma: A significant fungus for agriculture and environment. Afr. J. Agric. Res. 2016, 11, 1952–1965. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.L.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma-based Products and their Widespread Use in Agriculture. Open Mycol. J. 2014, 8, 71–126. [Google Scholar] [CrossRef] [Green Version]
- Almeida, F.B.D.R.; Cerqueira, F.M.; Silva, R.D.N.; Ulhoa, C.J.; Lima, A.L. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: Evaluation of coiling and hydrolytic enzyme production. Biotechnol. Lett. 2007, 29, 1189–1193. [Google Scholar] [CrossRef]
- Tang, W.; Yang, H.; Ryder, M. Research and application of Trichoderma spp. in biological control of plant pathogens. In Bio-Exploitation of Filamentous Fungi; Pointing, S.B., Hyde, K.D., Eds.; Fungal Diversity Press: Hong Kong, China, 2001; pp. 403–435. [Google Scholar]
- Nicoletti, R.; Fiorentino, A. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta. Agriculture 2015, 5, 918–970. [Google Scholar] [CrossRef] [Green Version]
- Lugtenberg, B.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, 194. [Google Scholar] [CrossRef]
- Morandini, L.M.; Neto, A.T.; Pedroso, M.; Antoniolli, Z.I.; Burrow, R.A.; Bortoluzzi, A.J.; Mostardeiro, M.A.; Da Silva, U.F.; Dalcol, I.I.; Morel, A.F. Lanostane-type triterpenes from the fungal endophyte Scleroderma UFSMSc1 (Persoon) Fries. Bioorganic Med. Chem. Lett. 2016, 26, 1173–1176. [Google Scholar] [CrossRef]
- Macías-Rubalcava, M.L.; Sánchez-Fernández, R.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol. 2017, 33, 15. [Google Scholar] [CrossRef]
- Wu, S.-H.; He, J.; Li, X.-N.; Huang, R.; Song, F.; Chen, Y.-W.; Miao, C.-P. Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry 2014, 105, 197–204. [Google Scholar] [CrossRef]
- Pereira, C.B.; de Oliveira, D.M.; Hughes, A.F.; Kohlhoff, M.; Vieira, M.L.; Vaz, A.B.M.; Ferreira, M.C.; Carvalho, C.R.; Rosa, L.H.; Rosa, C.A.; et al. Endophytic fungal compounds active against Cryptococcus neoformans and C. gattii. J. Antibiot 2015, 68, 436–444. [Google Scholar] [CrossRef]
- Strobel, G.A.; Miller, R.V.; Martinez-Miller, C.; Condron, M.M.; Teplow, D.B.; Hess, W.M. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 1999, 145, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A.T. Inhibitors of P-glucan synthesis. In Emerging Targets in Antibacterial atid Antifungal Chemotherapy; Sutcliffe, J.A., Georgopapadakou, N.H., Eds.; Spring: London, UK, 1992; pp. 349–373. [Google Scholar]
- Hardoim, P.R.; Van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Boil. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [Green Version]
- Joshua, C.J. Metabolomics: A Microbial Physiology and Metabolism Perspective. Methods Mol. Biol. 2019, 1859, 71–94. [Google Scholar]
- Baidoo, E.E.K. Microbial Metabolomics: A General Overview. Methods Mol. Biol. 2019, 1859, 1–8. [Google Scholar]
- Baidoo, E.E.K.; Keasling, J.D. Microbial metabolomics: Welcome to the real world! Metabolomics 2013, 9, 755–756. [Google Scholar] [CrossRef]
- Johanningsmeier, S.D.; Harris, G.K.; Klevorn, C.M. Metabolomic Technologies for Improving the Quality of Food: Practice and Promise. Annu. Rev. Food Sci. Technol. 2016, 7, 413–438. [Google Scholar] [CrossRef] [Green Version]
- Caudy, A.A.; Mülleder, M.; Ralser, M. Metabolomics in Yeast. Cold Spring Harb. Protoc. 2017, 9, pdb.top083576. [Google Scholar] [CrossRef]
- Powers, R. NMR metabolomics and drug discovery. Magn. Reson. Chem. 2009, 47, S2–S11. [Google Scholar] [CrossRef]
- Tian, H.; Lam, S.M.; Shui, G. Metabolomics, a Powerful Tool for Agricultural Research. Int. J. Mol. Sci. 2016, 17, 1871. [Google Scholar] [CrossRef]
- Arbona, V.; Gómez-Cadenas, A. Metabolomics of Disease Resistance in Crops. Curr. Issues Mol. Boil. 2015, 19, 13–30. [Google Scholar]
- Maeda, Y.; Makhlynets, O.V.; Matsui, H.; Korendovych, I.V. Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches. Annu. Rev. Biomed. Eng. 2016, 18, 311–328. [Google Scholar] [CrossRef]
- Speck-Planche, A.; Guilarte-Montero, L.; Yera-Bueno, R.; Rojas-Vargas, J.A.; García-López, A.; Molina-Pérez, E.; Uriarte, E. Rational design of new agrochemical fungicides using substructural descriptors. Pest Manag. Sci. 2011, 67, 438–445. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Zheng, Q.-C.; Chu, W.-T.; Zhang, H.-X. Drug design benefits from molecular dynamics: Some examples. Curr. Comput. Drug Des. 2013, 9, 532–546. [Google Scholar] [CrossRef]
- Aguiar-Pulido, V.; Gestal, M.; Cruz-Monteagudo, M.; Rabuñal, J.R.; Dorado, J.; Munteanu, C.R. Evolutionary computation and QSAR research. Curr. Comput. Drug Des. 2013, 9, 206–225. [Google Scholar] [CrossRef]
- Namba, A.M.; Da Silva, V.B.; Da Silva, C.H.T.P. Dinâmica molecular: Teoria e aplicações em planejamento de fármacos. Eclética Química J. 2008, 33, 13–24. [Google Scholar] [CrossRef]
- Borowski, E. Novel approaches in the rational design of antifungal agents of low toxicity. Il Farm. 2000, 55, 206–208. [Google Scholar] [CrossRef]
- Guido, R.; Andricopulo, A.D.; Oliva, G. Planejamento de fármacos, biotecnologia e química medicinal: Aplicações em doenças infecciosas. Estudos Avançados 2010, 24, 81–98. [Google Scholar] [CrossRef]
Fungal Pathogen | Crops | Disease | Crop Loss (%) |
---|---|---|---|
Botrytis cinerea | Fruits and ornamental flowers [28] | Gray mold [28] | Up to 30% to 40% loss of strawberries [29] |
Blumeria graminis | Wheat and barley [28] | Mildews of grasses [28] | 18% potential and 13% de facto loss of grains under current disease control [30] |
Colletotrichum spp. | Fruits and vegetables [28] | Anthracnose spots and blights [28] | Losses >80% in tropical, sub-tropical and Mediterranean regions [31] |
Cladosporium fulvum | Tomato [32] | Tomato leaf mold [32] | Loss of 10–25% during regular years [33] |
Fusarium spp. | Potato [34] | Dry rot of tubers [34] | Crop losses of up to 25%. During storage, >60% of tubers can be infected [35] |
Fusarium graminearum | Cereals [28] | Fusarium head blight; Fusarium ear blight or head scab [28] | In China, 5–10% loss. In Europe and South America, up to 50–60% and 70% of loss [30] |
Magnaporthe oryzae | Rice [28] | Rice blast [28] | Losses vary between 10% and 35% depending on the variety and environmental conditions [25] |
Mycosphaerella graminicola | Wheat [28] | Septoria tritici blotch [28] | Up to 30–50% loss [25] |
Puccinia spp. | Rust [28] | 70% loss [36] | |
Phakopsora pachyrhizi | Soybean [36] | Rust [36] | Up to 70% loss [36] |
Pytophtora infestans | Potato [34] | Late blight [34] | 16% loss [34] |
Rhizoctonia solani | Stem canker and black scurf [34] | 30% loss [34] | |
Sporisorium scitamineum | Sugarcane [37] | Sugarcane smut [37] | Up to 62% loss [38] |
Ustilago maydis | Corn [28] | Corn smut [28] | Up to 20% loss [36] |
Antifungal Class | Mechanism of Action | Examples of Antifungal Drugs | Examples of Resistant Fungal Species | Mechanism of Resistance |
---|---|---|---|---|
Methyl benzimidazole carbamate | Inhibits microtubule assembly [53] | Benomyl, carbendazim, flubendazole [54] | Botrytis cinerea, Venturia inaequalis [55,56] | Point mutation in β-tubulin gene [56,57] |
Succinate dehydrogenase inhibitor | Inhibition of fungal respiration by binding to the ubiquinone-binding site in the complex II of mitochondria [58] | Carboxin, benodanil, flutolanil, fenfuran, fluxapryroxad, fluxypyram, thifluzamide, furametpyr [59] | Botrytis cinerea, Alternaria alternate, Didymella brioniae, Podosphaeera xanthii, Corynespora cassiicola [60,61,62,63] | Mutations in succinate dehydrogenase gene (amino acid substitution H257L or H257Y) [58,62] |
Anilinopyrimidine | Inhibition of methionine synthesis and secretion of hydrolytic enzymes [64] | Cyprodinil, mepanipyrim and pyrimethanil [65] | Botrytis cinerea, Venturia inaequalis, Oculimacula spp. [66,67,68] | This mechanism is not completely clear; it has been suggested to involve the overproduction of ABC (ATP-binding cassette) transporters or the modification of the target sites [69] |
Qo inhibitor | Blocks fungal energy production through inhibition of mitochondrial respiration by binding to the Qo site of complex III [70] | Azoxystrobin, mandestrobin, pyraclostrobin, kresoxim-methyl, dimoxystrobin, famoxadone, fluoxastrobin, fenamidone, pyribencarb [65] | Erysiphe necator, Pseudopernospora cubensis, Venturia inaequalis, Alternaria solani, Pyrenophora teres, Pythium aphanidermatum, Pyrenophora tritici-repentis [65] | Point mutations in the mitochondrial cytochrome b (cyt b) gene (G143A, F129L, G137R) [57,70] |
Morpholine | Inhibition of ergosterol synthesis by blocking ∆14-reductase and ∆8-∆7-isomerase [6] | Aldomorph, fenpropimorph, dodemorph, tridemorph [65] | Decreased sensitivity in powdery mildews [16] | Unknown [16] |
Azole | Suppression of ergosterol synthesis by inhibiting 14α-demethylase [12] | Imazalil, oxpoconazole, triflumizole, diniconazole, epoxiconazole, flutriafol [65] | Zymoseptoria tritici, Venturia inaequalis, Penicillium digitatum, Cercospora beticola, Monilinia fructicola, Brumeriela jaapii, Botrytis cinérea, Penicillium digitatum, Zymoseptoria tritici [71,72] | Mutations in cyp51, upregulation of cyp51 and the genes encoding membrane transporters [72] |
Endophytic Fungi | Plant | Metabolites | Antifungal Activities |
---|---|---|---|
Basidiomycete fungus [140] | Eucalyptus grandis [140] | Scleroderma A and B Triterpenoid lanostane [140] | Candida albicans C. tropicalis C. grusei C. parapsiosis [140] |
Xylaria spp. [141] | Azadirachta indica [127,142] | Bioactive compounds [141] | C. albicans Aspergillus niger Fusarium avenaceum [127,142] |
Mycosphaerella spp. [143] | Eugenia bimarginata [143] | Eicosanoid acids [143] | Cryptococcus neoformans C. gattii [143] |
Cryptosporiopsis quercina [144] | Wood species in Europe [144] | Cryptocandin lipopeptide [144] | Botrytis cinerea [144] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; De Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules 2019, 9, 521. https://doi.org/10.3390/biom9100521
Brauer VS, Rezende CP, Pessoni AM, De Paula RG, Rangappa KS, Nayaka SC, Gupta VK, Almeida F. Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules. 2019; 9(10):521. https://doi.org/10.3390/biom9100521
Chicago/Turabian StyleBrauer, Veronica Soares, Caroline Patini Rezende, Andre Moreira Pessoni, Renato Graciano De Paula, Kanchugarakoppal S. Rangappa, Siddaiah Chandra Nayaka, Vijai Kumar Gupta, and Fausto Almeida. 2019. "Antifungal Agents in Agriculture: Friends and Foes of Public Health" Biomolecules 9, no. 10: 521. https://doi.org/10.3390/biom9100521