The Liver Fluke Opisthorchis felineus Exosomal tRNA-Derived Small RNAs as Potential Mediators of Host Manipulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Isolation of Exosome-like Vesicles
2.3. Small RNAs Extraction, Library Preparation and Sequencing
2.4. Prediction of the O. felineus tRNA
2.5. Search for tsRNAs in Small Noncoding RNAs from O. felineus Exosome-like Vesicles
2.6. Functional Analysis of tsRNAs from O. felineus Exosome-like Vesicles
2.7. Transcriptome Data Analysis
3. Results
3.1. Identification of tRNA Genes and Description of the Amino Acid Composition of Proteins Based on the O. felineus Genome Data
3.2. Small RNA Libraries from O. felineus Exosome-like Vesicles Are Enriched in Fragments and Halves of tRNAs of the Aspartic Acid, Isoleucine, Lysine, Histidine, and Tyrosine
3.3. Most tsRNAs from O. felineus Exosome-like Vesicles Are 5′-tRF and 5′-tHF
3.4. Functional Characteristics of Major tsRNAs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| tRNA | Transfer RNA |
| tsRNAs | tRNA-derived small RNAs |
| mRNA | Messenger RNA |
| ESP | Excretory-secretory product |
| 5′-HF/3′-HF | tRNA halves |
| 5′-TF/3′-TF | tRNA fragments |
| 5′-LF/3′-LF | long tRNA fragments |
| ELVs | Exosome-like vesicles |
| Asp | Aspartic acid |
| Ile | Isoleucine |
| Lys | Lysine |
| His | Histidine |
| Tyr | Tyrosine |
| Gly | Glycine |
| Gln | Glutamine |
| Cys | Cysteine |
References
- Xia, J.; Jiang, S.C.; Peng, H.J. Association between Liver Fluke Infection and Hepatobiliary Pathological Changes: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0132673. [Google Scholar] [CrossRef] [PubMed]
- Lishai, E.A.; Zaparina, O.G.; Kapushchak, Y.K.; Sripa, B.; Hong, S.J.; Cheng, G.; Pakharukova, M.Y. Comparative liver transcriptome analysis in hamsters infected with food-borne trematodes Opisthorchis felineus, Opisthorchis viverrini, or Clonorchis sinensis. PLoS Negl. Trop. Dis. 2024, 18, e0012685. [Google Scholar] [CrossRef] [PubMed]
- Fontenla, S.; Langleib, M.; de la Torre-Escudero, E.; Domínguez, M.F.; Robinson, M.W.; Tort, J. Role of Fasciola hepatica Small RNAs in the Interaction With the Mammalian Host. Front. Cell. Infect. Microbiol. 2022, 11, 812141. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, L.; Shao, Q.; Chen, Z.; Lv, X.; Li, J.; He, L.; Sun, Y.; Ji, Q.; Lu, P.; et al. Characterization of serum small extracellular vesicles and their small RNA contents across humans, rats, and mice. Sci. Rep. 2020, 10, 4197. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, D.; Shao, Z.; Wang, X.; Xu, J.; Li, Y.; Li, K. Expression profiles of exosomal tRNA-derived fragments and their biological functions in lipomas. Front. Cell Dev. Biol. 2022, 10, 942133. [Google Scholar] [CrossRef]
- Hou, J.; Li, Q.; Wang, J.; Lu, W. tRFs and tRNA Halves: Novel Cellular Defenders in Multiple Biological Processes. Curr. Issues Mol. Biol. 2022, 44, 5949–5962. [Google Scholar] [CrossRef]
- Li, G.; Das, S. Self-quenched tRNA reporters for imaging tRNA-derived RNA biogenesis. Methods Enzymol. 2025, 711, 324–335. [Google Scholar]
- Jin, H.; Yeom, J.H.; Shin, E.; Ha, Y.; Liu, H.; Kim, D.; Joo, M.; Kim, Y.H.; Kim, H.K.; Ryu, M.; et al. 5′-tRNAGly(GCC) halves generated by IRE1α are linked to the ER stress response. Nat. Commun. 2024, 15, 9273. [Google Scholar]
- Berg, M.D.; Brandl, C.J. Transfer RNAs: Diversity in form and function. RNA Biol. 2021, 18, 316–339. [Google Scholar]
- Fernandez-Calero, T.; Garcia-Silva, R.; Pena, A.; Robello, C.; Persson, H.; Rovira, C.; Naya, H.; Cayota, A. Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific extracellular signature. Mol. Biochem. Parasitol. 2015, 199, 19–28. [Google Scholar] [CrossRef]
- Lambertz, U.; Oviedo Ovando, M.E.; Vasconcelos, E.J.; Unrau, P.J.; Myler, P.J.; Reiner, N.E. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genom. 2015, 16, 151. [Google Scholar] [CrossRef]
- Nowacki, F.C.; Swain, M.T.; Klychnikov, O.I.; Niazi, U.; Ivens, A.; Quintana, J.F.; Hensbergen, P.J.; Hokke, C.H.; Buck, A.H.; Hoffmann, K.F. Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni. J. Extracell. Vesicles 2015, 4, 28665. [Google Scholar] [CrossRef]
- Artuyants, A.; Campos, T.L.; Rai, A.K.; Johnson, P.J.; Dauros-Singorenko, P.; Phillips, A.; Simoes-Barbosa, A. Extracellular vesicles produced by the protozoan parasite Trichomonas vaginalis contain a preferential cargo of tRNA-derived small RNAs. Int. J. Parasitol. 2020, 50, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Natali, L.; Luna Pizarro, G.; Moyano, S.; de la Cruz-Thea, B.; Musso, J.; Rópolo, A.S.; Eichner, N.; Meister, G.; Musri, M.M.; Feliziani, C.; et al. The exosome-like vesicles of Giardia assemblages A, B, and E are involved in the delivering of distinct small RNA from parasite to parasite. Int. J. Mol. Sci. 2023, 24, 9559. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xie, Y.; Zhang, S.; Song, X.; Xiao, B.; Yan, Z. tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Theranostics 2021, 11, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Pakharukova, M.Y.; Pakharukov, Y.V.; Mordvinov, V.A. Effects of miconazole/clotrimazole and praziquantel combinations against the liver fluke Opisthorchis felineus in vivo and in vitro. Parasitol. Res. 2018, 117, 2327–2331. [Google Scholar] [CrossRef]
- Pakharukova, M.Y.; Savina, E.; Ponomarev, D.V.; Gubanova, N.V.; Zaparina, O.; Zakirova, E.G.; Cheng, G.; Tikhonova, O.V.; Mordvinov, V.A. Proteomic characterization of Opisthorchis felineus exosome-like vesicles and their uptake by human cholangiocytes. J. Proteom. 2023, 283–284, 104927. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Li, N.; Yao, S.; Yu, G.; Lu, L.; Wang, Z. tRFtarget 2.0: Expanding the targetome landscape of transfer RNA-derived fragments. Nucleic Acids Res. 2024, 52, D345–D350. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, D.; Zaparina, O.; Kovner, A.; Hadieva, E.; Persidskij, M.; Pakharukova, M. The EGFR signaling pathway is involved in the biliary intraepithelial neoplasia associated with liver fluke infection. Pathogens 2025, 14, 620. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Deng, Y.; Xiang, Y.; Ye, D. The role and mechanism of action of tRNA-derived fragments in the diagnosis and treatment of malignant tumors. Cell Commun. Signal. 2023, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, D.V.; Lishai, E.A.; Kovner, A.V.; Kharkova, M.V.; Zaparina, O.; Kapuschak, Y.K.; Mordvinov, V.A.; Pakharukova, M.Y. Extracellular vesicles of the liver fluke Opisthorchis felineus stimulate the angiogenesis of human umbilical vein endothelial cells. Curr. Res. Parasitol. Vector-Borne Dis. 2023, 4, 100153. [Google Scholar] [CrossRef]
- Kusakisako, K.; Nakao, R.; Katakura, K. Detection of parasite-derived tRNA and rRNA fragments in the peripheral blood of mice experimentally infected with Leishmania donovani and Leishmania amazonensis using next-generation sequencing analysis. Parasitol. Int. 2023, 93, 102716. [Google Scholar] [CrossRef]
- Bermudez-Santana, C.; Attolini, C.S.; Kirsten, T.; Engelhardt, J.; Prohaska, S.J.; Steigele, S.; Stadler, P.F. Genomic organization of eukaryotic tRNAs. BMC Genom. 2010, 11, 270. [Google Scholar] [CrossRef]
- Abdelgawad, A.; Huang, Y.; Gololobova, O.; Yu, Y.; Witwer, K.W.; Parashar, V.; Batish, M. Defining the Parameters for Sorting of RNA Cargo Into Extracellular Vesicles. J. Extracell. Vesicles 2025, 14, e70113. [Google Scholar] [CrossRef]
- Lee, Y.J.; Shin, K.J.; Chae, Y.C. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp. Mol. Med. 2024, 56, 877–889. [Google Scholar] [CrossRef]
- Wang, C.; Yu, B.; Zhou, H.; Li, H.; Li, S.; Li, X.; Wang, W.; Feng, Y.; Yu, T. tRF-AspGTC promotes intracranial aneurysm formation by controlling TRIM29-mediated galectin-3 ubiquitination. Research 2025, 8, 0574. [Google Scholar] [CrossRef]
- Goodarzi, H.; Liu, X.; Nguyen, H.C.; Zhang, S.; Fish, L.; Tavazoie, S.F. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 2015, 161, 790–802. [Google Scholar] [CrossRef]
- Sharma, M.; Morgado, P.; Zhang, H.; Ehrenkaufer, G.; Manna, D.; Singh, U. Characterization of extracellular vesicles from Entamoeba histolytica identifies roles in intercellular communication that regulates parasite growth and development. Infect. Immun. 2020, 88, e00349-20. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Xie, Y.; Zhang, H.; Zhang, Y.; Zhang, Y.; Liu, L.; Hu, Q.; Zhou, L.; Gao, L.; Tan, W.; et al. Protective roles of tRNA-derived small RNA tRF-Ile-AAT-019 in pathological progression of psoriasis. Exp. Dermatol. 2023, 32, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Tosar, J.P.; Gámbaro, F.; Darré, L.; Pantano, S.; Westhof, E.; Cayota, A. Dimerization confers increased stability to nucleases in 5′ halves from glycine and glutamic acid tRNAs. Nucleic Acids Res. 2018, 46, 9081–9093. [Google Scholar] [CrossRef]
- Ivanov, P.; O’Day, E.; Emara, M.M.; Wagner, G.; Lieberman, J.; Anderson, P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc. Natl. Acad. Sci. USA 2014, 111, 18201–18206. [Google Scholar] [CrossRef]
- Valinezhad Orang, A.; Safaralizadeh, R.; Kazemzadeh-Bavili, M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int. J. Genom. 2014, 2014, 970607. [Google Scholar] [CrossRef]
- Hilal, N.; Chen, Z.; Chen, M.H.; Choudhury, S. RASopathies and cardiac manifestations. Front. Cardiovasc. Med. 2023, 10, 1176828. [Google Scholar] [CrossRef]
- Tran, N.; Ricafrente, A.; To, J.; Lund, M.; Marques, T.M.; Gama-Carvalho, M.; Cwiklinski, K.; Dalton, J.P.; Donnelly, S. Fasciola hepatica hijacks host macrophage miRNA machinery to modulate early innate immune responses. Sci. Rep. 2021, 11, 6712. [Google Scholar] [CrossRef]
- Chaiyadet, S.; Sotillo, J.; Smout, M.; Cooper, M.; Doolan, D.L.; Waardenberg, A.; Eichenberger, R.M.; Field, M.; Brindley, P.J.; Laha, T.; et al. Small extracellular vesicles but not microvesicles from Opisthorchis viverrini promote cell proliferation in human cholangiocytes. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wen, L.; Li, M.; Yin, J. PTEN deficiency induced by extracellular vesicle miRNAs from Clonorchis sinensis potentiates cholangiocarcinoma development by inhibiting ferroptosis. Int. J. Mol. Sci. 2024, 25, 10350. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Zhou, Q.Y.; Zhang, C.; Bian, Z.R.; Ren, X.X.; Yu, Q.; Hua, H.; Jiang, Z.; Zhang, B.; et al. Clonorchis sinensis extracellular vesicles associated with Csi-let-7a-5p activate pro-inflammatory macrophages to induce biliary injury. PLoS Negl. Trop. Dis. 2025, 19, e0013080. [Google Scholar] [CrossRef]
- Wu, Y.; Yi, X.; Li, M.; Xu, A.; Wu, A.; Zhong, Z.; Li, X. Effect and mechanism of Csi-miR-125a induced liver fibrosis in the exosomes of Clonorchis sinensis. Chin. J. Parasitol. Parasit. Dis. 2025, 43, 198–204. [Google Scholar]
- Salas, N.; Blasco Pedreros, M.; Dos Santos Melo, T.; Maguire, V.G.; Sha, J.; Wohlschlegel, J.A.; Pereira-Neves, A.; de Miguel, N. Role of cytoneme structures and extracellular vesicles in Trichomonas vaginalis parasite-parasite communication. eLife 2023, 12, e86067. [Google Scholar] [CrossRef]




| Pathway | Total Gene Number in the Pathway | Target Gene Number | Percentage of Genes in a Pathway That Are Target Genes |
|---|---|---|---|
| Cell cycle M7963 | 125 | 27 | 21.6% |
| Cell migration M2001 | 184 | 26 | 14.1% |
| Cell proliferation GO_0008283 | 512 | 98 | 19.1% |
| Negative regulation of cell cycle M12829 | 398 | 71 | 17.8% |
| Negative regulation of cell migration GO:0030336 | 15 | 7 | 46.6% |
| Negative regulation of cell proliferation M6566 | 792 | 124 | 15.7% |
| Negative regulation of apoptotic process GO:004306 | 786 | 137 | 17.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lishai, E.; Pakharukova, M. The Liver Fluke Opisthorchis felineus Exosomal tRNA-Derived Small RNAs as Potential Mediators of Host Manipulation. Biomolecules 2026, 16, 244. https://doi.org/10.3390/biom16020244
Lishai E, Pakharukova M. The Liver Fluke Opisthorchis felineus Exosomal tRNA-Derived Small RNAs as Potential Mediators of Host Manipulation. Biomolecules. 2026; 16(2):244. https://doi.org/10.3390/biom16020244
Chicago/Turabian StyleLishai, Ekaterina, and Maria Pakharukova. 2026. "The Liver Fluke Opisthorchis felineus Exosomal tRNA-Derived Small RNAs as Potential Mediators of Host Manipulation" Biomolecules 16, no. 2: 244. https://doi.org/10.3390/biom16020244
APA StyleLishai, E., & Pakharukova, M. (2026). The Liver Fluke Opisthorchis felineus Exosomal tRNA-Derived Small RNAs as Potential Mediators of Host Manipulation. Biomolecules, 16(2), 244. https://doi.org/10.3390/biom16020244

