Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction
Abstract
1. Introduction
1.1. Overview of Spatial Transcriptomics Technology
1.1.1. In Situ Approaches
1.1.2. NGS-Based Approaches
2. Application of ST in Breast Cancer
2.1. Decoding Tumor Heterogeneity in Breast Cancer
2.2. Characterizing Tumor Microenvironment in Breast Cancer
2.2.1. TIME
2.2.2. Non-Immune TME
2.2.3. Spatial Interaction Mechanisms Among Cells in the TME
Classification | Technique | Cell Line/Marker | Main Findings | References | |
---|---|---|---|---|---|
TIME | T cells | ST-FFPE; GeoMx DSP; 10×Visium | TILs, CD8+ T cells, Tregs, Follicular helper T cells |
| [76,77,78,80,85] |
Macrophages | Slide-seq; 10×Visium | M2-type TAMs |
| [78,79,84,87] | |
B cells | GeoMx DSP | Naïve B cells, Plasma cells |
| [78,80] | |
DCs | GeoMx DSP | Resting DCs | Resting DCs are more abundant in tumor cell-enriched regions. | [80] | |
Immune checkpoints | 10×Visium | CD73, PD-L1 |
| [85] | |
Non- immune TME | Metabolism-related genes | 10×Visium | LSM1, HK2, PDHA1, CS |
| [86,87] |
CAFs | 10×Visium; Slide-seq; ST-FFPE | Detox-iCAF, ECM-myCAF, Wound-myCAF, TGFβ-myCAF, pCAF, mCAF, meCAF |
| [78,81,82,83] | |
Tumor cells | Slide-seq; 10×Visium | Malignant cells, Boundary cells |
| [78,86,87] | |
ECM | 10× Visium; ST-FFPE | ECM-remodeling-related genes |
| [82,83] | |
ECs | ST-FFPE | Vascular endothelial cells | mCAF interacts with endothelial cells to promote angiogenesis in the TME. | [83] |
2.3. Spatial Dynamic Alterations During the Progression and Metastasis of Breast Cancer
2.4. Advancing Precision Therapy in Breast Cancer
2.4.1. Chemotherapy
2.4.2. NAT
2.4.3. Immunotherapy
2.4.4. Combination of Immunotherapy and Other Treatment Strategies
2.4.5. Chemotherapy Resistance
2.4.6. Resistance to HER2-Targeted Therapies
2.4.7. Immune Therapy Resistance
3. Challenges and Future Directions of ST
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Menon, G.; Alkabban, F.M.; Ferguson, T. Breast Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Dong, B.; Yin, X.; Xu, H.; Zhou, K.; Li, L.; Tian, B.; Cui, R. Application value of modified radical mastectomy in female patients with breast cancer of different molecular types: A prognosis study. Am. J. Transl. Res. 2022, 14, 2490–2496. [Google Scholar] [PubMed]
- Zhang, Y.; Li, G.; Bian, W.; Bai, Y.; He, S.; Liu, Y.; Liu, H.; Liu, J. Value of genomics- and radiomics-based machine learning models in the identification of breast cancer molecular subtypes: A systematic review and meta-analysis. Ann. Transl. Med. 2022, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.A.; Bukhari, U.; Najam, J.; Dowlah, T.; Ali, A.H.; Diwan, M.A.; Anjali, F.N.; Sham, S.; Zia, S.; Irfan, M. Luminal B, Human Epidermal Growth Factor Receptor 2 (HER2/neu), and Triple-Negative Breast Cancers Associated With a Better Chemotherapy Response Than Luminal A Breast Cancers in Postneoadjuvant Settings. Cureus 2023, 15, e40066. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Mukherjee, S.; Chatterjee, K.; Spada, S. Factors affecting heterogeneity in breast cancer microenvironment: A narrative mini review. Int. Rev. Cell Mol. Biol. 2024, 385, 211–226. [Google Scholar] [PubMed]
- Lüönd, F.; Tiede, S.; Christofori, G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br. J. Cancer 2021, 125, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Haider, S.; Natrajan, R. Implications of tumour heterogeneity on cancer evolution and therapy resistance: Lessons from breast cancer. J. Pathol. 2023, 260, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bejarano, O.H.; Parra-López, C.; Patarroyo, M.A. A review concerning the breast cancer-related tumour microenvironment. Crit. Rev. Oncol. Hematol. 2024, 199, 104389. [Google Scholar] [CrossRef] [PubMed]
- Benvenuto, M.; Focaccetti, C. Tumor Microenvironment: Cellular Interaction and Metabolic Adaptations. Int. J. Mol. Sci. 2024, 25, 3642. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhou, Q.; Cheng, J.-N.; Jia, Q.; Zhu, B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front. Med. 2023, 17, 617–648. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Zhang, C.; Mohiuddin, T.M.; Al-Rawe, M.; Zeppernick, F.; Falcone, F.H.; Meinhold-Heerlein, I.; Hussain, A.F. Multiplex Immunofluorescence: A Powerful Tool in Cancer Immunotherapy. Int. J. Mol. Sci. 2023, 24, 3086. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, J.; Bai, F. Cancer biology deciphered by single-cell transcriptomic sequencing. Protein Cell 2022, 13, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, Z.; Bao, L.; Zhou, L.; Hou, Y.; Liu, L.; Xiong, M.; Zhang, Y.; Wang, B.; Tao, Z.; et al. Single-cell transcriptome analysis reveals intratumoral heterogeneity in lung adenocarcinoma. Environ. Toxicol. 2024, 39, 1847–1857. [Google Scholar]
- Kaminska, B.; Ochocka, N.; Segit, P. Single-Cell Omics in Dissecting Immune Microenvironment of Malignant Gliomas—Challenges and Perspectives. Cells 2021, 10, 2264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gong, S.; Liu, X. Spatial transcriptomics: A new frontier in accurate localization of breast cancer diagnosis and treatment. Front. Immunol. 2024, 15, 1483595. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Chen, F.; Macosko, E.Z. The expanding vistas of spatial transcriptomics. Nat. Biotechnol. 2023, 41, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, B.; Zhao, G.; Lee, Y.; Buzdin, A.; Mu, X.; Zhao, J.; Chen, H.; Li, X. Spatial transcriptomics: Technologies, applications and experimental considerations. Genomics 2023, 115, 110671. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Zhang, Q.; Cao, Q.; Kong, R.; Xiang, X.; Liu, H.; Feng, M.; Wang, F.; Cheng, J.; Li, Z.; et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022, 612, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Xun, Z.; Ding, X.; Zhang, Y.; Zhang, B.; Lai, S.; Zou, D.; Zheng, J.; Chen, G.; Su, B.; Han, L. Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis. Nat. Commun. 2023, 14, 933. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, J.R.; Lundberg, E.; Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 2022, 23, 741–759. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Peng, G. Spatial transcriptomics: New dimension of understanding biological complexity. Biophys. Rep. 2022, 8, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Moses, L.; Pachter, L. Museum of spatial transcriptomics. Nat. Methods 2022, 19, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Ke, R.; Mignardi, M.; Pacureanu, A.; Svedlund, J.; Botling, J.; Wählby, C.; Nilsson, M. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 2013, 10, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Darmanis, S.; Sloan, S.A.; Croote, D.; Mignardi, M.; Chernikova, S.; Samghababi, P.; Zhang, Y.; Neff, N.; Kowarsky, M.; Caneda, C.; et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep. 2017, 21, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Carow, B.; Hauling, T.; Qian, X.; Kramnik, I.; Nilsson, M.; Rottenberg, M.E. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 2019, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Tiklova, K.; Bjorklund, A.K.; Lahti, L.; Fiorenzano, A.; Nolbrant, S.; Gilberg, L.; Volakakis, N.; Yokota, C.; Hilscher, M.; Hauling, T.; et al. Single-cell RNA sequencing reveals midbrain dopamine neuron di-versity emerging during mouse brain development. Nat. Commun. 2019, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Allen, W.E.; Wright, M.A.; Sylwestrak, E.L.; Samusik, N.; Vesuna, S.; Evans, K.; Liu, C.; Ramakrishnan, C.; Liu, J.; et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018, 361, eaat5691. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, Y.-C.; Church, G.M.; Lee, J.H.; Zador, A.M. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Res. 2018, 46, e22. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, Y.C.; Zhan, H.; Kebschull, J.M.; Fischer, S.; Matho, K.; Huang, Z.J.; Gillis, J.; Zador, A.M. High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ Sequencing. Cell 2019, 179, 772–786. [Google Scholar] [CrossRef] [PubMed]
- Gyllborg, D.; Langseth, C.M.; Qian, X.; Choi, E.; Salas, S.M.; Hilscher, M.M.; Lein, E.S.; Nilsson, M. Hybridization-based in situ sequencing (HybISS) for spatially re-solved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 2020, 48, e112. [Google Scholar] [CrossRef] [PubMed]
- Alon, S.; Goodwin, D.R.; Sinha, A.; Wassie, A.T.; Chen, F.; Daugharthy, E.R.; Bando, Y.; Kajita, A.; Xue, A.G.; Marrett, K.; et al. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 2021, 371, eaax2656. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Daugharthy, E.R.; Scheiman, J.; Kalhor, R.; Yang, J.L.; Ferrante, T.C.; Terry, R.; Jeanty, S.S.F.; Li, C.; Amamoto, R.; et al. Highly multiplexed subcellular RNA sequencing in situ. Science 2014, 343, 1360–1363. [Google Scholar] [CrossRef] [PubMed]
- Codeluppi, S.; Borm, L.E.; Zeisel, A.; La Manno, G.; van Lunteren, J.A.; Svensson, C.I.; Linnarsson, S. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 2018, 15, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Moffitt, J.R.; Zhuang, X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 2018, 8, 4847. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Babcock, H.P.; Moffitt, J.R.; Zhuang, X. Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci. Rep. 2019, 9, 7721. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, J.R.; Bambah-Mukku, D.; Eichhorn, S.W.; Vaughn, E.; Shekhar, K.; Perez, J.D.; Rubinstein, N.D.; Hao, J.; Regev, A. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 2018, 362, eaau5324. [Google Scholar] [CrossRef] [PubMed]
- Lohoff, T.; Ghazanfar, S.; Missarova, A.; Koulena, N.; Pierson, N.; Griffiths, J.A.; Bardot, E.S.; Eng, C.-H.L.; Tyser, R.C.V.; Argelaguet, R.; et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat. Biotechnol. 2022, 40, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Takei, Y.; Yun, J.; Zheng, S.; Ollikainen, N.; Pierson, N.; White, J.; Shah, S.; Thomassie, J.; Suo, S.; Eng, C.-H.L.; et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 2021, 590, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.H.; Lawson, M.; Zhu, Q.; Dries, R.; Koulena, N.; Takei, Y.; Yun, J.; Cronin, C.; Karp, C.; Yuan, G.C. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 2019, 568, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Asp, M.; Bergenstråhle, J.; Lundeberg, J. Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration. BioEssays 2020, 42, 1900221. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, R.; Ghamsari, R.; Argha, A.; Macphillamy, C.; Beheshti, A.; Alizadehsani, R.; Lovell, N.H.; Lotfollahi, M. Deep learning in spatially resolved transcriptfomics: A comprehensive technical view. Brief Bioinform. 2024, 25, bbae082. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Choi, W.; Tiesmeyer, S.; Long, B.; Borm, L.E.; Garren, E.; Nguyen, T.N.; Tasic, B.; Codeluppi, S.; Graf, T.; et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 2021, 12, 3545. [Google Scholar] [CrossRef] [PubMed]
- Littman, R.; Hemminger, Z.; Foreman, R.; Arneson, D.; Zhang, G.; Gómez-Pinilla, F.; Yang, X.; Wollman, R. Joint cell segmentation and cell type annotation for spatial transcriptomics. Mol. Syst. Biol. 2021, 17, e10108. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Harris, K.D.; Hauling, T.; Nicoloutsopoulos, D.; Muñoz-Manchado, A.B.; Skene, N.; Hjerling-Leffler, J.; Nilsson, M. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 2020, 17, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Kruse, F.; Junker, J.P.; Van Oudenaarden, A.; Bakkers, J. Tomo-seq: A method to obtain genome-wide expression data with spatial resolution. Methods Cell Biol. 2016, 135, 299–307. [Google Scholar] [PubMed]
- Chen, J.; Suo, S.; Tam, P.P.; Han, J.-D.J.; Peng, G.; Jing, N. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 2017, 12, 566–580. [Google Scholar] [CrossRef] [PubMed]
- Merritt, C.R.; Ong, G.T.; Church, S.E.; Barker, K.; Danaher, P.; Geiss, G.; Hoang, M.; Jung, J.; Liang, Y.; McKay-Fleisch, J.; et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 2020, 38, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Schede, H.H.; Schneider, C.G.; Stergiadou, J.; Borm, L.E.; Ranjak, A.; Yamawaki, T.M.; David, F.P.; Lönnerberg, P.; Tosches, M.A. Spatial tissue profiling by imaging-free molecular tomography. Nat. Biotechnol. 2021, 39, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Cao, Y.; Liu, F.; Zhao, Q.; Adi, D.; Huo, Q.; Liu, Z.; Luo, J.-Y.; Fang, B.-B.; Tian, T.; et al. Visualization and Analysis of Gene Expression in Stanford Type A Aortic Dissection Tissue Section by Spatial Transcriptomics. Front. Genet. 2021, 12, 698124. [Google Scholar] [CrossRef] [PubMed]
- Polański, K.; Bartolomé-Casado, R.; Sarropoulos, I.; Xu, C.; England, N.; Jahnsen, F.L.; A Teichmann, S.; Yayon, N.; Mathelier, A. Bin2cell reconstructs cells from high resolution Visium HD data. Bioinformatics 2024, 40, btae546. [Google Scholar] [CrossRef] [PubMed]
- Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019, 363, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Stickels, R.R.; Murray, E.; Kumar, P.; Li, J.; Marshall, J.L.; Di Bella, D.J.; Arlotta, P.; Macosko, E.Z.; Chen, F. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 2021, 39, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Liao, S.; Cheng, M.; Ma, K.; Wu, L.; Lai, Y.; Qiu, X.; Yang, J.; Xu, J.; Hao, S.; et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nano-ball-patterned arrays. Cell 2022, 185, 1777–1792. [Google Scholar] [CrossRef] [PubMed]
- Kleino, I.; Frolovaitė, P.; Suomi, T.; Elo, L.L. Computational solutions for spatial transcriptomics. Comput. Struct. Biotechnol. J. 2022, 20, 4870–4884. [Google Scholar] [CrossRef] [PubMed]
- Villacampa, E.G.; Larsson, L.; Mirzazadeh, R.; Kvastad, L.; Andersson, A.; Mollbrink, A.; Kokaraki, G.; Monteil, V.; Schultz, N. Genome-wide spatial expression profiling in for-malin-fixed tissues. Cell Genom. 2021, 1, 100065. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, M.; Deng, Y.; Su, G.; Enninful, A.; Guo, C.C.; Tebaldi, T.; Zhang, D.; Kim, D.; Bai, Z.; et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. Cell 2020, 183, 1665–1681.e18. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Bogdanoff, D.; Wang, Y.; Hartoularos, G.C.; Woo, J.M.; Mowery, C.T.; Nisonoff, H.M.; Lee, D.S.; Sun, Y.; Lee, J.; et al. XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci. Adv. 2021, 7, eabg4755. [Google Scholar] [CrossRef] [PubMed]
- Srivatsan, S.R.; Regier, M.C.; Barkan, E.; Franks, J.M.; Packer, J.S.; Grosjean, P.; Duran, M.; Saxton, S.; Ladd, J.J.; Spielmann, M. Embryo-scale, single-cell spatial transcriptomics. Science 2021, 373, 111–117. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Lu, Y.; Chen, Y.; Chen, Y.; Zhou, Z.; Chen, J.; Peng, C.; Huang, R.; Peng, F. Spatial transcriptomics in breast cancer: Providing insight into tumor heterogeneity and promoting individualized therapy. Front. Immunol. 2024, 15, 1499301. [Google Scholar] [CrossRef] [PubMed]
- Bhat-Nakshatri, P.; Gao, H.; Khatpe, A.S.; Adebayo, A.K.; McGuire, P.C.; Erdogan, C.; Chen, D.; Jiang, G.; New, F.; German, R. Single-nucleus chromatin accessibility and transcriptomic map of breast tissues of women of diverse genetic ancestry. Nat. Med. 2024, 30, 3482–3494. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-L.; Lu, X.-M.; Wang, H.-Y.; Hu, K.-B.; Wu, Q.-Y.; Liao, P.; Li, S.; Long, Z.-Y.; Wang, Y.-T. The role of RNA splicing factor PTBP1 in neuronal development. Biochim. Biophys. Acta-Mol. Cell Res. 2023, 1870, 119506. [Google Scholar] [CrossRef] [PubMed]
- Shah, O.S.; Nasrazadani, A.; Foldi, J.; Atkinson, J.M.; Kleer, C.G.; McAuliffe, P.F.; Johnston, T.J.; Stallaert, W.; da Silva, E.M.; Selenica, P.; et al. Spatial molecular profiling of mixed invasive ductal and lobular breast cancers reveals heterogeneity in intrinsic molecular subtypes, oncogenic signatures, and mutations. Proc. Natl. Acad. Sci. USA 2024, 121, e2322068121. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, R.; Mori, H.; Ha, D.; Wu, X.; Wang, J.; Wang, X.; Saeki, K.; Chang, G.; Shim, H.J.; Chan, Y.; et al. Molecular features of luminal breast cancer defined through spatial and single-cell transcriptomics. Clin. Transl. Med. 2024, 14, e1548. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Do, S.-I.; Kim, H.-S. Age-related Differences in Spatially Resolved Transcriptomic Profiles of Patients with Hormone Receptor-positive Breast Carcinoma. Anticancer. Res. 2024, 44, 2605–2616. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Larsson, L.; Stenbeck, L.; Salmén, F.; Ehinger, A.; Wu, S.Z.; Al-Eryani, G.; Roden, D.; Swarbrick, A.; Borg, Å.; et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 2021, 12, 6012. [Google Scholar] [CrossRef] [PubMed]
- Bassiouni, R.; Idowu, M.O.; Gibbs, L.D.; Robila, V.; Grizzard, P.J.; Webb, M.G.; Song, J.; Noriega, A.; Craig, D.W.; Carpten, J.D. Spatial Transcriptomic Analysis of a Diverse Patient Cohort Reveals a Conserved Architecture in Triple-Negative Breast Cancer. Cancer Res. 2023, 83, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, X.; Bi, J.; Jiang, X.; Zhang, L.; Li, Z.; Shao, M. Integrating single-cell and spatial transcriptomes reveals COL4A1/2 facilitates the spatial organisation of stromal cells differentiation in breast phyllodes tumours. Clin. Transl. Med. 2024, 14, e1611. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Shi, Q.; Han, Y.; Li, W.; Liu, H.; Zhang, J.; Niu, C.; Gao, G.; Fu, Y.; Zhi, R.; et al. Spatial transcriptomics reveals gene expression characteristics in invasive micropapillary carcinoma of the breast. Cell Death Dis. 2021, 12, 1095. [Google Scholar] [CrossRef] [PubMed]
- Caputo, A.; Vipparthi, K.; Bazeley, P.; Downs-Kelly, E.; McIntire, P.; Duckworth, L.A.; Ni, Y.; Hu, B.; Keri, R.A.; Karaayvaz, M. Spatial Transcriptomics Suggests That Alterations Occur in the Pre-neoplastic Breast Microenvironment of BRCA1/2 Mutation Carriers. Mol. Cancer Res. 2024, 22, 169–180. [Google Scholar] [CrossRef] [PubMed]
- van Boxtel, C.; van Heerden, J.H.; Nordholt, N.; Schmidt, P.; Bruggeman, F.J. Taking chances and making mistakes: Non-genetic pheno-typic heterogeneity and its consequences for surviving in dynamic environments. J. R. Soc. Interface 2017, 14, 20170141. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Ramu, S.; Nair, M.G.; Pillai, M.; Juan, B.P.S.; Milioli, H.Z.; Mandal, S.; Naidu, C.M.; Mavatkar, A.D.; Subramaniam, H.; et al. Increased prevalence of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. iScience 2024, 27, 110116. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Chu, J.; Do, S.-I.; Kim, H.-S. Spatial Transcriptomic Profiling Reveals Gene Expression Characteristics in Lymph Node-positive Breast Carcinoma. Anticancer. Res. 2024, 44, 3381–3395. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Z.; Al-Eryani, G.; Roden, D.L.; Junankar, S.; Harvey, K.; Andersson, A.; Thennavan, A.; Wang, C.; Torpy, J.R.; Bartonicek, N.; et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 2021, 53, 1334–1347. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.-Z.; Jin, W.-L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 166. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Li, S.; Fan, H.; An, J.; Peng, C.; Peng, F. Regulated cell death in glioma: Promising targets for natural small-molecule compounds. Front. Oncol. 2024, 14, 1273841. [Google Scholar] [CrossRef] [PubMed]
- Romanens, L.; Chaskar, P.; Marcone, R.; Ryser, S.; Tille, J.; Genolet, R.; Heimgartner-Hu, K.; Heimgartner, K.; Moore, J.S.; Liaudet, N.; et al. Clonal expansion of intra-epithelial T cells in breast cancer revealed by spatial transcriptomics. Int. J. Cancer 2023, 153, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Li, L.; Li, L.; Chen, Y.; Guan, Y.; Zhao, J. Integration of Bioinformatics and Machine Learning to Identify CD8+ T Cell-Related Prognostic Signature to Predict Clinical Outcomes and Treatment Response in Breast Cancer Patients. Genes 2024, 15, 1093. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, W.; Sun, S.; Li, J. DDIT3 is associated with breast cancer prognosis and immune microenvironment: An inte-grative bioinformatic and immunohistochemical analysis. J. Cancer 2024, 15, 3873–3889. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, Y.D.; Chu, P.Y.; Yong, S.B.; Hsu, T.S.; Tseng, L.M.; Hou, M.F.; Sheu, J.J.; Hsiao, J.H.; Li, C.J. Multi-omic profiling of breast tumor microenvironment uncovers a role of mito-chondrial calcium gatekeepers. J. Cancer 2024, 15, 3663–3674. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, L.; Ji, L.; He, D.; Zeng, L.; Zhuo, G.; Zhang, Q.; Wang, D.; Pan, Y. Identifying prognostic markers in spatially heterogeneous breast cancer microenvironment. J. Transl. Med. 2023, 21, 580. [Google Scholar] [CrossRef] [PubMed]
- Croizer, H.; Mhaidly, R.; Kieffer, Y.; Gentric, G.; Djerroudi, L.; Leclere, R.; Pelon, F.; Robley, C.; Bohec, M.; Meng, A.; et al. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer. Nat. Commun. 2024, 15, 2806. [Google Scholar] [CrossRef] [PubMed]
- Honda, C.K.; Kurozumi, S.; Fujii, T.; Pourquier, D.; Khellaf, L.; Boissiere, F.; Horiguchi, J.; Oyama, T.; Shirabe, K.; Colinge, J.; et al. Cancer-associated fibroblast spatial heterogeneity and EMILIN1 expression in the tumor microenvironment modulate TGF-β activity and CD8+ T-cell infiltration in breast cancer. Theranostics 2024, 14, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yang, C.; Peng, A.; Sun, T.; Ji, X.; Mi, J.; Wei, L.; Shen, S.; Feng, Q. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between can-cer-associated fibroblasts and tumor microenvironment. Mol. Cancer 2023, 22, 170. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, H.; Hong, B.; Xiao, Y.; Qian, Y. MIF as a potential diagnostic and prognostic biomarker for triple-negative breast cancer that correlates with the polarization of M2 macrophages. FASEB J. 2024, 38, e23696. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Banerjee, A.; Xie, P.; Ivanov, A.A.; Uddin, A.; Jiao, Q.; Chi, J.J.; Zeng, L.; Lee, J.Y.; Xue, Y. Pharmacological suppression of the OTUD4/CD73 proteolytic axis revives anti-tumor immunity against immune-suppressive breast cancers. J. Clin. Investig. 2024, 134, e176390. [Google Scholar] [CrossRef] [PubMed]
- Janesick, A.; Shelansky, R.; Gottscho, A.D.; Wagner, F.; Williams, S.R.; Rouault, M.; Beliakoff, G.; Morrison, C.A.; Oliveira, M.F.; Sicherman, J.T.; et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 2023, 14, 8353. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, Y.D.; Hsiao, J.H.; Chu, P.Y.; Tseng, L.M.; Hou, M.F.; Tsang, Y.L.; Shao, A.N.; Sheu, J.J.; Li, C.J. The role of LSM1 in breast cancer: Shaping metabolism and tumor-associated macrophage infiltration. Pharmacol. Res. 2023, 198, 107008. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Zhou, D.; Lin, K.; Zhang, B.; Gao, J.; Ling, F.; Zhu, L.; Yu, S.; Chen, P.; Zhang, C.; et al. Single-cell and spatial transcriptome analyses revealed cell heterogeneity and immune environment alternations in metastatic axillary lymph nodes in breast cancer. Cancer Immunol. Immunother. 2023, 72, 679–695. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Li, Y.; Liu, H.; Luo, J. Single-cell and Spatial Transcriptomic Analyses Implicate Formation of the Immunosuppressive Microenvironment during Breast Tumor Progression. J. Immunol. 2024, 213, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Yu, D.; Zhang, S.; Chen, L.; Liu, Z.; Xie, L. Deciphering the Immune Microenvironment at the Forefront of Tumor Aggressiveness by Constructing a Regulatory Network with Single-Cell and Spatial Transcriptomic Data. Genes 2024, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ge, J.; Chen, Y.; Liu, T.; Chen, L.; Liu, C.; Ma, D.; Cai, Y.; Xu, Y.; Shao, Z.; et al. Combined Single-Cell and Spatial Transcriptomics Reveal the Metabolic Evolvement of Breast Cancer during Early Dissemination. Adv. Sci. 2023, 10, e2205395. [Google Scholar] [CrossRef] [PubMed]
- Maeshima, Y.; Kataoka, T.R.; Vandenbon, A.; Hirata, M.; Takeuchi, Y.; Suzuki, Y.; Fukui, Y.; Kawashima, M.; Takada, M.; Ibi, Y.; et al. Intra-patient spatial comparison of non-metastatic and met-astatic lymph nodes reveals the reduction of CD169(+) macrophages by metastatic breast cancers. EBioMedicine 2024, 107, 105271. [Google Scholar] [CrossRef] [PubMed]
- Kulasinghe, A.; Monkman, J.; Shah, E.T.; Matigian, N.; Adams, M.N.; O’Byrne, K. Spatial Profiling Identifies Prognostic Features of Response to Adjuvant Therapy in Triple Negative Breast Cancer (TNBC). Front. Oncol. 2022, 11, 798296. [Google Scholar] [CrossRef] [PubMed]
- Donati, B.; Reggiani, F.; Torricelli, F.; Santandrea, G.; Rossi, T.; Bisagni, A.; Gasparini, E.; Neri, A.; Cortesi, L.; Ferrari, G. Spatial Distribution of Immune Cells Drives Resistance to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancer Immunol. Res. 2024, 12, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Shiao, S.L.; Gouin, K.H.; Ing, N.; Ho, A.; Basho, R.; Shah, A.; Mebane, R.H.; Zitser, D.; Martinez, A.; Mevises, N.Y. Single-cell and spatial profiling identify three response trajectories to pem-brolizumab and radiation therapy in triple negative breast cancer. Cancer Cell 2024, 42, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, Z.; Gao, Z.; Luo, Y.; Li, F.; Yang, C.Y.; Wang, T.; Meng, X.; Chen, H.; Li, J.; et al. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8+ T-cell-dependent antitumor immunity. Theranostics 2023, 13, 1381–1400. [Google Scholar] [CrossRef] [PubMed]
- Tashireva, L.A.; Kalinchuk, A.Y.; Gerashchenko, T.S.; Menyailo, M.; Khozyainova, A.; Denisov, E.V.; Perelmuter, V.M. Spatial Profile of Tumor Microenvironment in PD-L1-Negative and PD-L1-Positive Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 1433. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wang, C.; Qian, Y.; Zhu, W.; Liu, L.; Yang, X.; Zhang, S.; Luo, D. Tryptophan metabolism regulates inflammatory macrophage polarization as a predictive factor for breast cancer immunotherapy. Int. Immunopharmacol. 2023, 125 Pt B, 111196. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; A Kim, S.; Jung, H.; Kim, E.; Kim, Y.K.; Kim, S.; Kim, J.; Lee, Y.; Jo, M.K.; Woo, J.; et al. Novel insights into paclitaxel’s role on tumor-associated macrophages in enhancing PD-1 blockade in breast cancer treatment. J. Immunother. Cancer 2024, 12, e008864-14. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, B.C.; Hubbard, C.; Zizlsperger, N.; Fitzgerald, D.; Kutok, J.L.; Varner, J.; Ilaria, R.; Cobleigh, A.M.; Juric, D.; Tkaczuk, K.H.R.; et al. Eganelisib combined with immune checkpoint inhibitor therapy and chemotherapy in frontline metastatic triple-negative breast cancer triggers macrophage reprogramming, immune activation and extracellular matrix reorganization in the tumor microenvironment. J. Immunother. Cancer 2024, 12, e009160. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Lou, X.; Zhang, K.; Pan, L.; Bai, Y.; Wang, L.; Wang, M.; Yan, Y.; Wan, J.; Yao, X.; et al. Tumor necrosis factor receptor 2 promotes endothelial cell-mediated suppression of CD8+ T cells through tuning glycolysis in chemoresistance of breast cancer. J. Transl. Med. 2024, 22, 672. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Metzger Filho, O.; Viale, G.; dell’Orto, P.; Russo, L.; Goyette, M.A.; Kamat, A.; Yardley, D.A.; Abramson, V.G.; Arteaga, C.L. HER2 heterogeneity and treatment response-associated profiles in HER2-positive breast cancer in the NCT02326974 clinical trial. J. Clin. Investig. 2024, 134, e176454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Shi, J.; Shi, X.; Xu, X.; Gao, L.; Li, S.; Liu, M.; Gao, M.; Jin, S.; Zhou, J. Development and evaluation of a human CD47/HER2 bispecific antibody for Trastuzumab-resistant breast cancer immunotherapy. Drug Resist. Update 2024, 74, 101068. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.-P.; Jin, X.; Ma, D.; Wang, Z.-Y.; Liu, C.-L.; Zhou, C.-Z.; Zhao, S.; Yu, T.-J.; Liu, X.-Y.; Di, G.-H.; et al. ZNF689 deficiency promotes intratumor heterogeneity and immunotherapy resistance in triple-negative breast cancer. Cell Res. 2024, 34, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Lu, X.; Shao, X.; Zhu, L.; Fan, X. Uncovering an Organ’s Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends Biotechnol. 2021, 39, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Dries, R.; Chen, J.; del Rossi, N.; Khan, M.M.; Sistig, A.; Yuan, G.-C. Advances in spatial transcriptomic data analysis. Genome Res. 2021, 31, 1706–1718. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Sun, L.; Dong, R.; Chen, J.Y.; Silakit, R.; Condon, L.F.; Lin, Y.; Lin, S.; Palmiter, R.D.; Gu, L. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 2022, 185, 4621–4633.e17. [Google Scholar] [CrossRef] [PubMed]
- Vickovic, S.; Eraslan, G.; Salmén, F.; Klughammer, J.; Stenbeck, L.; Schapiro, D.; Äijö, T.; Bonneau, R.; Bergenstråhle, L.; Navarro, J.F.; et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 2019, 16, 987–990. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Jin, Y.; Nazaret, A.; Shi, L.; Chen, X.; Rampersaud, S.; Dhillon, B.S.; Valdez, I.; Friend, L.E.; Fan, J.L.; et al. Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor–immune hubs. Nat. Biotechnol. 2024, 43, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Jin, X.; Wei, S.; Wang, P.; Luo, M.; Xu, Z.; Yang, W.; Cai, Y.; Xiao, L.; Lin, X.; et al. DeepST: Identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Res. 2022, 50, e131. [Google Scholar] [CrossRef] [PubMed]
- Tanevski, J.; Flores, R.O.R.; Gabor, A.; Schapiro, D.; Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 2022, 23, 97. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Bhuva, D.D.; Mohamed, A.; Bokelund, M.; Kulasinghe, A.; Tan, C.W.; Davis, M.J. standR: Spatial transcriptomic analysis for GeoMx DSP data. Nucleic Acids Res. 2024, 52, e2. [Google Scholar] [CrossRef] [PubMed]
- Zappia, L.; Phipson, B.; Oshlack, A.; Schneidman, D. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput. Biol. 2018, 14, e1006245. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Chen, B.; Zhang, Y.; Sun, H.; Liu, L.; Liu, S.; Li, Y.; Xu, X. Computational Approaches and Challenges in Spatial Transcriptomics. Genom. Proteom. Bioinform. 2023, 21, 24–47. [Google Scholar] [CrossRef] [PubMed]
- Satija, R.; A Farrell, J.; Gennert, D.; Schier, A.F.; Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 2015, 33, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018, 36, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Stuart, T.; Kowalski, M.H.; Choudhary, S.; Hoffman, P.; Hartman, A.; Srivastava, A.; Molla, G.; Madad, S. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 2024, 42, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, O.L.; Quirke, P.; West, N.P.; James, J.A.; Loughrey, M.B.; Grabsch, H.I.; Salto-Tellez, M.; Alwers, E.; Cifci, D.; Ghaffari Laleh, N. Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med. 2022, 28, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Shamai, G.; Livne, A.; Polónia, A.; Sabo, E.; Cretu, A.; Bar-Sela, G.; Kimmel, R. Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer. Nat. Commun. 2022, 13, 6753. [Google Scholar] [CrossRef] [PubMed]
- Zubair, A.; Chapple, R.H.; Natarajan, S.; Wright, W.C.; Pan, M.; Lee, H.-M.; Tillman, H.; Easton, J.; Geeleher, P. Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model. Nucleic Acids Res. 2022, 50, e80. [Google Scholar] [CrossRef] [PubMed]
- Lebrigand, K.; Bergenstråhle, J.; Thrane, K.; Mollbrink, A.; Meletis, K.; Barbry, P.; Waldmann, R.; Lundeberg, J. The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Res. 2023, 51, e47. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Kim, J.J. Spatial transcriptomics data and analytical methods: An updated perspective. Drug Discov. Today 2024, 29, 103889. [Google Scholar] [CrossRef] [PubMed]
- Dannhorn, A.; Kazanc, E.; Flint, L.; Guo, F.; Carter, A.; Hall, A.R.; Jones, S.A.; Poulogiannis, G.; Barry, S.T.; Sansom, O.J.; et al. Morphological and molecular preservation through universal preparation of fresh-frozen tissue samples for multimodal imaging workflows. Nat. Protoc. 2024, 19, 2685–2711. [Google Scholar] [CrossRef] [PubMed]
Technology Type | Representative Methods | Principle | Resolution | Gene Capacity | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|
In Situ Sequencing (ISS) | FISSEQ, STARMap | Direct in situ sequencing (sequencing-by-ligation/synthesis) of RNA in tissue | single molecule | Targeted (~50–1000 genes) | High resolution, no RNA extraction | Low detection efficiency | [27,32] |
In Situ Hybridization (ISH) | MERFISH, SeqFISH | Multiplexed fluorescent probe hybridization + barcode decoding | single cell | High-plex (~10,000 genes) | Ultra-high resolution, multi-target detection | Complex workflow, requires high-end imaging | [34,35,36,37] |
NGS-Based | GeoMx DSP | UV-cleavable probes for region-specific mRNA capture | 10 μm | Targeted/Whole Transcriptome | FFPE-compatible, flexible region selection | May create bias in selecting regions | [47] |
LCM + RNA-seq | Laser-capture microdissection + RNA-seq | Cellular | Whole Transcriptome | High sensitivity | Low throughput, destructive sampling | [22] | |
10× Visium | Spatial barcoded array for poly-A mRNA capture | 55 µm (HD: 2 µm) | Whole Transcriptome | Whole transcriptome, commercial maturity | Limited resolution (mixed cells) | [50] | |
Slide-seqV2 | 10 µm barcoded bead array | 10 µm | Whole Transcriptome | High resolution | Low mRNA capture efficiency (~30–50% of scRNA-seq) | [52] | |
Stereo-seq | Nanoscale barcoded RCA (rolling circle amplification) | 0.22 µm | Whole Transcriptome | Ultrahigh resolution, large field-of-view | Massive data, complex analysis | [53] | |
DBiT-seq | Orthogonal microfluidic barcode printing (RNA + protein) | 10–50 µm | Whole Transcriptome + Protein | Multi-omics integration, minimizes mRNA diffusion | Requires specialized equipment | [56] | |
XYZeq, sci-Space | Spatial barcoding of intact cells + scRNA-seq | 80–500 µm | Whole Transcriptome | Combines scRNA-seq advantages | Requires specialized device | [57,58] |
Study Subject | Category | Technique | Key Genes, Pathways, or Cell Populations | Clinical Significance | References |
---|---|---|---|---|---|
Different origins | Ductal and lobular epithelial cells | GeoMx DSP and snRNA-seq |
| Highlighting the spatial heterogeneity of the ductal and lobular tissue regions and age-related mechanisms of breast cancer. | [60,61] |
MDLC | GeoMx DSP |
|
| [62] | |
Different molecular subtypes | HR+ | 10×Visium and GeoMx DSP |
|
| [63,64] |
HER2+ | 10×Visium |
|
| [65] | |
TNBC | 10×Visium |
|
| [66] | |
Special histological subtypes | PTs | scRNA-seq and 10× Visium | COL4A1/2, CSRP1. | Establishing a molecular basis for precise PTs diagnosis and treatment. | [67] |
IMPC | 10×Visium |
|
| [68] | |
BRCA1/2 mutation carriers | GeoMx DSP |
| Laying the groundwork for precision therapies in BRCA1/2-related breast cancer. | [69] | |
Other dimensions | Two key axes: EMT and luminal-basal (lineage) plasticity | scRNA-seq and 10×Visium |
|
| [71] |
Lymph node-positive vs. negative breast cancer | GeoMx DSP |
| Highlighting the need for personalized therapies in breast cancer with lymph node metastasis. | [72] | |
9 major cell types with multiple functional states | 10×Visium |
| A roadmap to overcome breast cancer heterogeneity through microenvironment-informed precision targeting. | [73] |
Classification | Study Subject | Technique | Main Findings | References |
---|---|---|---|---|
Spatial Dynamic Alterations during Progression | Normal tissue to tumor tissue | 10× Visium |
| [88] |
DCIS to IDC | Not mentioned |
| [89] | |
ER+ breast cancer | 10× Visium |
| [90] | |
Spatial Dynamic Alterations during Metastasis | TME remodeling during tumor metastasis | scRNA-seq and 10× Visium |
| [91] |
Spatial heterogeneity of lymph nodes in metastatic breast cancer | bulk RNA-seq and 10× Visium |
| [92] |
Classification | Study Subject | Technique | Main Findings | Clinical Significance | References |
---|---|---|---|---|---|
Chemotherapy | Protein expression linked to chemosensitivity and better prognosis differs between stromal and tumor regions | GeoMx DSP |
| Insights for TNBC precision treatment. | [93] |
NAT | TME changes before/after NAC | Not mentioned |
| Revealing NAC response mechanisms. | [94] |
TME changes before/after NAT (combined radiotherapy and immunotherapy) | scRNA-seq and 10× Visium |
| Basis for combining immunotherapy and radiotherapy. | [95] | |
Immunotherapy | KLF5/COX2/PGE2 axis in the efficacy of anti-PD1 therapy | 10× Visium |
| KLF5/COX2/PGE2 axis as a therapeutic target. | [96] |
TME Characteristics by PD-L1 status in TNBC | 10× Visium |
| Guiding immunotherapy optimization. | [97] | |
The role of macrophages in immunotherapy | 10× Visium |
| Tryptophan metabolism as a new immunotherapy target. | [98] | |
Combination of immunotherapy and other treatment strategies | Combination of PTX and PD-1 blockade | 10× Visium |
| TLR4+ TAMs mediate PTX-induced antitumor immunity; new TNBC immunotherapy strategies. | [99] |
Eganelisib in combination with atezolizumab and nab-paclitaxel | mIF and GeoMx DSP |
| PI3K-γ inhibitors enhance antitumor immunity via TAM reprogramming. | [100] | |
Chemotherapy resistance | PTX resistance and EC spatial heterogeneity | 10× Visium |
| ECs critically mediate PTX resistance.; TNFR2 blockade as a new strategy. | [101] |
Resistance to HER2-targeted therapies | Spatial heterogeneity in HER2+ breast cancer | GeoMx DSP |
| Spatial heterogeneity impacts HER2+ treatment response. | [102] |
IMM2902 overcomes HER2 resistance | 10× Visium |
| New strategy for HER2+ breast cancer, especially resistant cases. | [103] | |
Immune therapy resistance | ITH and immunotherapy resistance in TNBC | ChIP-seq, scRNA-seq, and 10× Visium |
| ZNF689/LINE-1 as targets; “heterogeneity-targeting plus immunotherapy” strategy for high-ITH tumors. | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, A.; Xiang, L.; Yuan, J.; Wang, Q.; Zhao, L.; Yan, H. Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction. Biomolecules 2025, 15, 1067. https://doi.org/10.3390/biom15081067
Ma A, Xiang L, Yuan J, Wang Q, Zhao L, Yan H. Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction. Biomolecules. 2025; 15(8):1067. https://doi.org/10.3390/biom15081067
Chicago/Turabian StyleMa, Aolong, Lingyan Xiang, Jingping Yuan, Qianwen Wang, Lina Zhao, and Honglin Yan. 2025. "Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction" Biomolecules 15, no. 8: 1067. https://doi.org/10.3390/biom15081067
APA StyleMa, A., Xiang, L., Yuan, J., Wang, Q., Zhao, L., & Yan, H. (2025). Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction. Biomolecules, 15(8), 1067. https://doi.org/10.3390/biom15081067