Three-Dimensional Models of Implantation Using Human Stem Cells: Scientific Insights and Broader Considerations
Abstract
1. Introduction
2. Generation of Stem Cell-Derived Embryo Models
3. Blastoids and Their Possible Role in Implantation Research
4. Broader Considerations
5. Public Engagement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macklon, N.S.; Geraedts, J.P.M.; Fauser, B.C.J.M. Conception to ongoing pregnancy: The “black box” of early pregnancy loss. Hum. Reprod. Update 2002, 8, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Hertig, A.T.; Rock, J.; Adams, E.C.; Menkin, M.C. Thirty-four fertilized human ova, good, bad and indifferent, recovered from 210 women of known fertility; a study of biologic wastage in early human pregnancy. Pediatrics 1959, 23, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Fertilisation, H.; Authority, E. The current status of IVF: Are we putting the needs of the individual first? eClinicalMedicine 2023, 65, 102343. [Google Scholar]
- Carter, A.M. Animal Models of Human Placentation—A Review. Placenta 2007, 28, S41–S47. [Google Scholar] [CrossRef]
- Deglincerti, A.; Croft, G.F.; Pietila, L.N.; Zernicka-Goetz, M.; Siggia, E.D.; Brivanlou, A.H. Self organization of the in vitro attached human embryo. Nature 2016, 533, 251–254. [Google Scholar] [CrossRef]
- Shahbazi, M.N.; Jedrusik, A.; Vuoristo, S.; Recher, G.; Hupalowska, A.; Bolton, V.; Fogarty, N.M.E.; Campbell, A.; Devito, L.G.; Ilic, D.; et al. Self organization of the human embryo in the absence of human tissues. Nat. Cell Biol. 2016, 18, 700–708. [Google Scholar] [CrossRef]
- Rossant, J. Why study human embryo development. Dev. Biol. 2024, 509, 43–50. [Google Scholar] [CrossRef]
- Taniguchi, K.; Heemskerk, I.; Gumucio, D.L. Opening the black box: Stem cell-based modeling of human post-implantation development. J. Cell Biol. 2019, 218, 410–421. [Google Scholar] [CrossRef]
- Rossant, J.; Tam, P.P.L. Opportunities and challenges with stem cell-based embryo models. Stem Cell Rep. 2021, 16, 1031–1038. [Google Scholar] [CrossRef]
- Yu, L.; Wei, Y.; Duan, J.; Schmitz, D.A.; Sakurai, M.; Wang, L.; Wang, K.; Zhao, S.; Hon, G.C.; Wu, J. Blastocyst-like structures generated from pluripotent stem cells. Nature 2021, 591, 620–626. [Google Scholar] [CrossRef]
- Liu, X.; Tan, J.P.; Schröder, J.; Aberkane, A.; Ouyang, J.F.; Mohenska, M.; Lim, S.M.; Sun, Y.B.Y.; Chen, J.; Sun, G.; et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 2021, 591, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Denker, H.W.; Dimitriadis, E.; Salamonsen, L.A. Embryo Implantation: New Molecular Insights in Endometrial Receptivity, Trophoblast Invasion and Signaling, A Special Issue of Biomolecules (ISSN 2218-273X), MDPI, 2025. Available online: https://www.mdpi.com/journal/biomolecules/special_issues/G6W09B2SVY (accessed on 22 June 2025).
- Shahbazi, M.N.; Pasque, V. Early human development of stem cell-based human embryo models. Cell Stem Cell 2024, 31, 1398–1418. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Mattis, S.; Theunissen, T.W. Stem cell models of human embryo implantation and trophoblast invasion. Curr. Opin. Genet. Dev. 2025, 93, 102357. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94. [Google Scholar] [CrossRef]
- Yanagida, A.; Spindlow, D.; Nichols, J.; Dattani, A.; Smith, A.; Guo, G. Naïve stem cell model captures human lineage segregation. Cell Stem Cell 2021, 28, 1016–1022. [Google Scholar] [CrossRef]
- Kagawa, H.; Javali, A.; Khoei, H.H.; Sommer, T.M.; Sestini, G.; Novatchkova, M.; Reimer, Y.S.O.; Castel, G.; Bruneau, A.; Maenhoudt, N.; et al. Human blastoid model blastocyst development and implantation. Nature 2022, 601, 600–605. [Google Scholar] [CrossRef]
- van den Brink, S.C.; van Oudenaarden, A. 3D gastruloids: A novel frontier in stem cell-based in vitro modeling of mammalian gastrulation. Trends Cell Biol. 2021, 31, 747–759. [Google Scholar] [CrossRef]
- Rivron, N.C.; Frias-Aldeguer, J.; Vrij, E.J.; Boisset, J.-C.; Korving, J.; Vivié, J.; Truckenmüller, R.K.; van Oudenaarden, A.; van Blitterswijk, C.A.; Geijsen, N. Blastocyst-like structures generated solely from stem cells. Nature 2018, 557, 106–111. [Google Scholar] [CrossRef]
- Yu, L.; Logsdon, D.; Pinzon-Arteaga, C.A.; Duan, J.; Ezashi, T.; Wei, Y.; Orsi, A.E.R.; Oura, S.; Liu, L.; Wang, L.; et al. Large scale production of human blastoids amenable to modelling blastocyst development and maternal-fetal cross talk. Cell Stem Cell 2023, 30, 1246–1261. [Google Scholar] [CrossRef]
- Karvas, R.M.; Zemke, J.E.; Ali, S.S.; Upton, E.; Sane, E.; Fischer, L.A.; Dong, C.; Park, K.-M.; Wang, F.; Park, K.; et al. 3D-cultured blastoids model human embryogenesis from preimplantation to early gastrulation stages. Cell Stem Cell 2023, 30, 1148–1165. [Google Scholar] [CrossRef]
- Khoei, H.H.; Javali, A.; Kagawa, H.; Sommer, T.M.; Sestini, G.; David, L.; Slovakova, J.; Novatchkova, M.; Reimer, Y.S.O.; Rivron, N. Generating human blastoids modelling blastocyst-stage embryos and implantation. Nat. Protoc. 2023, 18, 1584–1620. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Plaza Reyes, A.; Schell, J.P.; Weltner, J.; Ortega, N.M.; Zheng, Y.; Björklund, Å.K.; Baqué-Vidal, L.; Sokka, J.; Trokovic, R.; et al. A comprehensive human embryo reference tool using single-cell RNA-sequencing data. Nat. Methods 2025, 22, 193–206. [Google Scholar] [CrossRef] [PubMed]
- de Santis, R.; Rice, E.; Croft, G.; Yang, M.; Rosado-Olivieri, E.A.; Brivanlou, A.H. The emergence of human gastrulation upon in vitro attachment. Stem Cell Rep. 2024, 19, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; van Sinderen, M.; Rainczuk, K.; Menkhorst, E.; Sorby, K.; Osianlis, T.; Pangestu, M.; Santos, L.; Rombauts, L.; Rosello-Diez, A.; et al. Dysregulated miR-124-3p in endometrial epithelial cells reduces endomentrial receptivity by altering polarity and adhesion. Proc. Natl. Acad. Sci. USA 2024, 121, e2401071121. [Google Scholar] [CrossRef]
- Shibata, S.; Endo, S.; Nagai, L.A.E.; Kobayashi, E.H.; Oike, A.; Kobayashi, N.; Kitamura, A.; Hori, T.; Nashimoto, Y.; Nakato, R.; et al. Modeling human embryo-endometrial interface recapitulating human embryo implantation. Sci. Adv. 2024, 10, eadi4819. [Google Scholar] [CrossRef]
- Xiang, L.; Yin, Y.; Zheng, Y.; Ma, Y.; Li, Y.; Zhao, Z.; Guo, J.; Ai, Z.; Niu, Y.; Duan, K.; et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 2020, 577, 537–542. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Q.; Cao, J.; Liu, Y.; Lu, Y.; Sun, Y.; Li, Q.; Huang, Y.; Shang, S.; Bian, X.; et al. Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell 2023, 30, 362–377. [Google Scholar] [CrossRef]
- Pera, M.F.; de Wert, G.; Dondorp, W.; Lovell-Badge, R.; Mummery, C.L.; Munsie, M.; Tam, P.P. What if stem cells turn into embryos in a dish? Nat. Methods 2015, 12, 917–919. [Google Scholar] [CrossRef]
- Rivron, N.; Pera, M.; Rossant, J.; Arias, A.M.; Zernicka-Goetz, M.; Fu, J.; Brink, S.v.D.; Bredenoord, A.; Dondorp, W.; de Wert, G.; et al. Debate ethics of embryo models from stem cells. Nature 2018, 564, 183–185. [Google Scholar] [CrossRef]
- Hyun, I.; Munsie, M.; Pera, M.F.; Rivron, N.C.; Rossant, J. Towards guidelines for research on human embryo models formed from stem cells. Stem Cell Rep. 2020, 14, 169–174. [Google Scholar] [CrossRef]
- Rivron, N.C.; Arias, A.M.; Pera, M.F.; Moris, N.; M’hAmdi, H.I. An ethical framework for human embryology with embryo models. Cell 2023, 186, 3548–3557. [Google Scholar] [CrossRef]
- Blasimme, A.; Sugarman, S. Human stem cell-derived embryo models: Toward ethically appropriate regulations and policies. Cell Stem Cell 2023, 30, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- de Graeff, N.; De Proost, L.; Munsie, M. ‘Ceci n’est pas un embryon?’ The ethics of human embryo model research. Nat. Protoc. 2023, 20, 1863–1867. [Google Scholar] [CrossRef]
- International Society for Stem Cell Research (ISSCR). ISSCR Guidelines for Stem Cell Research and Clinical Translation. 2021. Available online: https://www.isscr.org/guidelines (accessed on 22 June 2025).
- Clark, A.T.; Brivanlou, A.; Fu, J.; Kato, K.; Mathews, D.; Niakan, K.K.; Rivron, N.; Saitou, M.; Surani, A.; Tang, F.; et al. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: Considerations leading to the revised ISSCR guidelines. Stem Cell Rep. 2021, 16, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Boiani, M.; Duncan, F.E.; Ajduk, A.; Bolcun-Filas, E.; Bowles, J.; Lodde, V.; Menkhorst, E.; Roelen, B.; Wallingford, M.; MHR-ISSCR Guidelines Working Group; et al. A reproductive science perspective: Deliberations on the stem cell guidelines update. Mol. Hum. Reprod. 2022, 28, gaac008. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.T.; Cook-Andersen, H.; Franklin, S.; Isasi, R.; Mathews, D.J.H.; Pasque, V.; Rugg-Gunn, P.J.; Tam, P.P.L.; Wang, H.; Zylicz, J.J.; et al. Stem cell-based embryo models: The 2021 ISSCR stem cell guidelines revisited. Stem Cell Rep. 2025, 20, 102514. [Google Scholar] [CrossRef]
- Matthews, K.R.; Moralí, D. National human embryo and embryoid research policies: A survey of 22 top research-intensive countries. Regen. Med. 2020, 15, 1905–1917. [Google Scholar] [CrossRef]
- Fabbri, M.; Ginoza, M.; Assen, L.; Jongsma, K.; Isasi, R. Modeling policy development: Examining national governance of stem cell-based embryo models. Regen. Med. 2023, 18, 155–168. [Google Scholar] [CrossRef]
- National Health and Medical Research Council (NHMRC). Regulation of Research Involving Human Embryos and Embryo-Like Structures in Australia. 2023. Available online: https://www.nhmrc.gov.au/about-us/news-centre/nhmrc-statement-iblastoids (accessed on 22 June 2025).
- NHMRC. Embryo Research Licence Database 2025. Available online: https://www.nhmrc.gov.au/research-policy/embryo-research-licensing/database-licences-issued (accessed on 22 June 2025).
- NHMRC. Determining Whether an Embryo Model Is Regulated by the ERLC. 2025. Available online: https://www.nhmrc.gov.au/research-policy/embryo-research-licensing/commonwealth-and-state-legislation/determining-whether-embryo-model-regulated-erlc (accessed on 22 June 2025).
- Cambridge Reproduction and Progress Educational Trust. Code of Practice for the Generation and Use of Human Stem Cell-Based Embryo Models. 2024. Available online: https://www.repro.cam.ac.uk/scbemcode (accessed on 22 June 2025).
- Hopkins Van Mil. Addressing the Governance Gap: A Public Dialogue on the Governance of Research Involving Stem Cell-Based Embryo Models. 2024. Available online: https://sciencewise.org.uk/wp-content/uploads/2024/04/StemCellBasedEmbryoModels_Report_Appendices.pdf (accessed on 22 June 2025).
- Nuffield Council on Bioethics. Human Stem Cell-Based Embryo Models: A Review of Ethical and Governance Questions. 2024. Available online: https://cdn.nuffieldbioethics.org/wp-content/uploads/NCOB-SCBEM-Full-Report-Final.pdf (accessed on 22 June 2025).
- Pereira Daoud, A.M.; Dondorp, W.J.; Bredenoord, A.L.; De Wert, G.M.W.R. The ethics of stem cell-based embryo-Like structures: A focus group study on the perspectives of Dutch professionals and lay citizens. J. Bioethical Inq. 2024, 21, 513–542. [Google Scholar] [CrossRef]
- ISSCR. The ISSCR Statement on New Research with Embryo Models. 2023. Available online: https://www.isscr.org/isscr-news/isscr-statement-on-new-research-with-embryo-models (accessed on 22 June 2025).
Description of Model | Observations | Significance | Reference |
2D attachment of human ART embryos on treated plastic plates | Human blastocysts self-organised to recapitulate many key features of in vivo development up to 12 days post fertilisation (d.p.f.) | Illustrated differences in architecture, cell types and tissue composition between human and mouse development and need for human models to understand human development. | [5] |
2D attachment of human ART embryos and human pluripotent stem cell clusters on Matrigel-treated plastic plates | Key morphogenetic events including epiblast and hypoblast segregation; formation of the proamniotic cavity and the bilaminar disc; appearance of yolk sac; and differentiation of the trophoblast into cytotrophoblast and syncytiotrophoblast. | Although not be able to fully recapitulate all aspects of human embryogenesis in vivo, it demonstrated self-organising capacity of human blastocysts. | [6] |
3D human blastocyst culture system up to the primitive streak stage of development | Recapitulated timing and lineage segregation and development, more authentically mimicking early human embryonic development in vivo. Revealed molecular and morphogenetic developmental landscape of pre-gastrulation human embryos. | Extended development up to the stage of the primitive streak, providing insights into the pluripotency of stem cells. | [27] |
3D blastocyst model (referred to as Blastoid) on treated plastic plates (2D) | Human blastoids resemble human blastocysts in morphology, cell-lineage composition and allocation, and transcriptional state. Recapitulate key morphogenetic events during human peri-implantation development. | First report of human blastoids. Variation in derivation efficiency and cellular composition observed within and between experiments and cell lines. Post-implantation development inefficient. | [10] |
3D blastocyst model using reprogrammed adult human fibroblasts (referred to as iBlastoid) on treated plastic plates (2D) | Displayed key features of cellular architecture and molecular markers of pre-implantation human blastocysts including epiblast-, primitive endoderm-, and trophectoderm-like cells; capable of attachment in vitro. | Referred to as iBlastoids as it uses reprogrammed somatic cells rather than pluripotent stem cells as the starting source. Lacked a defined primitive endoderm cell layer. | [11] |
3D Blastoid attached on treated plastic plates (2D) | Simple defined culture conditions to generate human blastoids with cellular and molecular fidelity to early human embryos. | Reproducible across different pluripotent stem cell lines and scalable due to simple and efficient approach. | [16] |
3D Blastoid attached on hormonally stimulated human endometrial cells derived from organoids (2D) | Increased efficiency in rate of blastoid generation with representation of the three founding lineages (trophectoderm, epiblast and primitive endoderm). Capacity for directionally attachment on hormonally stimulated endometrial cells. | Showed that human blastoids were capable of interacting specifically with hormonally receptive endometrial cells, noting that the contraceptive levonorgestrel impaired blastoid attachment. | [17] |
3D Blastoid attached on endometrial stromal cells (2D) | Efficient method for large-scale production of human blastoids with high-fidelity. Blastoid–endometrial stromal cell co-cultures capable of recapitulating maternal–foetal cross talk. | Reproducible using different human embryonic stem cell and induced pluripotent stem cell lines. Showed in vitro attachment of donated human ART blastocysts similar to human blastoids, verifying model. | [20] |
3D Blastoids attached on extracellular matrices (3D) | Cellular architecture and molecular markers consistent with early post-implantation development, including expansion and diversification of trophoblast lineages, and robust invasion of extravillous trophoblast cells. | Increased efficiency and optimised conditions with thick 3D matrices enabling more advanced development, offering a continuous and integrated in vitro model system of early embryogenesis. | [21] |
3D hormone-responsive human endometrial organoids co-cultured with human blastoids and ART blastocysts | Captured cellular and molecular features of critical implantation stages, including apposition, adhesion, and invasion. This included disruption of endometrial epithelial cells by syncytiotrophoblast cells, which were shown to fuse with endometrial stromal cells. | Model enables visualisation of human embryo–endometrium interaction, suggesting that foetal and maternal cell fusion may occur during early implantation. Described as 3D feto-maternal assembloid. | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munsie, M.; Findlay, J.K. Three-Dimensional Models of Implantation Using Human Stem Cells: Scientific Insights and Broader Considerations. Biomolecules 2025, 15, 1023. https://doi.org/10.3390/biom15071023
Munsie M, Findlay JK. Three-Dimensional Models of Implantation Using Human Stem Cells: Scientific Insights and Broader Considerations. Biomolecules. 2025; 15(7):1023. https://doi.org/10.3390/biom15071023
Chicago/Turabian StyleMunsie, Megan, and Jock K. Findlay. 2025. "Three-Dimensional Models of Implantation Using Human Stem Cells: Scientific Insights and Broader Considerations" Biomolecules 15, no. 7: 1023. https://doi.org/10.3390/biom15071023
APA StyleMunsie, M., & Findlay, J. K. (2025). Three-Dimensional Models of Implantation Using Human Stem Cells: Scientific Insights and Broader Considerations. Biomolecules, 15(7), 1023. https://doi.org/10.3390/biom15071023