Defibrotide for Protecting Against and Managing Endothelial Injury in Hematologic Malignancies and COVID-19
Abstract
1. Introduction
2. Mechanisms of Endothelial Protection with Defibrotide
2.1. Functions of the Endothelium and Impacts of Injury/Activation
2.2. Mechanisms of Action of Defibrotide
3. Defibrotide for Managing and Protecting Against Endothelial Injury in Hematologic Malignancies
3.1. Hepatic VOD/SOS
3.1.1. Mechanism of Action of Defibrotide in Hepatic VOD/SOS
3.1.2. Defibrotide for Managing Hepatic VOD/SOS
3.1.3. Defibrotide Prophylaxis Against Hepatic VOD/SOS
3.2. Graft-Versus-Host Disease
Defibrotide for Treating or Preventing GvHD
3.3. Transplant-Associated Thrombotic Microangiopathy
Defibrotide for Treating or Preventing TA-TMA
3.4. Defibrotide for Treating or Preventing Idiopathic Pneumonia Syndrome (IPS)
3.5. Immune Effector Cell Therapy-Associated Cytokine Release Syndrome and Neurotoxicity
Defibrotide for Treating or Preventing Immune Effector Cell Therapy-Associated CRS and Neurotoxicity
4. Defibrotide for Managing and Protecting Against Endotheliopathies Associated with COVID-19
4.1. Endotheliopathies Associated with SARS-CoV-2 Infection Resulting in COVID-19 and PASC
4.2. Defibrotide for Endothelial Protection in the Setting of COVID-19
4.3. Clinical Findings Demonstrating the Role of Defibrotide for Endothelial Protection in the Setting of COVID-19
5. Conclusions and Next Steps for Defibrotide
- Other viral or infectious causes of severe acute lung injury, e.g., serious influenza;
- Inflammatory lung conditions such as IPS or other non-HCT-related lung injury;
- Prevention of microvascular ischemia and thrombosis in ischemic diseases (cardiovascular, neurological);
- Immune-mediated endothelial injury, including autoimmune diseases and antiphospholipid syndrome;
- Solid organ transplant-associated endothelial dysfunction, including ischemia-reperfusion injury and chronic allograft vasculopathy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jazz Pharmaceuticals Inc. DEFITELIO (Defibrotide Sodium) Injection, for Intravenous Use—Prescribing Information. Jazz Pharmaceuticals Inc., 2022. Available online: https://defitelio.com/dosing-and-administration/index (accessed on 3 May 2025).
- Defibrotide. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Gentium Srl. Defitelio: EPAR—Product Information. Gentium Srl, 2023. Available online: https://www.ema.europa.eu/en/documents/product-information/defitelio-epar-product-information_en.pdf (accessed on 3 May 2025).
- Augustin, H.G.; Koh, G.Y. A systems view of the vascular endothelium in health and disease. Cell 2024, 187, 4833–4858. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, G.C.; Chao, N. Endothelial cell function and endothelial-related disorders following haematopoietic cell transplantation. Br. J. Haematol. 2020, 190, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Sancho, J.; Caparros, E.; Fernandez-Iglesias, A.; Frances, R. Role of liver sinusoidal endothelial cells in liver diseases. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Poisson, J.; Lemoinne, S.; Boulanger, C.; Durand, F.; Moreau, R.; Valla, D.; Rautou, P.E. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 2017, 66, 212–227. [Google Scholar] [CrossRef]
- Chung, A.S.; Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 2011, 27, 563–584. [Google Scholar] [CrossRef]
- Elhadad, S.; Redmond, D.; Tan, A.; Huang, J.; Rodriguez, B.L.; Racine-Brzostek, S.E.; Subrahmanian, S.; Ahamed, J.; Laurence, J. Defibrotide mitigates endothelial cell injury induced by plasmas from patients with COVID-19 and related vasculopathies. Thromb. Res. 2023, 225, 47–56. [Google Scholar] [CrossRef]
- Chang, J.C. Molecular Pathogenesis of Endotheliopathy and Endotheliopathic Syndromes, Leading to Inflammation and Microthrombosis, and Various Hemostatic Clinical Phenotypes Based on “Two-Activation Theory of the Endothelium” and “Two-Path Unifying Theory” of Hemostasis. Medicina 2022, 58, 1311. [Google Scholar] [CrossRef]
- Palomo, M.; Moreno-Castano, A.B.; Salas, M.Q.; Escribano-Serrat, S.; Rovira, M.; Guillen-Olmos, E.; Fernandez, S.; Ventosa-Capell, H.; Youssef, L.; Crispi, F.; et al. Endothelial activation and damage as a common pathological substrate in different pathologies and cell therapy complications. Front. Med. 2023, 10, 1285898. [Google Scholar] [CrossRef]
- Pennisi, M.; Sanchez-Escamilla, M.; Flynn, J.R.; Shouval, R.; Alarcon Tomas, A.; Silverberg, M.L.; Batlevi, C.; Brentjens, R.J.; Dahi, P.B.; Devlin, S.M.; et al. Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv. 2021, 5, 3397–3406. [Google Scholar] [CrossRef]
- Escribano-Serrat, S.; Rodriguez-Lobato, L.G.; Charry, P.; Martinez-Cibrian, N.; Suarez-Lledo, M.; Rivero, A.; Moreno-Castano, A.B.; Solano, M.T.; Arcarons, J.; Nomdedeu, M.; et al. Endothelial Activation and Stress Index in adults undergoing allogeneic hematopoietic cell transplantation with post-transplant cyclophosphamide-based prophylaxis. Cytotherapy 2024, 26, 73–80. [Google Scholar] [CrossRef]
- Pedraza, A.; Salas, M.Q.; Rodriguez-Lobato, L.G.; Escribano-Serrat, S.; Suarez-Lledo, M.; Martinez-Cebrian, N.; Solano, M.T.; Arcarons, J.; Rosinol, L.; Gutierrez-Garcia, G.; et al. Easix Score Correlates with Endothelial Dysfunction Biomarkers and Predicts Risk of Acute Graft-Versus-Host Disease After Allogeneic Transplantation. Transplant. Cell Ther. 2024, 30, 187.e1–187.e12. [Google Scholar] [CrossRef] [PubMed]
- Tolosa-Ridao, C.; Cascos, E.; Rodriguez-Lobato, L.G.; Pedraza, A.; Suarez-Lledo, M.; Charry, P.; Solano, M.T.; Martinez-Sanchez, J.; Cid, J.; Lozano, M.; et al. EASIX and cardiac adverse events after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2024, 59, 974–982. [Google Scholar] [CrossRef]
- Escribano-Serrat, S.; Rodriguez-Lobato, L.G.; Suarez-Lledo, M.; Pedraza, A.; Charry, P.; Cid, J.; Lozano, M.; Esteve, J.; Rosinol, L.; Fernandez-Aviles, F.; et al. Improving the EASIX’ predictive power for NRM in adults undergoing allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2024, 59, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Serrat, S.; Pedraza, A.; Suarez-Lledo, M.; Charry, P.; De Moner, B.; Martinez-Sanchez, J.; Ramos, A.; Ventosa-Capell, H.; Moreno, C.; Guardia, L.; et al. Safety and efficacy of G-CSF after allogeneic hematopoietic cell transplantation using post-transplant cyclophosphamide: Clinical and in vitro examination of endothelial activation. Bone Marrow Transplant. 2024, 59, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Castaño, A.B.; Fernández, S.; Brillembourg, H.; de Moner, B.; Ventosa-Capell, H.; Martinez-Sanchez, J.; Ramos, A.; Palomo, M.; Molina, P.; Pino, M.; et al. M-Easix (Better Than EASIX) Correlates with Specific Endotheliopathy Biomarkers, Predicts Severe CAR-T Cell Toxicities and Discriminates from Sepsis. Blood 2024, 144 (Suppl. S1), 3423. [Google Scholar] [CrossRef]
- Richardson, P.G.; Palomo, M.; Kernan, N.A.; Hildebrandt, G.C.; Chao, N.; Carreras, E. The importance of endothelial protection: The emerging role of defibrotide in reversing endothelial injury and its sequelae. Bone Marrow Transplant. 2021, 56, 2889–2896. [Google Scholar] [CrossRef]
- Richardson, E.; Garcia-Bernal, D.; Calabretta, E.; Jara, R.; Palomo, M.; Baron, R.M.; Yanik, G.; Fareed, J.; Vlodavsky, I.; Iacobelli, M.; et al. Defibrotide: Potential for treating endothelial dysfunction related to viral and post-infectious syndromes. Expert. Opin. Ther. Targets 2021, 25, 423–433. [Google Scholar] [CrossRef]
- Echart, C.L.; Graziadio, B.; Somaini, S.; Ferro, L.I.; Richardson, P.G.; Fareed, J.; Iacobelli, M. The fibrinolytic mechanism of defibrotide: Effect of defibrotide on plasmin activity. Blood Coagul. Fibrinolysis 2009, 20, 627–634. [Google Scholar] [CrossRef]
- Carmona, A.; Diaz-Ricart, M.; Palomo, M.; Molina, P.; Pino, M.; Rovira, M.; Escolar, G.; Carreras, E. Distinct deleterious effects of cyclosporine and tacrolimus and combined tacrolimus-sirolimus on endothelial cells: Protective effect of defibrotide. Biol. Blood Marrow Transplant. 2013, 19, 1439–1445. [Google Scholar] [CrossRef]
- Orlando, N.; Babini, G.; Chiusolo, P.; Valentini, C.G.; De Stefano, V.; Teofili, L. Pre-Exposure to Defibrotide Prevents Endothelial Cell Activation by Lipopolysaccharide: An Ingenuity Pathway Analysis. Front. Immunol. 2020, 11, 585519. [Google Scholar] [CrossRef]
- Palomo, M.; Vera, M.; Martin, S.; Torramade-Moix, S.; Martinez-Sanchez, J.; Belen Moreno, A.; Carreras, E.; Escolar, G.; Cases, A.; Diaz-Ricart, M. Up-regulation of HDACs, a harbinger of uraemic endothelial dysfunction, is prevented by defibrotide. J. Cell Mol. Med. 2020, 24, 1713–1723. [Google Scholar] [CrossRef]
- Schoergenhofer, C.; Buchtele, N.; Gelbenegger, G.; Derhaschnig, U.; Firbas, C.; Kovacevic, K.D.; Schwameis, M.; Wohlfarth, P.; Rabitsch, W.; Jilma, B. Defibrotide enhances fibrinolysis in human endotoxemia—A randomized, double blind, crossover trial in healthy volunteers. Sci. Rep. 2019, 9, 11136. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Gandhi, A.A.; Smith, S.A.; Wang, Q.; Chiang, D.; Yalavarthi, S.; Ali, R.A.; Liu, C.; Sule, G.; Tsou, P.S.; et al. Endothelium-protective, histone-neutralizing properties of the polyanionic agent defibrotide. JCI Insight 2021, 6, e149149. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pan, B.; Hashimoto, Y.; Ohkawara, H.; Xu, K.; Zeng, L.; Ikezoe, T. Defibrotide Stimulates Angiogenesis and Protects Endothelial Cells from Calcineurin Inhibitor-Induced Apoptosis via Upregulation of AKT/Bcl-xL. Thromb. Haemost. 2018, 118, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.A.; Estes, S.K.; Gandhi, A.A.; Yalavarthi, S.; Hoy, C.K.; Shi, H.; Zuo, Y.; Erkan, D.; Knight, J.S. Defibrotide Inhibits Antiphospholipid Antibody-Mediated Neutrophil Extracellular Trap Formation and Venous Thrombosis. Arthritis Rheumatol. 2022, 74, 902–907. [Google Scholar] [CrossRef]
- Onuora, S. Defibrotide inhibits NET-mediated thrombosis in APS models. Nat. Rev. Rheumatol. 2022, 18, 63. [Google Scholar] [CrossRef]
- Schaefer, E.; Anderson-Crannage, M.; Ktena, Y.P.; Hochberg, J.; Kanarfogel, T.; Herrick, J.; Thatcher, E.; Shi, Q.; Hochberg, B.; Chu, Y.; et al. Defibrotide Reduces Hypercoagulable State in Patients with Sickle Cell Disease-Related Acute Chest Syndrome (IND 127812). Blood 2024, 144 (Suppl. S1), 2515. [Google Scholar] [CrossRef]
- Mo, C.C.; Richardson, E.; Calabretta, E.; Corrado, F.; Kocoglu, M.H.; Baron, R.M.; Connors, J.M.; Iacobelli, M.; Wei, L.J.; Rapoport, A.P.; et al. Endothelial injury and dysfunction with emerging immunotherapies in multiple myeloma, the impact of COVID-19, and endothelial protection with a focus on the evolving role of defibrotide. Blood Rev. 2024, 66, 101218. [Google Scholar] [CrossRef]
- Echart, C.L.; Somaini, S.; Distaso, M.; Palumbo, A.; Richardson, P.G.; Fareed, J.; Iacobelli, M. Defibrotide blunts the prothrombotic effect of thalidomide on endothelial cells. Clin. Appl. Thromb. Hemost. 2012, 18, 79–86. [Google Scholar] [CrossRef]
- Comerford, C.; Glavey, S.; Quinn, J.; O’Sullivan, J.M. The role of VWF/FVIII in thrombosis and cancer progression in multiple myeloma and other hematological malignancies. J. Thromb. Haemost. 2022, 20, 1766–1777. [Google Scholar] [CrossRef]
- Leimi, L.; Jahnukainen, K.; Olkinuora, H.; Meri, S.; Vettenranta, K. Early vascular toxicity after pediatric allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2022, 57, 705–711. [Google Scholar] [CrossRef]
- Martinez-Sanchez, J.; Palomo, M.; Torramade-Moix, S.; Moreno-Castano, A.B.; Rovira, M.; Gutierrez-Garcia, G.; Fernandez-Aviles, F.; Escolar, G.; Penack, O.; Rosinol, L.; et al. The induction strategies administered in the treatment of multiple myeloma exhibit a deleterious effect on the endothelium. Bone Marrow Transplant. 2020, 55, 2270–2278. [Google Scholar] [CrossRef] [PubMed]
- Coppell, J.A.; Richardson, P.G.; Soiffer, R.; Martin, P.L.; Kernan, N.A.; Chen, A.; Guinan, E.; Vogelsang, G.; Krishnan, A.; Giralt, S.; et al. Hepatic veno-occlusive disease following stem cell transplantation: Incidence, clinical course, and outcome. Biol. Blood Marrow Transplant. 2010, 16, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Carreras, E.; Diaz-Beya, M.; Rosinol, L.; Martinez, C.; Fernandez-Aviles, F.; Rovira, M. The incidence of veno-occlusive disease following allogeneic hematopoietic stem cell transplantation has diminished and the outcome improved over the last decade. Biol. Blood Marrow Transplant. 2011, 17, 1713–1720. [Google Scholar] [CrossRef]
- Mohty, M.; Malard, F.; Abecasis, M.; Aerts, E.; Alaskar, A.S.; Aljurf, M.; Arat, M.; Bader, P.; Baron, F.; Basak, G.; et al. Prophylactic, preemptive, and curative treatment for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: A position statement from an international expert group. Bone Marrow Transplant. 2020, 55, 485–495. [Google Scholar] [CrossRef]
- Ruutu, T.; Peczynski, C.; Houhou, M.; Polge, E.; Mohty, M.; Kroger, N.; Moiseev, I.; Penack, O.; Salooja, N.; Schoemans, H.; et al. Current incidence, severity, and management of veno-occlusive disease/sinusoidal obstruction syndrome in adult allogeneic HSCT recipients: An EBMT Transplant Complications Working Party study. Bone Marrow Transplant. 2023, 58, 1209–1214. [Google Scholar] [CrossRef]
- Zaidman, I.; Barsoum, N.; Even-Or, E.; Daher, M.; Aran, A.A.; Stepensky, P.; Gefen, A. Prognostic Factors Associated With Increased Mortality in Pediatric Veno-Occlusive Disease Following Hematopoietic Cell Transplantation. Clin. Transplant. 2024, 38, e70037. [Google Scholar] [CrossRef]
- Ho, V.T.; Linden, E.; Revta, C.; Richardson, P.G. Hepatic veno-occlusive disease after hematopoietic stem cell transplantation: Review and update on the use of defibrotide. Semin. Thromb. Hemost. 2007, 33, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Bearman, S.I. The syndrome of hepatic veno-occlusive disease after marrow transplantation. Blood 1995, 85, 3005–3020. [Google Scholar] [CrossRef]
- Eissner, G.; Multhoff, G.; Gerbitz, A.; Kirchner, S.; Bauer, S.; Haffner, S.; Sondermann, D.; Andreesen, R.; Holler, E. Fludarabine induces apoptosis, activation, and allogenicity in human endothelial and epithelial cells: Protective effect of defibrotide. Blood 2002, 100, 334–340. [Google Scholar] [CrossRef]
- Richardson, P.; Guinan, E. Hepatic veno-occlusive disease following hematopoietic stem cell transplantation. Acta Haematol. 2001, 106, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Corbacioglu, S.; Ho, V.T.; Kernan, N.A.; Lehmann, L.; Maguire, C.; Maglio, M.; Hoyle, M.; Sardella, M.; Giralt, S.; et al. Drug safety evaluation of defibrotide. Expert. Opin. Drug Saf. 2013, 12, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Mitsiades, C.S.; Rouleau, C.; Echart, C.; Menon, K.; Teicher, B.; Distaso, M.; Palumbo, A.; Boccadoro, M.; Anderson, K.C.; Iacobelli, M.; et al. Preclinical studies in support of defibrotide for the treatment of multiple myeloma and other neoplasias. Clin. Cancer Res. 2009, 15, 1210–1221. [Google Scholar] [CrossRef]
- Palomo, M.; Diaz-Ricart, M.; Rovira, M.; Escolar, G.; Carreras, E. Defibrotide prevents the activation of macrovascular and microvascular endothelia caused by soluble factors released to blood by autologous hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2011, 17, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Palomo, M.; Mir, E.; Rovira, M.; Escolar, G.; Carreras, E.; Diaz-Ricart, M. What is going on between defibrotide and endothelial cells? Snapshots reveal the hot spots of their romance. Blood 2016, 127, 1719–1727. [Google Scholar] [CrossRef]
- Inoue, Y.; Kosugi, S.; Sano, F. Improvement of High Serum Levels of Biomarkers of Endothelial Injury (Vascular Cell Adhesion Molecule-1) and Inflammation (Tumor Necrosis Factor Receptor Type I) After Allogeneic Hematopoietic Stem Cell Transplantation With Sinusoidal Obstruction Syndrome Using Defibrotide. Am. J. Ther. 2020, 28, e691–e693. [Google Scholar] [CrossRef]
- Falanga, A.; Vignoli, A.; Marchetti, M.; Barbui, T. Defibrotide reduces procoagulant activity and increases fibrinolytic properties of endothelial cells. Leukemia 2003, 17, 1636–1642. [Google Scholar] [CrossRef]
- Francischetti, I.M.; Oliveira, C.J.; Ostera, G.R.; Yager, S.B.; Debierre-Grockiego, F.; Carregaro, V.; Jaramillo-Gutierrez, G.; Hume, J.C.; Jiang, L.; Moretz, S.E.; et al. Defibrotide interferes with several steps of the coagulation-inflammation cycle and exhibits therapeutic potential to treat severe malaria. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 786–798. [Google Scholar] [CrossRef]
- Benimetskaya, L.; Wu, S.; Voskresenskiy, A.M.; Echart, C.; Zhou, J.F.; Shin, J.; Iacobelli, M.; Richardson, P.; Ayyanar, K.; Stein, C.A. Angiogenesis alteration by defibrotide: Implications for its mechanism of action in severe hepatic veno-occlusive disease. Blood 2008, 112, 4343–4352. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, S.; Wei, X.; Du, X.; Zhang, J. Defibrotide improved the outcome of monocrotaline induced rat hepatic sinusoidal obstruction syndrome. BMC Gastroenterol. 2022, 22, 525. [Google Scholar] [CrossRef]
- Richardson, P.G.; Riches, M.L.; Kernan, N.A.; Brochstein, J.A.; Mineishi, S.; Termuhlen, A.M.; Arai, S.; Grupp, S.A.; Guinan, E.C.; Martin, P.L.; et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood 2016, 127, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Kernan, N.A.; Grupp, S.; Smith, A.R.; Arai, S.; Triplett, B.; Antin, J.H.; Lehmann, L.; Shore, T.; Ho, V.T.; Bunin, N.; et al. Final results from a defibrotide treatment-IND study for patients with hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Br. J. Haematol. 2018, 181, 816–827. [Google Scholar] [CrossRef]
- Mohty, M.; Blaise, D.; Peffault de Latour, R.; Labopin, M.; Bourhis, J.H.; Bruno, B.; Ceballos, P.; Detrait, M.; Gandemer, V.; Huynh, A.; et al. Real-world use of defibrotide for veno-occlusive disease/sinusoidal obstruction syndrome: The DEFIFrance Registry Study. Bone Marrow Transplant. 2023, 58, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Nauffal, M.; Kim, H.T.; Richardson, P.G.; Soiffer, R.J.; Antin, J.H.; Cutler, C.; Nikiforow, S.; Gooptu, M.; Koreth, J.; Romee, R.; et al. Defibrotide: Real-world management of veno-occlusive disease/sinusoidal obstructive syndrome after stem cell transplant. Blood Adv. 2022, 6, 181–188. [Google Scholar] [CrossRef]
- Bagal, B.; Chandrasekharan, A.; Chougle, A.; Khattry, N. Low, fixed dose defibrotide in management of hepatic veno-occlusive disease post stem cell transplantation. Hematol. Oncol. Stem Cell Ther. 2018, 11, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Bahoush, G.; Vafapour, M. A case report of severe veno-occlusive disease following autologous stem cell transplantation successfully treated with Defibrotide. Eur. J. Transl. Myol. 2020, 30, 9161. [Google Scholar] [CrossRef]
- Balade Martinez, L.; Cabezuelo, M.M.; Villamanan Bueno, E.; Rodriguez Martin, E.; Herrero Ambrosio, A. Defibrotide for the treatment of severe hepatic sinusoidal obstruction syndrome: A single-centre experience. Eur. J. Hosp. Pharm. 2019, 26, 343–346. [Google Scholar] [CrossRef]
- Corbacioglu, S.; Carreras, E.; Mohty, M.; Pagliuca, A.; Boelens, J.J.; Damaj, G.; Iacobelli, M.; Niederwieser, D.; Olavarria, E.; Suarez, F.; et al. Defibrotide for the Treatment of Hepatic Veno-Occlusive Disease: Final Results From the International Compassionate-Use Program. Biol. Blood Marrow Transplant. 2016, 22, 1874–1882. [Google Scholar] [CrossRef]
- Corbacioglu, S.; Greil, J.; Peters, C.; Wulffraat, N.; Laws, H.J.; Dilloo, D.; Straham, B.; Gross-Wieltsch, U.; Sykora, K.W.; Ridolfi-Luthy, A.; et al. Defibrotide in the treatment of children with veno-occlusive disease (VOD): A retrospective multicentre study demonstrates therapeutic efficacy upon early intervention. Bone Marrow Transplant. 2004, 33, 189–195. [Google Scholar] [CrossRef]
- Agrawal, V.; Pourhassan, H.; Tsai, N.C.; Ngo, D.; Koller, P.; Malki, M.M.A.; Salhotra, A.; Ali, H.; Aribi, A.; Sandhu, K.S.; et al. Post-Transplantation Sinusoidal Obstruction Syndrome in Adult Patients with B Cell Acute Lymphoblastic Leukemia Treated with Pretransplantation Inotuzumab. Transplant. Cell Ther. 2023, 29, 314–320. [Google Scholar] [CrossRef]
- Faraci, M.; Bertaina, A.; Luksch, R.; Calore, E.; Lanino, E.; Saglio, F.; Prete, A.; Menconi, M.; De Simone, G.; Tintori, V.; et al. Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease after Autologous or Allogeneic Hematopoietic Stem Cell Transplantation in Children: A retrospective study of the Italian Hematology-Oncology Association-Hematopoietic Stem Cell Transplantation Group. Biol. Blood Marrow Transplant. 2019, 25, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Kernan, N.A.; Richardson, P.G.; Smith, A.R.; Triplett, B.M.; Antin, J.H.; Lehmann, L.; Messinger, Y.; Liang, W.; Hume, R.; Tappe, W.; et al. Defibrotide for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome following nontransplant-associated chemotherapy: Final results from a post hoc analysis of data from an expanded-access program. Pediatr. Blood Cancer 2018, 65, e27269. [Google Scholar] [CrossRef]
- Gonzalez Vicent, M.; Diaz de Heredia, C.; Gonzalez de Pablo, J.; Molina, B.; Regueiro, A.; Perez Martinez, A.; Palomo, P.; Lopez Corral, L.; Garcia, E.; Fernandez, J.M.; et al. Defibrotide in hematopoietic stem cell transplantation: A multicenter survey study of the Spanish Hematopoietic Stem Cell Transplantation Group (GETH). Eur. J. Haematol. 2021, 106, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.B.; Yang, K.; Ko, H.J.; Shim, J.R.; Choi, B.H.; Lee, J.H.; Ryu, J.H. Successful defibrotide treatment of a patient with veno-occlusive disease after living-donor liver transplantation: A case report. Medicine 2021, 100, e26463. [Google Scholar] [CrossRef] [PubMed]
- Mehra, V.; Tetlow, S.; Choy, A.; de Lavallade, H.; Kulasekararaj, A.; Krishnamurthy, P.; Avenoso, D.; Marsh, J.; Potter, V.; Mufti, G.; et al. Early and late-onset veno-occlusive disease/sinusoidal syndrome post allogeneic stem cell transplantation—A real-world UK experience. Am. J. Transplant. 2021, 21, 864–869. [Google Scholar] [CrossRef]
- Mohty, M.; Battista, M.L.; Blaise, D.; Calore, E.; Cesaro, S.; Maximova, N.; Perruccio, K.; Renard, C.; Wynn, R.; Zecca, M.; et al. A multicentre, multinational, prospective, observational registry study of defibrotide in patients diagnosed with veno-occlusive disease/sinusoidal obstruction syndrome after haematopoietic cell transplantation: An EBMT study. Bone Marrow Transplant. 2021, 56, 2454–2463. [Google Scholar] [CrossRef]
- Richardson, P.G.; Soiffer, R.J.; Antin, J.H.; Uno, H.; Jin, Z.; Kurtzberg, J.; Martin, P.L.; Steinbach, G.; Murray, K.F.; Vogelsang, G.B.; et al. Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: A multicenter, randomized, dose-finding trial. Biol. Blood Marrow Transplant. 2010, 16, 1005–1017. [Google Scholar] [CrossRef]
- Richardson, P.G.; Murakami, C.; Jin, Z.; Warren, D.; Momtaz, P.; Hoppensteadt, D.; Elias, A.D.; Antin, J.H.; Soiffer, R.; Spitzer, T.; et al. Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: Response without significant toxicity in a high-risk population and factors predictive of outcome. Blood 2002, 100, 4337–4343. [Google Scholar] [CrossRef]
- Richardson, P.G.; Corbacioglu, S. Veno-occlusive disease/sinusoidal obstruction syndrome in patients with prior gemtuzumab ozogamicin: Literature analysis of survival after defibrotide treatment. Blood Cancer J. 2020, 10, 29. [Google Scholar] [CrossRef]
- Roy Moulik, N.; Johnson, I.; Van Bruggen, L.; Petterson, T.; Mycroft, J.; Vaidya, S.J. Defibrotide treatment but not prophylaxis is useful in hepatic sinusoidal obstruction syndrome in children undergoing autologous stem cell transplant following high-dose chemotherapy: A single-center experience from the Royal Marsden Hospital, UK. Pediatr. Blood Cancer 2020, 67, e28677. [Google Scholar] [CrossRef]
- Rudebeck, C.J.; Renard, C.; Halfon-Domenech, C.; Ouachee-Chardin, M.; Philippe, M.; Valla, F.V.; Bertrand, Y.; Penel-Page, M. Interest of the preventive and curative use of defibrotide on the occurrence and severity of sinusoidal obstruction syndrome after hematopoietic stem cell transplant in children. EJHaem 2022, 3, 885–893. [Google Scholar] [CrossRef]
- Strouse, C.; Richardson, P.; Prentice, G.; Korman, S.; Hume, R.; Nejadnik, B.; Horowitz, M.M.; Saber, W. Defibrotide for Treatment of Severe Veno-Occlusive Disease in Pediatrics and Adults: An Exploratory Analysis Using Data from the Center for International Blood and Marrow Transplant Research. Biol. Blood Marrow Transplant. 2016, 22, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Sucak, G.T.; Aki, Z.S.; Yagci, M.; Yegin, Z.A.; Ozkurt, Z.N.; Haznedar, R. Treatment of sinusoidal obstruction syndrome with defibrotide: A single-center experience. Transplant. Proc. 2007, 39, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Yakushijin, K.; Ikezoe, T.; Ohwada, C.; Kudo, K.; Okamura, H.; Goto, H.; Yabe, H.; Yasumoto, A.; Kuwabara, H.; Fujii, S.; et al. Clinical effects of recombinant thrombomodulin and defibrotide on sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019, 54, 674–680. [Google Scholar] [CrossRef]
- Thielemans, N.; De Beule, N.; Van den Bergh, F.; Lefesvre, P.; De Becker, A. Successful Treatment of Very Severe Sinusoidal Obstruction Syndrome After Gemtuzumab Ozogamicin With Transjugular Intrahepatic Portosystemic Shunt, Defibrotide, and High-Dose Corticosteroids: A Case Report. Cureus 2024, 16, e67682. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Kwag, D.; Min, G.J.; Park, S.-S.; Park, S.; Lee, S.-E.; Cho, B.-S.; Eom, K.-S.; Kim, Y.-J.; Kim, H.J.; et al. Real-World Outcome of Defibrotide for Treatment of Adult Patients Who Developed Severe Hepatic VOD/SOS after Allogeneic Hematopoietic Cell Transplantation. Blood 2024, 144 (Suppl. S1), 7326. [Google Scholar] [CrossRef]
- Coutsouvelis, J.; Avery, S.; Dooley, M.; Kirkpatrick, C.; Spencer, A. Defibrotide for the treatment of sinusoidal obstruction syndrome: Evaluation of response to therapy and patient outcomes. Support. Care Cancer 2018, 26, 947–955. [Google Scholar] [CrossRef]
- Coutsouvelis, J.; Kirkpatrick, C.M.; Dooley, M.; Spencer, A.; Kennedy, G.; Chau, M.; Huang, G.; Doocey, R.; Copeland, T.S.; Do, L.; et al. Incidence of Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease and Treatment with Defibrotide in Allogeneic Transplantation: A Multicenter Australasian Registry Study. Transplant. Cell Ther. 2023, 29, 383.e1–383.e10. [Google Scholar] [CrossRef]
- Carcedo Rodriguez, D.; Artola Urain, T.; Chinea Rodriguez, A.; Garcia Torres, E.; Gonzalez Vicent, M.; Gutierrez Garcia, G.; Regueiro Garcia, A.; Calvo Hidalgo, M.; Villacampa, A. Cost-effectiveness analysis of defibrotide in the treatment of patients with severe veno-occlusive disease/sinusoidal obstructive syndrome with multiorgan dysfunction following hematopoietic cell transplantation in Spain. J. Med. Econ. 2021, 24, 628–636. [Google Scholar] [CrossRef]
- Richardson, P.; Aggarwal, S.; Topaloglu, O.; Villa, K.F.; Corbacioglu, S. Systematic review of defibrotide studies in the treatment of veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS). Bone Marrow Transplant. 2019, 54, 1951–1962. [Google Scholar] [CrossRef]
- Yang, L.; Qi, J.; Pan, T.; You, T.; Ruan, C.; Han, Y. Efficacy and Safety of Defibrotide for the Treatment of Hepatic Veno-Occlusive Disease after Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Semin. Thromb. Hemost. 2019, 45, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Smith, A.R.; Kernan, N.A.; Lehmann, L.; Soiffer, R.J.; Ryan, R.J.; Tappe, W.; Grupp, S. Pooled analysis of Day 100 survival for defibrotide-treated patients with hepatic veno-occlusive disease/sinusoidal obstruction syndrome and ventilator or dialysis dependence following haematopoietic cell transplantation. Br. J. Haematol. 2020, 190, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Smith, A.R.; Kernan, N.A.; Lehmann, L.; Ryan, R.J.; Grupp, S.A. Analysis of Time to Complete Response after Defibrotide Initiation in Patients with Hepatic Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome after Hematopoietic Cell Transplantation. Transplant. Cell Ther. 2021, 27, 88.e81–88.e86. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Grupp, S.A.; Pagliuca, A.; Krishnan, A.; Ho, V.T.; Corbacioglu, S. Defibrotide for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome with multiorgan failure. Int. J. Hematol. Oncol. 2017, 6, 75–93. [Google Scholar] [CrossRef]
- Tappe, W.; Aggarwal, S.; Topaloglu, O.; Iacobelli, M. A Meta-Analysis Evaluating the Incidence of Bleeding Events With Intravenous Defibrotide Treatment Outside the Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome Setting. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620935202. [Google Scholar] [CrossRef]
- Avenoso, D.; Kenyon, M.; Mehra, V.; Krishnamurthy, P.; Kulasekararaj, A.; Gandhi, S.; Dazzi, F.; Naresh Shah, M.; Wood, H.; Leung, Y.T.; et al. Systematic screening and focused evaluation for veno-occlusive disease/sinusoidal obstructive syndrome (VOD/SOS) following allogeneic stem cell transplant is associated with earlier diagnosis and prompt institution of defibrotide treatment. Front. Transplant. 2022, 1, 996003. [Google Scholar] [CrossRef]
- Corbacioglu, S. Sinusoidal Obstruction Syndrome (SOS) and Defibrotide: We Are Not There Yet. Transplant. Cell Ther. 2023, 29, 287–288. [Google Scholar] [CrossRef]
- Goto, H.; Oba, U.; Ueda, T.; Yamamoto, S.; Inoue, M.; Shimo, Y.; Yokoyama, S.; Takase, Y.; Kato, W.; Suenobu, S.; et al. Early defibrotide therapy and risk factors for post-transplant veno-occlusive disease/sinusoidal obstruction syndrome in childhood. Pediatr. Blood Cancer 2024, 71, e31331. [Google Scholar] [CrossRef]
- Richardson, P.G.; Smith, A.R.; Triplett, B.M.; Kernan, N.A.; Grupp, S.A.; Antin, J.H.; Lehmann, L.; Miloslavsky, M.; Hume, R.; Hannah, A.L.; et al. Earlier defibrotide initiation post-diagnosis of veno-occlusive disease/sinusoidal obstruction syndrome improves Day +100 survival following haematopoietic stem cell transplantation. Br. J. Haematol. 2017, 178, 112–118. [Google Scholar] [CrossRef]
- Corbacioglu, S.; Cesaro, S.; Faraci, M.; Valteau-Couanet, D.; Gruhn, B.; Rovelli, A.; Boelens, J.J.; Hewitt, A.; Schrum, J.; Schulz, A.S.; et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: An open-label, phase 3, randomised controlled trial. Lancet 2012, 379, 1301–1309. [Google Scholar] [CrossRef]
- Corbacioglu, S.; Topaloglu, O.; Aggarwal, S. A Systematic Review and Meta-Analysis of Studies of Defibrotide Prophylaxis for Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome. Clin. Drug Investig. 2022, 42, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Grupp, S.A.; Corbacioglu, S.; Kang, H.J.; Teshima, T.; Khaw, S.L.; Locatelli, F.; Maertens, J.; Stelljes, M.; Stepensky, P.; Lopez, P.; et al. Defibrotide plus best standard of care compared with best standard of care alone for the prevention of sinusoidal obstruction syndrome (HARMONY): A randomised, multicentre, phase 3 trial. Lancet Haematol. 2023, 10, e333–e345. [Google Scholar] [CrossRef]
- Cappelli, B.; Chiesa, R.; Evangelio, C.; Biffi, A.; Roccia, T.; Frugnoli, I.; Biral, E.; Noe, A.; Fossati, M.; Finizio, V.; et al. Absence of VOD in paediatric thalassaemic HSCT recipients using defibrotide prophylaxis and intravenous Busulphan. Br. J. Haematol. 2009, 147, 554–560. [Google Scholar] [CrossRef]
- Chalandon, Y.; Mamez, A.C.; Giannotti, F.; Beauverd, Y.; Dantin, C.; Mahne, E.; Mappoura, M.; Bernard, F.; de Ramon Ortiz, C.; Stephan, C.; et al. Defibrotide Shows Efficacy in the Prevention of Sinusoidal Obstruction Syndrome After Allogeneic Hematopoietic Stem Cell Transplantation: A Retrospective Study. Transplant. Cell Ther. 2022, 28, 765.e1–765.e9. [Google Scholar] [CrossRef] [PubMed]
- Dignan, F.; Gujral, D.; Ethell, M.; Evans, S.; Treleaven, J.; Morgan, G.; Potter, M. Prophylactic defibrotide in allogeneic stem cell transplantation: Minimal morbidity and zero mortality from veno-occlusive disease. Bone Marrow Transplant. 2007, 40, 79–82. [Google Scholar] [CrossRef]
- Giglio, F.; Xue, E.; Greco, R.; Lazzari, L.; Clerici, D.T.; Lorentino, F.; Mastaglio, S.; Marktel, S.; Lupo-Stanghellini, M.T.; Marcatti, M.; et al. Defibrotide Prophylaxis of Sinusoidal Obstruction Syndrome in Adults Treated With Inotuzumab Ozogamicin Prior to Hematopoietic Stem Cell Transplantation. Front. Oncol. 2022, 12, 933317. [Google Scholar] [CrossRef]
- Karagun, B.S.; Akbas, T.; Erbey, F.; Sasmaz, I.; Antmen, B. The Prophylaxis of Hepatic Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome With Defibrotide After Hematopoietic Stem Cell Transplantation in Children: Single Center Experience. J. Pediatr. Hematol. Oncol. 2022, 44, e35–e39. [Google Scholar] [CrossRef]
- Kayikci, O.; Akpinar, S.; Tekgunduz, E. Effectiveness of defibrotide in the prevention of hepatic venooclusive disease among adult patients receiving allogeneic hematopoietic cell transplantation: A retrospective single center experience. Transfus. Apher. Sci. 2022, 61, 103369. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Park, H.J.; Eom, H.S.; Kwon, Y.J.; Park, J.A.; Lim, Y.J.; Yoon, J.H.; Kong, S.Y.; Ghim, T.T.; Lee, H.W.; et al. Safety and effects of prophylactic defibrotide for sinusoidal obstruction syndrome in hematopoietic stem cell transplantation. Ann. Transplant. 2013, 18, 36–42. [Google Scholar] [CrossRef]
- Picod, A.; Bonnin, A.; Battipaglia, G.; Giannotti, F.; Ruggeri, A.; Brissot, E.; Malard, F.; Mediavilla, C.; Belhocine, R.; Vekhoff, A.; et al. Defibrotide for Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease Prophylaxis in High-Risk Adult Patients: A Single-Center Experience Study. Biol. Blood Marrow Transplant. 2018, 24, 1471–1475. [Google Scholar] [CrossRef]
- Roh, Y.Y.; Hahn, S.M.; Kim, H.S.; Ahn, W.K.; Han, J.H.; Kwon, S.; Lyu, C.J.; Han, J.W. Efficacy of low dose and short duration defibrotide prophylaxis for hepatic veno-occlusive disease after autologous haematopoietic stem cell transplantation. Bone Marrow Transplant. 2021, 56, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Soyer, N.; Gunduz, M.; Tekgunduz, E.; Deveci, B.; Ozdogu, H.; Sahin, H.H.; Turak, E.E.; Okay, M.; Kuku, I.; Hindilerden, I.Y.; et al. Incidence and risk factors for hepatic sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation: A retrospective multicenter study of Turkish hematology research and education group (ThREG). Transfus. Apher. Sci. 2020, 59, 102827. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.Q.; Rahrig, A.L.; Dinora, D.; Harrison, J.; Green, R.; Carter, A.; Skiles, J. The benefits of prophylactic defibrotide: Are the tides turning? Pediatr. Blood Cancer 2025, 72, e31396. [Google Scholar] [CrossRef]
- Sousa-Pimenta, M.; Martins, A.; Estevinho, L.M.; Pinho Vaz, C.; Leite, L.; Mariz, J. Hepatic Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease (SOS/VOD) Primary Prophylaxis in Patients Undergoing Hematopoietic Stem Cell Transplantation: A Network Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2024, 13, 6917. [Google Scholar] [CrossRef] [PubMed]
- Ramgopal, A.; Goscicki, B.; Sridar, S.; Wang, L.; Klein, D.; Kalpatthi, R.; Dalal, J. Prophylactic Defibrotide in High-Risk Pediatric HSCT: Solution or New Set of Challenges? Blood 2024, 144 (Suppl. S1), 5020. [Google Scholar] [CrossRef]
- Corbacioglu, S.; Grupp, S.A.; Richardson, P.G.; Duarte, R.; Pagliuca, A.; Ruutu, T.; Mahadeo, K.; Carreras, E. Prevention of veno-occlusive disease/sinusoidal obstruction syndrome: A never-ending story and no easy answer. Bone Marrow Transplant. 2023, 58, 839–841. [Google Scholar] [CrossRef]
- Neidemire-Colley, L.; Robert, J.; Ackaoui, A.; Dorrance, A.M.; Guimond, M.; Ranganathan, P. Role of endothelial cells in graft-versus-host disease. Front. Immunol. 2022, 13, 1033490. [Google Scholar] [CrossRef]
- Garcia-Bernal, D.; Palomo, M.; Martinez, C.M.; Millan-Rivero, J.E.; Garcia-Guillen, A.I.; Blanquer, M.; Diaz-Ricart, M.; Sackstein, R.; Carreras, E.; Moraleda, J.M. Defibrotide inhibits donor leucocyte-endothelial interactions and protects against acute graft-versus-host disease. J. Cell Mol. Med. 2020, 24, 8031–8044. [Google Scholar] [CrossRef]
- Palaniyandi, S.; Kumari, R.; Strattan, E.; Huang, T.; Kohler, K.; Du, J.; Jabbour, N.; Kesler, M.; Hildebrandt, G.C. Role of Defibrotide in the Prevention of Murine Model Graft-versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation. Transplant. Cell Ther. 2023, 29, 608.e1–608.e9. [Google Scholar] [CrossRef]
- Martinez-Sanchez, J.; Hamelmann, H.; Palomo, M.; Mir, E.; Moreno-Castano, A.B.; Torramade, S.; Rovira, M.; Escolar, G.; Cordes, S.; Kalupa, M.; et al. Acute Graft-vs.-Host Disease-Associated Endothelial Activation in vitro Is Prevented by Defibrotide. Front. Immunol. 2019, 10, 2339. [Google Scholar] [CrossRef]
- Hudspeth, M.; Mori, S.; Nachbaur, D.; Perez-Simon, J.A.; Stolzel, F.; Riches, M.; Wu, W.; Zhang, P.; Agarwal, S.; Yakoub-Agha, I. A phase II, prospective, randomized, open-label study of defibrotide added to standard-of-care prophylaxis for the prevention of acute graft-versus-host disease after allogeneic hematopoietic cell transplantation. Haematologica 2023, 108, 1026–1038. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, S.; Kayikci, O.; Tekgunduz, E. Defibrotide combined with triple therapy including posttransplant cyclophosphamide, low dose rabbit anti-t-lymphocyte globulin and cyclosporine is effective in prevention of graft versus host disease after allogeneic peripheral blood stem cell transplantation for hematologic malignancies. Transfus. Apher. Sci. 2022, 61, 103367. [Google Scholar] [CrossRef]
- Squillaci, D.; Marcuzzi, A.; Rimondi, E.; Riccio, G.; Barbi, E.; Zanon, D.; Maximova, N. Defibrotide impact on the acute GVHD disease incidence in pediatric hematopoietic stem cell transplant recipients. Life Sci. Alliance 2023, 6, e202201786. [Google Scholar] [CrossRef]
- Tekgunduz, E.; Kaya, A.H.; Bozdag, S.C.; Kocubaba, S.; Kayikci, O.; Namdaroglu, S.; Ugur, B.; Akpinar, S.; Batgi, H.; Bekdemir, F.; et al. Does defibrotide prophylaxis decrease the risk of acute graft versus host disease following allogeneic hematopoietic cell transplantation? Transfus. Apher. Sci. 2016, 54, 30–34. [Google Scholar] [CrossRef]
- Tilmont, R.; Yakoub-Agha, I.; Ramdane, N.; Srour, M.; Coiteux, V.; Magro, L.; Odou, P.; Simon, N.; Beauvais, D. Impact of Defibrotide in the Prevention of Acute Graft-Versus-Host Disease Following Allogeneic Hematopoietic Cell Transplantation. Ann. Pharmacother. 2022, 56, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Young, J.A.; Pallas, C.R.; Knovich, M.A. Transplant-associated thrombotic microangiopathy: Theoretical considerations and a practical approach to an unrefined diagnosis. Bone Marrow Transplant. 2021, 56, 1805–1817. [Google Scholar] [CrossRef]
- Attucci, I.; Pilerci, S.; Messeri, M.; Pengue, L.; Tomasino, G.; Caroti, L.; Vannucchi, A.M.; Antonioli, E. Carfilzomib-Induced Thrombotic Microangiopathy—Two Case Reports. Cancer Rep. 2024, 7, e2163. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Munoz, M.E.; Fores, R.; Lario, A.; Bautista, G.; Bueno, J.L.; de Miguel, C.; Navarro, B.; De Laiglesia, A.; Sanchez-Guerrero, A.; Cabrera, J.R.; et al. Use of defibrotide to treat adult patients with transplant-associated thrombotic microangiopathy. Bone Marrow Transplant. 2019, 54, 142–145. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Y.; Jia, C.; Yang, J.; Wang, B.; Zheng, J.; Jing, Y.; Chen, W.; Yang, W.; Zhu, G.; et al. Successful use of defibrotide to treat allogeneic hematopoietic stem cell transplantation associated thrombotic microangiopathy in pediatric patients: Report from Chinese single center. Bone Marrow Transplant. 2024, 59, 1483–1485. [Google Scholar] [CrossRef]
- Yeates, L.; Slatter, M.A.; Bonanomi, S.; Lim, F.; Ong, S.Y.; Dalissier, A.; Barberi, W.; Shulz, A.; Duval, M.; Heilmann, C.; et al. Use of defibrotide to treat transplant-associated thrombotic microangiopathy: A retrospective study of the Paediatric Diseases and Inborn Errors Working Parties of the European Society of Blood and Marrow Transplantation. Bone Marrow Transplant. 2017, 52, 762–764. [Google Scholar] [CrossRef]
- Devadas, S.K.; Toshniwal, M.; Bagal, B.; Khattry, N. Successful Treatment of Transplant Associated Thrombotic Microangiopathy (TA-TMA) with Low Dose Defibrotide. Indian. J. Hematol. Blood Transfus. 2018, 34, 469–473. [Google Scholar] [CrossRef]
- Higham, C.S.; Shimano, K.A.; Melton, A.; Kharbanda, S.; Chu, J.; Dara, J.; Winestone, L.E.; Hermiston, M.L.; Huang, J.N.; Dvorak, C.C. A pilot trial of prophylactic defibrotide to prevent serious thrombotic microangiopathy in high-risk pediatric patients. Pediatr. Blood Cancer 2022, 69, e29641. [Google Scholar] [CrossRef]
- Bohl, S.R.; Kuchenbauer, F.; von Harsdorf, S.; Kloevekorn, N.; Schonsteiner, S.S.; Rouhi, A.; Schwarzwalder, P.; Dohner, H.; Bunjes, D.; Bommer, M. Thrombotic Microangiopathy after Allogeneic Stem Cell Transplantation: A Comparison of Eculizumab Therapy and Conventional Therapy. Biol. Blood Marrow Transplant. 2017, 23, 2172–2177. [Google Scholar] [CrossRef]
- Klein, O.R.; Ktena, Y.P.; Pierce, E.; Fu, H.H.; Haile, A.; Liu, C.; Cooke, K.R. Defibrotide modulates pulmonary endothelial cell activation and protects against lung inflammation in pre-clinical models of LPS-induced lung injury and idiopathic pneumonia syndrome. Front. Immunol. 2023, 14, 1186422. [Google Scholar] [CrossRef] [PubMed]
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Bristol Myers Squibb. ABECMA® (Idecabtagene Vicleucel), Suspension for Intravenous Infusion. Bristol Myers Squibb, 2024. Available online: https://packageinserts.bms.com/pi/pi_abecma.pdf (accessed on 3 May 2025).
- Janssen Biotech Inc. CARVYKTI® (Ciltacabtagene Autoleucel) Suspension for Intravenous Infusion—Prescribing Information. Janssen Biotech Inc., 2024. Available online: https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/CARVYKTI-pi.pdf (accessed on 3 May 2025).
- National Cancer Institute. CAR T Cells: Engineering Patients’ Immune Cells to Treat Their Cancers. National Cancer Institute, 2025. Available online: https://www.cancer.gov/about-cancer/treatment/research/car-t-cells (accessed on 3 May 2025).
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.A.; Kersten, M.J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jager, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 91–103. [Google Scholar] [CrossRef]
- Fowler, N.H.; Dickinson, M.; Dreyling, M.; Martinez-Lopez, J.; Kolstad, A.; Butler, J.; Ghosh, M.; Popplewell, L.; Chavez, J.C.; Bachy, E.; et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: The phase 2 ELARA trial. Nat. Med. 2022, 28, 325–332. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Bristol Myers Squibb. BREYANZI® (Lisocabtagene Maraleucel) Suspension for Intravenous Infusion. Bristol Myers Squibb, 2024. Available online: https://packageinserts.bms.com/pi/pi_breyanzi.pdf (accessed on 3 May 2025).
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: Phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021, 398, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Roddie, C.; Sandhu, K.S.; Tholouli, E.; Logan, A.C.; Shaughnessy, P.; Barba, P.; Ghobadi, A.; Guerreiro, M.; Yallop, D.; Abedi, M.; et al. Obecabtagene Autoleucel in Adults with B-Cell Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2024, 391, 2219–2230. [Google Scholar] [CrossRef]
- Ailawadhi, S.; Shune, L.; Wong, S.W.; Lin, Y.; Patel, K.; Jagannath, S. Optimizing the CAR T-Cell Therapy Experience in Multiple Myeloma: Clinical Pearls From an Expert Roundtable. Clin. Lymphoma Myeloma Leuk. 2024, 24, e217–e225. [Google Scholar] [CrossRef] [PubMed]
- Janssen Biotech Inc. TECVAYLI® (Teclistamab-Cqyv) Injection, for Subcutaneous Use—Prescribing Information. Janssen Biotech Inc., 2024. Available online: https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/TECVAYLI-pi.pdf (accessed on 3 May 2025).
- Pfizer Inc. ELREXFIOTM (Elranatamab-Bcmm) Injection, for Subcutaneous Use—Prescribing Information. Pfizer Inc., 2023. Available online: https://labeling.pfizer.com/ShowLabeling.aspx?id=19669 (accessed on 3 May 2025).
- Janssen Biotech Inc. TALVEY™ (Talquetamab-Tgvs) Injection, for Subcutaneous Use—Prescribing Information. Janssen Biotech Inc., 2024. Available online: https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/TALVEY-pi.pdf (accessed on 3 May 2025).
- Cohen, A.D.; Raje, N.; Fowler, J.A.; Mezzi, K.; Scott, E.C.; Dhodapkar, M.V. How to Train Your T Cells: Overcoming Immune Dysfunction in Multiple Myeloma. Clin. Cancer Res. 2020, 26, 1541–1554. [Google Scholar] [CrossRef]
- Lutfi, F.G.; Ahmed, N.; Hoffmann, M.S.; Tun, A.; McGuirk, J.P. The emergence of bispecific T-cell engagers in the treatment of follicular and large B-cell lymphomas. Clin. Adv. Hematol. Oncol. 2024, 22, 510–519. [Google Scholar]
- Omer, M.H.; Shafqat, A.; Ahmad, O.; Alkattan, K.; Yaqinuddin, A.; Damlaj, M. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers 2023, 15, 4550. [Google Scholar] [CrossRef]
- Gritti, G.; Belousov, A.; Relf, J.; Dixon, M.; Tandon, M.; Komanduri, K. Predictive model for the risk of cytokine release syndrome with glofitamab treatment for diffuse large B-cell lymphoma. Blood Adv. 2024, 8, 3615–3618. [Google Scholar] [CrossRef]
- Markouli, M.; Ullah, F.; Unlu, S.; Omar, N.; Lopetegui-Lia, N.; Duco, M.; Anwer, F.; Raza, S.; Dima, D. Toxicity Profile of Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapies in Multiple Myeloma: Pathogenesis, Prevention and Management. Curr. Oncol. 2023, 30, 6330–6352. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Gloude, N.J.; Dandoy, C.E.; Davies, S.M.; Myers, K.C.; Jordan, M.B.; Marsh, R.A.; Kumar, A.; Bleesing, J.; Teusink-Cross, A.; Jodele, S. Thinking Beyond HLH: Clinical Features of Patients with Concurrent Presentation of Hemophagocytic Lymphohistiocytosis and Thrombotic Microangiopathy. J. Clin. Immunol. 2020, 40, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, C.A.; Rosenthal, A.C.; Arnason, J.; Agarwal, S.; Zhang, P.; Wu, W.; Amber, V.; Yared, J.A. A phase 2 trial of defibrotide for the prevention of chimeric antigen receptor T-cell-associated neurotoxicity syndrome. Blood Adv. 2023, 7, 6790–6799. [Google Scholar] [CrossRef]
- Teuwen, L.A.; Geldhof, V.; Pasut, A.; Carmeliet, P. COVID-19: The vasculature unleashed. Nat. Rev. Immunol. 2020, 20, 389–391. [Google Scholar] [CrossRef]
- Bednarz, K.; Borek, A.; Drzymala, F.; Rachwal, K.; Gabryel, B. Pharmacological protection of vascular endothelium in acute COVID-19. J. Physiol. Pharmacol. 2022, 73, 167–177. [Google Scholar] [CrossRef]
- Garcia-Bernal, D.; Richardson, E.; Vlodavsky, I.; Carlo-Stella, C.; Iacobelli, M.; Jara, R.; Richardson, P.G.; Moraleda, J.M. Endothelial dysfunction and its critical role in COVID-19-associated coagulopathy: Defibrotide as an endothelium-protective, targeted therapy. EJHaem 2021, 2, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Vecchie, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef]
- Ahamed, J.; Laurence, J. Long COVID endotheliopathy: Hypothesized mechanisms and potential therapeutic approaches. J. Clin. Invest. 2022, 132, e161167. [Google Scholar] [CrossRef]
- Ariagno, S.; Ragoonanan, D.; Khazal, S.; Mahadeo, K.M.; Cisneros, G.S.; Zinter, M.S.; Blacken, R.A.; Mohan, G.; Lehmann, L.E.; Ferdjallah, A.; et al. Prior COVID-19 infection may increase risk for developing endothelial dysfunction following hematopoietic cell transplantation. Front. Oncol. 2022, 12, 1000215. [Google Scholar] [CrossRef]
- Calabretta, E.; Moraleda, J.M.; Iacobelli, M.; Jara, R.; Vlodavsky, I.; O’Gorman, P.; Pagliuca, A.; Mo, C.; Baron, R.M.; Aghemo, A.; et al. COVID-19-induced endotheliitis: Emerging evidence and possible therapeutic strategies. Br. J. Haematol. 2021, 193, 43–51. [Google Scholar] [CrossRef]
- Moraleda, J.M.; Carlo-Stella, C.; Garcia-Bernal, D.; Rubio, R.J.; Andreu, E.; Calabretta, E.; Aghemo, A.; Diaz-Ricart, M.; Palomo, M.; Carreras, E.; et al. Defibrotide for the Treatment of Endotheliitis Complicating Sars-Cov-2 Infection: Rationale and Ongoing Studies As Part of the International Defacovid Study Group. Blood 2020, 136 (Suppl. S1), 6–8. [Google Scholar] [CrossRef]
- Maccio, A.; La Nasa, G.; Oppi, S.; Madeddu, C. Defibrotide Has a Role in COVID-19 Therapy. Chest 2022, 162, 271–273. [Google Scholar] [CrossRef]
- Frame, D.; Scappaticci, G.B.; Braun, T.M.; Maliarik, M.; Sisson, T.H.; Pipe, S.W.; Lawrence, D.A.; Richardson, P.G.; Holinstat, M.; Hyzy, R.C.; et al. Defibrotide Therapy for SARS-CoV-2 ARDS. Chest 2022, 162, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, A.; Corrado, F.; Voza, A.; Wei, L.J.; Catalano, G.; Liberatore, C.; Nitti, R.; Fedeli, C.; Bruno, A.; Calabretta, E.; et al. Use of defibrotide in COVID-19 pneumonia: Comparison of a phase II study and a matched real-world cohort control. Haematologica 2024, 109, 3261–3268. [Google Scholar] [CrossRef]
- Rodríguez-Fortúnez, P.; Martínez-Mellado, A.; Jara-Rubio, R.; Blanquer-Blanquer, M.; Castro-Rebollo, P.; Carrillo-Alcaraz, A.; Rodríguez-Jiménez, C.; Albendin, H.; Solano, E.; Pareja, A.; et al. Defibrotide in the prevention and treatment of acute respiratory distress syndrome in patients with COVID-19. Preliminary safety results update. Eur. J. Clin. Pharmacol. 2022, 78, S22–S23. [Google Scholar] [CrossRef]
- Lang, P.; Eichholz, T.; Bakchoul, T.; Streiter, M.; Petrasch, M.; Bosmuller, H.; Klein, R.; Rabsteyn, A.; Lang, A.M.; Adams, C.; et al. Defibrotide for the Treatment of Pediatric Inflammatory Multisystem Syndrome Temporally Associated With Severe Acute Respiratory Syndrome Coronavirus 2 Infection in 2 Pediatric Patients. J. Pediatric Infect. Dis. Soc. 2020, 9, 622–625. [Google Scholar] [CrossRef]
- Belcaro, G.; Corsi, M.; Agus, G.B.; Cesarone, M.R.; Cornelli, U.; Cotellese, R.; Feragalli, B.; Hu, S. Thrombo-prophylaxis prevents thrombotic events in home-managed COVID patients. A registry study. Minerva Med. 2020, 111, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Kocoglu, M.H.; Richardson, P.G.; Mo, C.C.; Rapoport, A.P.; Atanackovic, D. Defibrotide improves COVID-19-related acute respiratory distress syndrome in myeloma patients after chimeric antigen receptor T-cell treatment without compromising virus-specific and anti-myeloma T-cell responses. Haematologica 2024, 109, 2372–2377. [Google Scholar] [CrossRef]
- Fernandez, S.; Palomo, M.; Molina, P.; Diaz-Ricart, M.; Escolar, G.; Tellez, A.; Segui, F.; Ventosa, H.; Torramade-Moix, S.; Rovira, M.; et al. Progressive endothelial cell damage in correlation with sepsis severity. Defibrotide as a contender. J. Thromb. Haemost. 2021, 19, 1948–1958. [Google Scholar] [CrossRef]
- Richardson, P.G.; Carreras, E.; Iacobelli, M.; Nejadnik, B. The use of defibrotide in blood and marrow transplantation. Blood Adv. 2018, 2, 1495–1509. [Google Scholar] [CrossRef]
Study | Patients | VOD/SOS Severity | CR Rate | Survival | Safety |
---|---|---|---|---|---|
Clinical Trials | |||||
Phase 3 [54] | 102 (DF) vs. 32 matched controls | Severe VOD/SOS with renal and/or pulmonary failure | Day +100: 25.5% vs. 12.5% | Day +100: 38.2% vs. 25.0% |
|
Randomized dose-finding trial [70] | 75 lower-dose DF/ 73 higher-dose DF | Severe VOD/SOS | Day +100: 46% (49%/43%) | Day +100: 42% (44%/39%) |
|
EBMT prospective observational study [69] | 104 | 62 with severe VOD/SOS | Day +100: 73% MOD/MOF resolution in 53% | Day +100: 73% |
|
Real-world studies | |||||
Expanded access study [55] | 1000 with post-HCT VOD/SOS | 512 with MOD | NR | Day +100: 58.9% 49.5% with MOD 68.9% without MOD 47.1% adults 67.9% pediatric |
|
International CUP [61] | 710 | 41% with MOF 48% severe VOD/SOS | NR | Day +100: 54% 40% with MOF 65% without MOF 46% adult 65% pediatric |
|
Spanish GETH/GETMON analysis [66] | 253 pediatric, 135 adult patients | Severe/very severe VOD/SOS in 173 patients, moderate VOD/SOS in 41 | NR | Day +100: 62% (severe/very severe), 80% (moderate) |
|
DEFIFrance [56] | 251 | Severe/very severe | 55% (84% pediatric, 46% adult) Day +100 rate: 74% (84% in severe cases, 63% in very severe cases) | Day +100: 61% (75% in severe disease, 49% in very severe disease) |
|
Multicenter Australian registry study [81] | 111 adult, 75 pediatric: DF use in 83/73 | NR | NR | Day +100: 51.8% (adult), 90.4% (pediatric) |
|
Italian AIEOP retrospective analysis [64] | 103 pediatric, 67% received DF | Very severe or severe in all patients | NR | 1-year survival: 61% |
|
Multi-institutional study [71] | 88 | 100% severe, 97% MOF | 36% | Day +100 35% |
|
Expanded access study [65] | 82 non-transplant-associated VOD/SOS | 38 VOD/SOS with MOD, 44 without MOD | NR | Day +70: 74.1% (65.8% with MOD, 81.3% without MOD) |
|
Korean analysis (ASH 2024 abstract) [79] | 73 | 40 severe, 33 very severe | 39.7% (52.5% severe, 24.2% very severe) | Day +100: 34.2% (40.3% severe, 26.4% very severe) |
|
Single-center experience [60] | 51 (36 adult, 15 pediatric) | Severe VOD/SOS | Day +100: 35.3% | Day +100: 56.9% |
|
Institutional series [63] | 47 RR ALL receiving inotuzumab ozogamicin pre-HCT | 12 VOD/SOS: 50% very severe, 25% severe, 25% mild | 67% | Day +100 mortality rate: 33% vs. 14% in patients without VOD/SOS |
|
Retrospective multicenter study [62] | 45 | 49% severe 51% mild or moderately severe | 76% (50% in severe disease) | Day +100: 64% (36% in severe disease) |
|
Exploratory CIBMTR analysis [75] | 41 (DF) vs. 55 (no DF) | Severe | Day +100: 51% vs. 29% | Day +100: 39% vs. 31% |
|
DFCI/BWH experience [57] | 28 post-allo HCT | 11 mild-moderate-severe, 17 very severe | 75% | Day +100: 64% |
|
UK experience [68] | 27–19/8 classic/late VOD/SOS | 25 very severe, 1 severe, 1 mild | NR | Day +100: 59% (58%/63% classical/late) |
|
Retrospective series [80] | 23 | NR | 61% | Day +100: 70% |
|
Single-center analysis [76] | 14 | 6 severe, 4 moderate, 4 mild | 79% (50% severe, 100% moderate/mild) | Day +100: 79% |
|
Retrospective study of low-dose DF [58] | 9/511 patients | NR—no ventilator support or dialysis required | 100% | Time to resolution: 6–20 days from onset |
|
Study | Patients | VOD/SOS Rate | Time-to-Event Analyses | Safety |
---|---|---|---|---|
Clinical Trials | ||||
Phase 3 HARMONY trial [95] | 372 (174 aged >16 years, 198 aged ≤16 years), 190 DF vs. 182 BSC | Day +30: 4% vs. 4% Any time: 14% vs. 18% | Day +30 VOD/SOS-free survival: 67% vs. 73% Day +100: 50% vs. 57% |
|
Phase 3 pediatric trial [93] | 356, after MAC and auto/allo HCT | Day +30: 12.2% vs. 19.9% Infants 19.6% vs. 26.8% Children 11.0% vs. 16.8% Adolescents 7.0% vs. 20.0% | Median time from HCT to VOD: 17.5 vs. 14.0 days |
|
Meta-analysis [94] | 3005 patients, 20 studies | 5% (DF total) vs. 16% (controls, 8 studies) | NR |
|
Pediatric study in beta thalassemia [96] | 57 | 1.8% | NR |
|
Real-world studies | ||||
Turkish retrospective analysis [105] | 1153 patients | 8% vs. 66.7% in high-risk patients with vs. without DF | NR |
|
DEFIFrance [56] | 381 (178 pediatric, 203 adult) | 20% (28% pediatric, 13% adult) by day +30 | NR |
|
Single-center experience [100] | 334 high-risk pediatric allo-HCT | 5.1% (n = 17; 4 moderate, 13 mild cases) | NR |
|
Spanish GETH/GETMON analysis [66] | 253 pediatric, 135 adult patients; DF as prophylaxis in 135 | NR | Day +100 survival: 89% |
|
Single-center retrospective analysis [97] | 237 (DF) vs. 241 (non-DF) patients undergoing HCT | 0% vs. 4.8% | 1-year EFS: 38% vs. 28% |
|
Korean retrospective analysis [104] | 69 DF vs. 78 historical controls | 4.3% vs. 12.8% (2.9% vs. 28.6% in second HCT group) | 0 vs. 3 VOD/SOS-related mortality |
|
Single-center series [103] | 63 high-risk adult patients | 6.3% (2 cases within 21 days post-HCT, 2 late-onset cases) | 2-year OS 56.5% 2-year non-relapse mortality 22.3% |
|
Single-center analysis [98] | 58 | 0% | Day +100 survival: 100% |
|
Single-center experience [101] | 56 adult allo-HCT | Day +30: 1.9% | 1 death due to MOF at day +20 after very severe VOD/SOS |
|
Korean retrospective analysis [102] | 49 (34 high-risk) | 2% | Day +100 transplant-related mortality: 0% |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, E.; Mo, C.C.; Calabretta, E.; Corrado, F.; Kocoglu, M.H.; Baron, R.M.; Connors, J.M.; Iacobelli, M.; Wei, L.-J.; Benjamin, E.J.; et al. Defibrotide for Protecting Against and Managing Endothelial Injury in Hematologic Malignancies and COVID-19. Biomolecules 2025, 15, 1004. https://doi.org/10.3390/biom15071004
Richardson E, Mo CC, Calabretta E, Corrado F, Kocoglu MH, Baron RM, Connors JM, Iacobelli M, Wei L-J, Benjamin EJ, et al. Defibrotide for Protecting Against and Managing Endothelial Injury in Hematologic Malignancies and COVID-19. Biomolecules. 2025; 15(7):1004. https://doi.org/10.3390/biom15071004
Chicago/Turabian StyleRichardson, Edward, Clifton C. Mo, Eleonora Calabretta, Francesco Corrado, Mehmet H. Kocoglu, Rebecca M. Baron, Jean Marie Connors, Massimo Iacobelli, Lee-Jen Wei, Emily J. Benjamin, and et al. 2025. "Defibrotide for Protecting Against and Managing Endothelial Injury in Hematologic Malignancies and COVID-19" Biomolecules 15, no. 7: 1004. https://doi.org/10.3390/biom15071004
APA StyleRichardson, E., Mo, C. C., Calabretta, E., Corrado, F., Kocoglu, M. H., Baron, R. M., Connors, J. M., Iacobelli, M., Wei, L.-J., Benjamin, E. J., Rapoport, A. P., Díaz-Ricart, M., Martínez-Mellado, A. J., Carlo-Stella, C., Richardson, P. G., & Moraleda, J. M. (2025). Defibrotide for Protecting Against and Managing Endothelial Injury in Hematologic Malignancies and COVID-19. Biomolecules, 15(7), 1004. https://doi.org/10.3390/biom15071004