Prebiotics and Probiotics Supplementation in Pigs as a Model for Human Gut Health and Disease
Abstract
:1. Animal Model for Human Health
2. Gastrointestinal Tract
2.1. Intestinal Barrier
2.1.1. Mucus Layer
2.1.2. Intestinal Epithelial Cells
Secretory Cells
Absorptive Cells: Enterocytes and Colonocytes
2.2. Microbiota
3. Dietary Intervention
4. Prebiotics
Prebiotics in Pigs: A Model for Human Health
Prebiotic Supplement | Dosage | Length (d) | Animals | Effects in GI Tract | References |
---|---|---|---|---|---|
Short-chain FOS | 1% enteral nutrition | 5 | Neonatal piglets (2–7 d) | ↑ Ileum Villus height ** | [102] |
Short-chain GOS Long chain FOS | 3.6 g/L 0.4 g/L | 14 | Neonatal Piglets (1–15 d) Porcine RV challenge (10 d) | ↓ diarrhoea * ↑ circulating RV IgM ** | [111] |
Pectic oligosaccharides product | 200 mg/kg | 18 | Weaned Piglets (21–40) Porcine RV challenge (15 d) | ↓rate of diarrhoea * ↑ Ileal and jejunal RV antibody ↑ Ileal and jejunal sIgA | [112] |
Lactulose | 1% | 17 | Weaned piglets (21–42 d) Salmonella Typhimurium challenge (7 d) | ↑ IgG, IgA, IgM * ↓ shedding of pathogen * | [106] |
MOS (98%) | 0.3% | 21 | Weaned piglets (21–42 d) ETEC challenge (19 d) | ↑ ZO-1 expression * ↑ sIgA * ↓ proinflammatory cytokine secretion * | [105] |
MOS (20%) | 0.06% | 21 | Weaned piglets (21–42 d) ETEC challenge (19 d) | ↑ ZO-1 expression * ↑ claudin-1 expression * ↑ Ileum and duodenum Villus height * ↑ Villus height/crypt depth ratio * | [84] |
Short-chain GOS (21%) | milk replacer 0.8% GOS | 3 26 | Suckling Piglet (1–4 d) Suckling Piglet (1–27 d) | 4 days ↑ Duodenum villus height * ↑ Duodenum villus height/crypt depth ratio** 27 days: ↑ Lactobacillus ** Bifidobacterium spp. ** ↑ Colon occludin gene expression * | [113] |
GOS and polydextrose | 0.8% prebiotic mixture (50/50 GOS/PDX) | 21 | Suckling Piglets (1–22 d) | ↑ Bacteroidetes and Firmicutes phila * ↑ SCFA Concentrations ** ↓colon pH ** | [104] |
GOS | 10 mL of GOS solution daily | 7 20 | Suckling Piglets (1–8 d) Suckling Piglets (0–21 d) | ↑ Firmicutes philum * ↑ Lactobacillus * ↓ Streptococcus and Clostridium * ↑ SCFA Concentrations * ↓Ileal pH * ↓ Bacteroidetes philum * ↑ Lactobacillus * ↓ Escherichia spp. * | [108] |
5. Probiotics
Probiotics in Pigs: A Model for Human Health
Probiotic Supplement | Dosage | Length (d) | Animals | Effects in GI Tract | References |
---|---|---|---|---|---|
Lactobacilli acidophilus | 14 doses, up to 109 CFU/dose | 14 | HMA GN piglet AttHRV oral vaccination | ↑ LGG counts in feaces and gut * ↓ diarrhoea length * ↑ faecal scores * | [138] |
Lactobacillus rhamnosus GG | 9 doses increasing from 103 to 106 CFU/day | 9 | HMA GN Piglet AttHRV oral vaccination (0–15–26 d) Challenge HRV (28–35 d) | ↓ diarrhoea percentage (HRV) * ↓ diarrhoea length (HRV) * ↑ protection by AttHRV vaccine * ↑ faecal scores * ↑ rotavirus-specific antibody * ↑ ASC * | [139] |
Lactobacillus rhamnosus GG | 9–14 doses increasing from 103 to 1012 CFU/day | 9 14 | GN piglet AttHRV oral vaccination (5–15 d) Challenge HRV (28 d) | ↓ onset of diarrhoea * ↓ faecal virus shedding * ↑ mucin production * | [140] |
Lactobacillus rhamnosus GG | 10 doses increasing from 103 to 109 CFU/day | 10 | HMA GN piglet AttHRV oral vaccination (5–15 d) HRV (28 d) | ↑ microbial communities * ↓ Enterococcus * ↑ Streptococcus * | [141] |
Lactobacillus rhamnosus GG + Lactobacillus acidophilus | 10 doses increasing from 103 to 109 CFU/day | 10 | HMA GN piglet AttHRV oral vaccination (5–15 d) HRV (28 d) | HMA GN piglet AttHRV oral vaccination (5–15 d) HRV (28 d) | [142] |
Lactobacillus rhamnosus GG | from 103 to 1012 CFU/day | 10 | GN Piglet Challenge HRV (9 d) | ↓ Intestinal autophagy-related protein expression * ↓ Ileum inflammation * | [143] |
6. Future Perspective
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Domínguez-Oliva, A.; Hernández-Ávalos, I.; Martínez-Burnes, J.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Mota-Rojas, D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals 2023, 13, 1223. [Google Scholar] [CrossRef] [PubMed]
- Conlon, M.A.; Bird, A.R. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2015, 7, 17–44. [Google Scholar] [CrossRef]
- Nagpal, R.; Shively, C.A.; Appt, S.A.; Register, T.C.; Michalson, K.T.; Vitolins, M.Z.; Yadav, H. Gut Microbiome Composition in Non-Human Primates Consuming a Western or Mediterranean Diet. Front. Nutr. 2018, 5, 28. [Google Scholar] [CrossRef]
- Vallender, E.J.; Hotchkiss, C.E.; Lewis, A.D.; Rogers, J.; Stern, J.A.; Peterson, S.M.; Ferguson, B.; Sayers, K. Nonhuman Primate Genetic Models for the Study of Rare Diseases. Orphanet J. Rare Dis. 2023, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.A.; Vieira-Silva, S.; Liston, A.; Raes, J. How Informative Is the Mouse for Human Gut Microbiota Research? DMM Dis. Models Mech. 2015, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hugenholtz, F.; de Vos, W.M. Mouse Models for Human Intestinal Microbiota Research: A Critical Evaluation. Cell. Mol. Life Sci. 2018, 75, 149–160. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; Moeser, A.J.; Blikslager, A.T. Porcine Models of Digestive Disease: The Future of Large Animal Translational Research. Transl. Res. 2015, 166, 12–27. [Google Scholar] [CrossRef]
- Heinritz, S.N.; Mosenthin, R.; Weiss, E. Use of Pigs as a Potential Model for Research into Dietary Modulation of the Human Gut Microbiota. Nutr. Res. Rev. 2013, 26, 191–209. [Google Scholar] [CrossRef]
- Kararli, T.T.; Searle, G.D. Comparison of the Gastrointestinal Anatomy, Physiology, and Biochemistry of Humans and Commonly Used Laboratory Animals. Biopharm. Drug Dispos. 1995, 16, 351–380. [Google Scholar] [CrossRef]
- Wang, M.; Donovan, S.M. Human Microbiota-Associated Swine: Current Progress and Future Opportunities. ILAR J. 2015, 56, 63–73. [Google Scholar] [CrossRef]
- Walters, E.M.; Wolf, E.; Whyte, J.J.; Mao, J.; Renner, S.; Nagashima, H.; Kobayashi, E.; Zhao, J.; Wells, K.D.; Critser, J.K.; et al. Completion of the Swine Genome Will Simplify the Production of Swine as a Large Animal Biomedical Model. BMC Med. Genom. 2012, 5, 55. [Google Scholar] [CrossRef] [PubMed]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021, 13, eabd5758. [Google Scholar] [CrossRef] [PubMed]
- Roura, E.; Koopmans, S.J.; Lallès, J.P.; Le Huerou-Luron, I.; De Jager, N.; Schuurman, T.; Val-Laillet, D. Critical Review Evaluating the Pig as a Model for Human Nutritional Physiology. Nutr. Res. Rev. 2016, 29, 60–90. [Google Scholar] [CrossRef]
- Clouard, C.; Meunier-Salaün, M.C.; Val-Laillet, D. Food Preferences and Aversions in Human Health and Nutrition: How Can Pigs Help the Biomedical Research? Animal 2012, 6, 118–136. [Google Scholar] [CrossRef]
- Patterson, J.K.; Lei, X.G.; Miller, D.D. The Pig as an Experimental Model for Elucidating the Mechanisms Governing Dietary Influence on Mineral Absorption. Exp. Biol. Med. 2008, 233, 651–664. [Google Scholar] [CrossRef]
- Zhang, Q.; Widmer, G.; Tzipori, S. A Pig Model of the Human Gastrointestinal Tract. Gut Microbes 2013, 4, 193–200. [Google Scholar] [CrossRef]
- Kobayashi, E.; Kunita, S. Swine Used in the Medical University: Overview of 20 Years of Experience. Exp. Anim. 2018, 67, 7–13. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Rajashekara, G.; Saif, L.J. Interactions between Human Microbiome, Diet, Enteric Viruses and Immune System: Novel Insights from Gnotobiotic Pig Research. Drug Discov. Today Dis. Models 2018, 28, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.S.; Lærke, H.N.; Theil, P.K.; Sørensen, J.F.; Saarinen, M.; Forssten, S.; Bach Knudsen, K.E. Diets High in Resistant Starch and Arabinoxylan Modulate Digestion Processes and SCFA Pool Size in the Large Intestine and Faecal Microbial Composition in Pigs. Br. J. Nutr. 2014, 112, 1837–1849. [Google Scholar] [CrossRef]
- Douglas, W.R. Of Pigs and Men and Research: A Review of Applications and Analogies of the Pig, Sus Scrofa, in Human Medical Research. Space Life Sci. 1972, 3, 226–234. [Google Scholar] [CrossRef]
- Deglaire, A.; Moughan, P.J. Animal Models for Determining Amino Acid Digestibility in Humans—A Review. Br. J. Nutr. 2012, 108, S273–S281. [Google Scholar] [CrossRef] [PubMed]
- Pabst, R. The Pig as a Model for Immunology Research. Cell Tissue Res. 2020, 380, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Sauleau, P.; Lapouble, E.; Val-Laillet, D.; Malbert, C.H. The Pig Model in Brain Imaging and Neurosurgery. Animal 2009, 3, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Netzley, A.H.; Pelled, G. The Pig as a Translational Animal Model for Biobehavioral and Neurotrauma Research. Biomedicines 2023, 11, 2165. [Google Scholar] [CrossRef]
- Precup, G.; Vodnar, D.C. Gut Prevotella as a Possible Biomarker of Diet and Its Eubiotic versus Dysbiotic Roles: A Comprehensive Literature Review. Br. J. Nutr. 2019, 122, 131–140. [Google Scholar] [CrossRef]
- Pang, X.; Hua, X.; Yang, Q.; Ding, D.; Che, C.; Cui, L.; Jia, W.; Bucheli, P.; Zhao, L. Inter-Species Transplantation of Gut Microbiota from Human to Pigs. ISME J. 2007, 1, 156–162. [Google Scholar] [CrossRef]
- Aluthge, N.D.; Tom, W.A.; Bartenslager, A.C.; Burkey, T.E.; Miller, P.S.; Heath, K.D.; Kreikemeier-Bower, C.; Kittana, H.; Schmaltz, R.J.; Ramer-Tait, A.E.; et al. Differential Longitudinal Establishment of Human Fecal Bacterial Communities in Germ-Free Porcine and Murine Models. Commun. Biol. 2020, 3, 760. [Google Scholar] [CrossRef]
- Chloé Mirsepasi-Lauridsen, H.; Vallance, B.A.; Krogfelt, K.A.; Petersen, A.M. Escherichia Coli Pathobionts Associated with Inflammatory Bowel Disease. Clin. Microbiol. Rev. 2019, 32, e00060-18. [Google Scholar] [CrossRef]
- Nair, A.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic. Clin. Pharm. 2016, 7, 27. [Google Scholar] [CrossRef]
- Durcan, C.; Hossain, M.; Chagnon, G.; Perić, D.; Girard, E. Mechanical Experimentation of the Gastrointestinal Tract: A Systematic Review. Biomech. Model. Mechanobiol. 2024, 23, 23–59. [Google Scholar] [CrossRef]
- Marzullo, P.; Di Renzo, L.; Pugliese, G.; De Siena, M.; Barrea, L.; Muscogiuri, G.; Colao, A.; Savastano, S. From Obesity through Gut Microbiota to Cardiovascular Diseases: A Dangerous Journey. Int. J. Obes. Suppl. 2020, 10, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.H.; Zhao, J.B.; Gregersen, H. Gastrointestinal Tract Modelling in Health and Disease. World J. Gastroenterol. 2009, 15, 169–176. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut Microbiota, Intestinal Permeability, and Systemic Inflammation: A Narrative Review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [CrossRef]
- Seo, K.; Seo, J.; Yeun, J.; Choi, H.; Kim, Y.I.; Chang, S.Y. The Role of Mucosal Barriers in Human Gut Health. Arch. Pharm. Res. 2021, 44, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal Barrier in Human Health and Disease. Int. J. Environ. Res. Public Health 2021, 18, 12836. [Google Scholar] [CrossRef]
- Müller, C.A.; Autenrieth, I.B.; Peschel, A. Innate Defenses of the Intestinal Epithelial Barrier. Cell. Mol. Life Sci. 2005, 62, 1297–1307. [Google Scholar] [CrossRef]
- Okumura, R.; Takeda, K. Roles of Intestinal Epithelial Cells in the Maintenance of Gut Homeostasis. Exp. Mol. Med. 2017, 49, e338. [Google Scholar] [CrossRef]
- Vancamelbeke, M.; Vermeire, S. The Intestinal Barrier: A Fundamental Role in Health and Disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef]
- Moonwiriyakit, A.; Pathomthongtaweechai, N.; Steinhagen, P.R.; Chantawichitwong, P.; Satianrapapong, W.; Pongkorpsakol, P. Tight Junctions: From Molecules to Gastrointestinal Diseases. Tissue Barriers 2023, 11, 2077620. [Google Scholar] [CrossRef]
- Pelaseyed, T.; Bergström, J.H.; Gustafsson, J.K.; Ermund, A.; Birchenough, G.M.H.; Schütte, A.; van der Post, S.; Svensson, F.; Rodríguez-Piñeiro, A.M.; Nyström, E.E.L.; et al. The Mucus and Mucins of the Goblet Cells and Enterocytes Provide the First Defense Line of the Gastrointestinal Tract and Interact with the Immune System. Immunol. Rev. 2014, 260, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C.; Greenberg, E.P. The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria. Proc. Natl. Acad. Sci. USA 2008, 105, 15064–15069. [Google Scholar] [CrossRef]
- Song, C.; Chai, Z.; Chen, S.; Zhang, H.; Zhang, X.; Zhou, Y. Intestinal Mucus Components and Secretion Mechanisms: What We Do and Do Not Know. Exp. Mol. Med. 2023, 55, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Vaishnava, S.; Yamamoto, M.; Severson, K.M.; Ruhn, K.A.; Yu, X.; Koren, O.; Ley, R.; Wakeland, E.K.; Hooper, L.V. The Antibacterial Lectin RegIIIγ Promotes the Spatial Segregation of Microbiota and Host in the Intestine. Science 2011, 334, 255–258. [Google Scholar] [CrossRef]
- Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Van Der Post, S.; Subramani, D.B.; Bäckström, M.; Johansson, M.E.V.; Vester-Christensen, M.B.; Mandel, U.; Bennett, E.P.; Clausen, H.; Dahleń, G.; Sroka, A.; et al. Site-Specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas Gingivalis Secreted Cysteine Protease (RgpB). J. Biol. Chem. 2013, 288, 14636–14646. [Google Scholar] [CrossRef]
- Krupa, L.; Bajka, B.; Staroń, R.; Dupont, D.; Singh, H.; Gutkowski, K.; Macierzanka, A. Comparing the Permeability of Human and Porcine Small Intestinal Mucus for Particle Transport Studies. Sci. Rep. 2020, 10, 20290. [Google Scholar] [CrossRef]
- Peterson, L.W.; Artis, D. Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nat. Rev. Immunol. 2014, 14, 141–153. [Google Scholar] [CrossRef]
- Gerbe, F.; Legraverend, C.; Jay, P. The Intestinal Epithelium Tuft Cells: Specification and Function. Cell. Mol. Life Sci. 2012, 69, 2907–2917. [Google Scholar] [CrossRef]
- Schneider, C.; O’Leary, C.E.; Locksley, R.M. Regulation of Immune Responses by Tuft Cells. Nat. Rev. Immunol. 2019, 19, 584–593. [Google Scholar] [CrossRef]
- Raya Tonetti, F.; Eguileor, A.; Llorente, C. Goblet Cells: Guardians of Gut Immunity and Their Role in Gastrointestinal Diseases. eGastroenterology 2024, 2, e100098. [Google Scholar] [CrossRef]
- Raybould, H.E. Gut Chemosensing: Interactions between Gut Endocrine Cells and Visceral Afferents. Auton. Neurosci. 2010, 153, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Van Es, J.H.; Clevers, H. Paneth Cells. Curr. Biol. 2014, 24, R547–R548. [Google Scholar] [CrossRef] [PubMed]
- Lueschow, S.R.; McElroy, S.J. The Paneth Cell: The Curator and Defender of the Immature Small Intestine. Front. Immunol. 2020, 11, 587. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, W.; Li, Y.; Cong, Y. Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2020, 26, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Atanga, R.; Singh, V.; In, J.G. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int. J. Mol. Sci. 2023, 24, 8836. [Google Scholar] [CrossRef]
- Sternini, C.; Anselmi, L.; Rozengurt, E. Enteroendocrine Cells: A Site of “taste” in Gastrointestinal Chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 2008, 15, 73–78. [Google Scholar] [CrossRef]
- Cheng, H.; Leblond, C.P. Origin, Differentiation and Renewal of the Four Main Epithelial Cell Types in the Mouse Small Intestine I. Columnar Cell. Am. J. Anat. 1974, 141, 461–479. [Google Scholar] [CrossRef]
- De Santa Barbara, P.; Van Den Brink, G.R.; Roberts, D.J. Development and Differentiation of the Intestinal Epithelium. Cell. Mol. Life Sci. 2003, 60, 1322–1332. [Google Scholar] [CrossRef]
- Snoeck, V.; Goddeeris, B.; Cox, E. The Role of Enterocytes in the Intestinal Barrier Function and Antigen Uptake. Microbes Infect. 2005, 7, 997–1004. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; Wang, L. Role and Mechanism of Gut Microbiota in Human Disease. Front. Cell. Infect. Microbiol. 2021, 11, 625913. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2020, 113, 2019–2040. [Google Scholar] [CrossRef] [PubMed]
- Hollister, E.B.; Riehle, K.; Luna, R.A.; Weidler, E.M.; Rubio-Gonzales, M.; Mistretta, T.A.; Raza, S.; Doddapaneni, H.V.; Metcalf, G.A.; Muzny, D.M.; et al. Structure and Function of the Healthy Pre-Adolescent Pediatric Gut Microbiome. Microbiome 2015, 3, 36. [Google Scholar] [CrossRef]
- Kamada, N.; Seo, S.U.; Chen, G.Y.; Núñez, G. Role of the Gut Microbiota in Immunity and Inflammatory Disease. Nat. Rev. Immunol. 2013, 13, 321–335. [Google Scholar] [CrossRef]
- Tarracchini, C.; Lugli, G.A.; Mancabelli, L.; van Sinderen, D.; Turroni, F.; Ventura, M.; Milani, C. Exploring the Vitamin Biosynthesis Landscape of the Human Gut Microbiota. mSystems 2024, 9, e0092924. [Google Scholar] [CrossRef]
- Sasso, J.M.; Ammar, R.M.; Tenchov, R.; Lemmel, S.; Kelber, O.; Grieswelle, M.; Zhou, Q.A. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem. Neurosci. 2023, 14, 1717–1763. [Google Scholar] [CrossRef]
- Holman, D.B.; Brunelle, B.W.; Trachsel, J.; Allen, H.K. Meta-Analysis To Define a Core Microbiota in the Swine Gut. mSystems 2017, 2, e00004-17. [Google Scholar] [CrossRef]
- Ait-Belgnaoui, A.; Payard, I.; Rolland, C.; Harkat, C.; Braniste, V.; Théodorou, V.; Tompkins, T.A. Bifidobacterium Longum and Lactobacillus Helveticus Synergistically Suppress Stress-Related Visceral Hypersensitivity through Hypothalamic-Pituitary-Adrenal Axis Modulation. J. Neurogastroenterol. Motil. 2018, 24, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Hussain, N.; Hameed, Z.; Lin, L. Elucidating the Role of Diet in Maintaining Gut Health to Reduce the Risk of Obesity, Cardiovascular and Other Age-Related Inflammatory Diseases: Recent Challenges and Future Recommendations. Gut Microbes 2024, 16, 2297864. [Google Scholar] [CrossRef]
- Jurjus, R.; Jurjus, A. Dietary Nutrition: The Friend or the Foe to Gastrointestinal Health. Nutrients 2024, 16, 4137. [Google Scholar] [CrossRef]
- Katz, D.L.; Meller, S. Can We Say What Diet Is Best for Health? Annu. Rev. Public Health 2014, 35, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, D.P.; O’Doherty, J.V.; Sweeney, T. The Effect of Prebiotic Supplements on the Gastrointestinal Microbiota and Associated Health Parameters in Pigs. Animals 2023, 13, 3012. [Google Scholar] [CrossRef] [PubMed]
- Rau, S.; Gregg, A.; Yaceczko, S.; Limketkai, B. Prebiotics and Probiotics for Gastrointestinal Disorders. Nutrients 2024, 16, 778. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; et al. Dietary Prebiotics: Current Status and New Definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Kumari, A.; Rashmi, K.G.; Sudhakaran, V.A.; Warrier, A.S.; Singh, N.K. Unveiling the Health Benefits of Prebiotics: A Comprehensive Review. Indian J. Microbiol. 2024, 64, 376–388. [Google Scholar] [CrossRef]
- Xu, T.; Sun, R.; Zhang, Y.; Zhang, C.; Wang, Y.; Wang, Z.A.; Du, Y. Recent Research and Application Prospect of Functional Oligosaccharides on Intestinal Disease Treatment. Molecules 2022, 27, 7622. [Google Scholar] [CrossRef]
- Ali, M.Y.; Liaqat, F.; Khazi, M.I.; Sethupathy, S.; Zhu, D. Utilization of Glycosyltransferases as a Seamless Tool for Synthesis and Modification of the Oligosaccharides-A Review. Int. J. Biol. Macromol. 2023, 249, 125916. [Google Scholar] [CrossRef]
- Zdunczyk, Z.Z.; Zduñczyk, Z. Physiological Effect of Low Digestible Oligosaccharides in Diets for Animals and Humans. Pol. J. Food Nutr. Sci. 2004, 13, 115–130. [Google Scholar]
- Korczak, R.; Slavin, J.L. Fructooligosaccharides and Appetite. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 377–380. [Google Scholar] [CrossRef]
- Dou, Y.; Yu, X.; Luo, Y.; Chen, B.; Ma, D.; Zhu, J. Effect of Fructooligosaccharides Supplementation on the Gut Microbiota in Human: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3298. [Google Scholar] [CrossRef]
- Martins, G.N.; Ureta, M.M.; Tymczyszyn, E.E.; Castilho, P.C.; Gomez-Zavaglia, A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front. Nutr. 2019, 6, 78. [Google Scholar] [CrossRef]
- Atta, A.; Sharif, S.; Haroon, K.; Rasheed, M.; Menon, S.V.; Balaji, J.; Jain, B.; Jameel, Q.Y.; Shah, M.A. A Comprehensive Review on Health Benefits of Fructooligosaccharides. eFood 2025, 6, e70041. [Google Scholar] [CrossRef]
- Mavrogeni, M.E.; Asadpoor, M.; Henricks, P.A.J.; Keshavarzian, A.; Folkerts, G.; Braber, S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022, 14, 4699. [Google Scholar] [CrossRef]
- Yu, E.; Chen, D.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Luo, Y.; Yin, H.; Yu, J.; Luo, J.; et al. Manno-Oligosaccharide Attenuates Inflammation and Intestinal Epithelium Injury in Weaned Pigs upon Enterotoxigenic Escherichia Coli K88 Challenge. Br. J. Nutr. 2021, 126, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Jana, U.K.; Suryawanshi, R.K.; Prajapati, B.P.; Kango, N. Prebiotic Mannooligosaccharides: Synthesis, Characterization and Bioactive Properties. Food Chem. 2021, 342, 128328. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Shi, Y.; Yan, Q.; You, X.; Jiang, Z. Preparation, Characterization, and Prebiotic Activity of Manno-Oligosaccharides Produced from Cassia Gum by a Glycoside Hydrolase Family 134 β-Mannanase. Food Chem. 2020, 309, 125709. [Google Scholar] [CrossRef] [PubMed]
- Kumar Suryawanshi, R.; Kango, N. Production of Mannooligosaccharides from Various Mannans and Evaluation of Their Prebiotic Potential. Food Chem. 2021, 334, 127428. [Google Scholar] [CrossRef]
- Gä Nzle, M.G. Lactose: Galacto-Oligosaccharides, Volume 2.
- Mei, Z.; Yuan, J.; Li, D. Biological Activity of Galacto-Oligosaccharides: A Review. Front. Microbiol. 2022, 13, 993052. [Google Scholar] [CrossRef]
- Paineau, D.; Payen, F.; Panserieu, S.; Coulombier, G.; Sobaszek, A.; Lartigau, I.; Brabet, M.; Galmiche, J.P.; Tripodi, D.; Sacher-Huvelin, S.; et al. The Effects of Regular Consumption of Short-Chain Fructo-Oligosaccharides on Digestive Comfort of Subjects with Minor Functional Bowel Disorders. Br. J. Nutr. 2008, 99, 311–318. [Google Scholar] [CrossRef]
- Silk, D.B.A.; Davis, A.; Vulevic, J.; Tzortzis, G.; Gibson, G.R. Clinical Trial: The Effects of a Trans-Galactooligosaccharide Prebiotic on Faecal Microbiota and Symptoms in Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2009, 29, 508–518. [Google Scholar] [CrossRef]
- Wilson, B.; Eyice, Ö.; Koumoutsos, I.; Lomer, M.C.; Irving, P.M.; Lindsay, J.O.; Whelan, K. Prebiotic Galactooligosaccharide Supplementation in Adults with Ulcerative Colitis: Exploring the Impact on Peripheral Blood Gene Expression, Gut Microbiota, and Clinical Symptoms. Nutrients 2021, 13, 3598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Guan, X.X.; Tang, Y.J.; Sun, J.F.; Wang, X.K.; Wang, W.D.; Fan, J.M. Clinical Effects and Gut Microbiota Changes of Using Probiotics, Prebiotics or Synbiotics in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2021, 60, 2855–2875. [Google Scholar] [CrossRef] [PubMed]
- Estorninos, E.; Lawenko, R.B.; Palestroque, E.; Sprenger, N.; Benyacoub, J.; Kortman, G.A.M.; Boekhorst, J.; Bettler, J.; Cercamondi, C.I.; Berger, B. Term Infant Formula Supplemented with Milk-Derived Oligosaccharides Shifts the Gut Microbiota Closer to That of Human Milk-Fed Infants and Improves Intestinal Immune Defense: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2022, 115, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.C.; Wang, M.; Donovan, S.M. The Role of Early Life Nutrition in the Establishment of Gastrointestinal Microbial Composition and Function. Gut Microbes 2017, 8, 143–171. [Google Scholar] [CrossRef]
- Donovan, S.M.; Comstock, S.S. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann. Nutr. Metab. 2017, 69, 42–51. [Google Scholar]
- Burrin, D.; Sangild, P.T.; Stoll, B.; Thymann, T.; Buddington, R.; Marini, J.; Olutoye, O.; Shulman, R.J. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu. Rev. Anim. Biosci. 2020, 8, 321–354. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Wang, Y.; Wang, X.; Xia, M.; Wu, H. Isolation, Molecular Characterization and Evaluation of the Pathogenicity of a Porcine Rotavirus Isolated from Jiangsu Province, China. Arch. Virol. 2015, 160, 1333–1338. [Google Scholar] [CrossRef]
- Adewole, D.I.; Kim, I.H.; Nyachoti, C.M. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 909–924. [Google Scholar]
- Tran, T.H.T.; Everaert, N.; Bindelle, J. Review on the Effects of Potential Prebiotics on Controlling Intestinal Enteropathogens Salmonella and Escherichia Coli in Pig Production. J. Anim. Physiol. Anim. Nutr. 2018, 102, 17–32. [Google Scholar] [CrossRef]
- Barnes, J.L.; Hartmann, B.; Holst, J.J.; Tappenden, K.A. Intestinal Adaptation Is Stimulated by Partial Enteral Nutrition Supplemented with the Prebiotic Short-Chain Fructooligosaccharide in a Neonatal Intestinal Failure Piglet Model. J. Parenter. Enter. Nutr. 2012, 36, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.B.; Verstegen, M.W.A.; Kim, I.H.; Kwon, O.S.; Verdonk, J.M.A.J. Effects of Feeding Antibiotic-Free Creep Feed Supplemented with Oligofructose, Probiotics or Synbiotics to Suckling Piglets Increases the Preweaning Weight Gain and Composition of Intestinal Microbiota. Arch. Anim. Nutr. 2005, 59, 419–427. [Google Scholar] [CrossRef]
- Eudy, B.J.; Odle, J.; Lin, X.; Maltecca, C.; Walter, K.R.; McNulty, N.P.; Fellner, V.; Jacobi, S.K. Dietary Prebiotic Oligosaccharides and Arachidonate Alter the Fecal Microbiota and Mucosal Lipid Composition of Suckling Pigs. J. Nutr. 2023, 153, 2249–2262. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Chen, D.; Yu, B.; Luo, Y.; Zheng, P.; Yin, H.; Mao, X.; Huang, Z.; Yu, J.; Luo, J.; et al. Amelioration of Enterotoxigenic Escherichia Coli-Induced Disruption of Intestinal Epithelium by Manno-Oligosaccharide in Weaned Pigs. J. Funct. Foods 2021, 82, 104492. [Google Scholar] [CrossRef]
- Naqid, I.A.; Owen, J.P.; Maddison, B.C.; Gardner, D.S.; Foster, N.; Tchórzewska, M.A.; La Ragione, R.M.; Gough, K.C. Prebiotic and Probiotic Agents Enhance Antibody-Based Immune Responses to Salmonella Typhimurium Infection in Pigs. Anim. Feed. Sci. Technol. 2015, 201, 57–65. [Google Scholar] [CrossRef]
- Gourbeyre, P.; Denery, S.; Bodinier, M. Probiotics, Prebiotics, and Synbiotics: Impact on the Gut Immune System and Allergic Reactions. J. Leukoc. Biol. 2011, 89, 685–695. [Google Scholar] [CrossRef]
- Tian, S.; Wang, J.; Yu, H.; Wang, J.; Zhu, W. Effects of Galacto-Oligosaccharides on Growth and Gut Function of Newborn Suckling Piglets. J. Anim. Sci. Biotechnol. 2018, 9, 75. [Google Scholar] [CrossRef]
- Cavaglieri, C.R.; Nishiyama, A.; Fernandes, L.C.; Curi, R.; Miles, E.A.; Calder, P.C. Differential Effects of Short-Chain Fatty Acids on Proliferation and Production of pro- and Anti-Inflammatory Cytokines by Cultured Lymphocytes. Life Sci. 2003, 73, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhang, B.; Wei, H.; Che, C.; Ding, D.; Hua, X.; Bucheli, P.; Wang, L.; Li, Y.; Pang, X.; et al. Assessment of the Modulating Effects of Fructo-Oligosaccharides on Fecal Microbiota Using Human Flora-Associated Piglets. Arch. Microbiol. 2010, 192, 959–968. [Google Scholar] [CrossRef]
- Li, M.; Monaco, M.H.; Wang, M.; Comstock, S.S.; Kuhlenschmidt, T.B.; Fahey, G.C.; Miller, M.J.; Kuhlenschmidt, M.S.; Donovan, S.M. Human Milk Oligosaccharides Shorten Rotavirus-Induced Diarrhea and Modulate Piglet Mucosal Immunity and Colonic Microbiota. ISME J. 2014, 8, 1609–1620. [Google Scholar] [CrossRef]
- Chen, H.; Hu, H.; Chen, D.; Tang, J.; Yu, B.; Luo, J.; He, J.; Luo, Y.; Yu, J.; Mao, X. Dietary Pectic Oligosaccharide Administration Improves Growth Performance and Immunity in Weaned Pigs Infected by Rotavirus. J. Agric. Food Chem. 2017, 65, 2923–2929. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Akbari, P.; Difilippo, E.; Schols, H.A.; Ulfman, L.H.; Schoterman, M.H.C.; Garssen, J.; Fink-Gremmels, J.; Braber, S. The Piglet as a Model for Studying Dietary Components in Infant Diets: Effects of Galacto-Oligosaccharides on Intestinal Functions. Br. J. Nutr. 2016, 115, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Daisley, B.A.; Chmiel, J.A.; Pitek, A.P.; Thompson, G.J.; Reid, G. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends Microbiol. 2020, 28, 1010–1021. [Google Scholar] [CrossRef]
- Bodke, H.; Jogdand, S. Role of Probiotics in Human Health. Cureus 2022, 14, e31313. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Tegegne, B.A.; Kebede, B. Probiotics, Their Prophylactic and Therapeutic Applications in Human Health Development: A Review of the Literature. Heliyon 2022, 8, e09725. [Google Scholar] [CrossRef]
- Oelschlaeger, T.A. Mechanisms of Probiotic Actions—A Review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef]
- Liao, S.F.; Nyachoti, M. Using Probiotics to Improve Swine Gut Health and Nutrient Utilization. Anim. Nutr. 2017, 3, 331–343. [Google Scholar] [CrossRef]
- Elhossiny, R.M.; Elshahawy, H.H.; Mohamed, H.M.; Abdelmageed, R.I. Assessment of Probiotic Strain Lactobacillus Acidophilus LB Supplementation as Adjunctive Management of Attention-Deficit Hyperactivity Disorder in Children and Adolescents: A Randomized Controlled Clinical Trial. BMC Psychiatry 2023, 23, 823. [Google Scholar] [CrossRef]
- Rose, E.C.; Blikslager, A.T.; Ziegler, A.L. Porcine Models of the Intestinal Microbiota: The Translational Key to Understanding How Gut Commensals Contribute to Gastrointestinal Disease. Front. Vet. Sci. 2022, 9, 834598. [Google Scholar] [CrossRef]
- Sarita, B.; Samadhan, D.; Hassan, M.Z.; Kovaleva, E.G. A Comprehensive Review of Probiotics and Human Health-Current Prospective and Applications. Front. Microbiol. 2025, 15, 1487641. [Google Scholar] [CrossRef] [PubMed]
- Ariaee, A.; Koentgen, S.; Wardill, H.R.; Hold, G.L.; Prestidge, C.A.; Armstrong, H.K.; Joyce, P. Prebiotic Selection Influencing Inflammatory Bowel Disease Treatment Outcomes: A Review of the Preclinical and Clinical Evidence. eGastroenterology 2024, 2, e100055. [Google Scholar] [CrossRef] [PubMed]
- Basso, P.J.; Saraiva Câmara, N.O.; Sales-Campos, H. Microbial-Based Therapies in the Treatment of Inflammatory Bowel Disease—An Overview of Human Studies. Front. Pharmacol. 2019, 9, 1571. [Google Scholar] [CrossRef]
- Tursi, A.; Brandimarte, G.; Papa, A.; Giglio, A.; Elisei, W.; Giorgetti, G.M.; Forti, G.; Morini, S.; Hassan, C.; Pistoia, M.A.; et al. Treatment of Relapsing Mild-to-Moderate Ulcerative Colitis with the Probiotic VSL3 as Adjunctive to a Standard Pharmaceutical Treatment: A Double-Blind, Randomized, Placebo-Controlled Study. Am. J. Gastroenterol. 2010, 105, 2218–2227. [Google Scholar] [CrossRef]
- Huang, C.; Hao, W.; Wang, X.; Zhou, R.; Lin, Q. Probiotics for the Treatment of Ulcerative Colitis: A Review of Experimental Research from 2018 to 2022. Front. Microbiol. 2023, 14, 1211271. [Google Scholar] [CrossRef]
- Garbacz, K. Anticancer Activity of Lactic Acid Bacteria. Semin. Cancer Biol. 2022, 86, 356–366. [Google Scholar] [CrossRef]
- Chorawala, M.R.; Chauhan, S.; Patel, R.; Shah, G. Cell Wall Contents of Probiotics (Lactobacillus Species) Protect Against Lipopolysaccharide (LPS)-Induced Murine Colitis by Limiting Immuno-Inflammation and Oxidative Stress. Probiotics Antimicrob. Proteins 2021, 13, 1005–1017. [Google Scholar] [CrossRef]
- Le Morvan de Sequeira, C.; Hengstberger, C.; Enck, P.; Mack, I. Effect of Probiotics on Psychiatric Symptoms and Central Nervous System Functions in Human Health and Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 621. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union. 2006, 404, 9–25.
- Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Union. 2003, 268, 29–43.
- Holzapfel, W.H.; Schillinger, U. Introduction to Pre-and Probiotics. Food Res. Int. 2002, 35, 109–116. [Google Scholar] [CrossRef]
- Sciascia, Q.; Daş, G.; Metges, C.C. Review: The Pig as a Model for Humans: Effects of Nutritional Factors on Intestinal Function and Health. J. Anim. Sci. 2016, 94, 441–452. [Google Scholar] [CrossRef]
- Desantis, S.; Mastrodonato, M.; Accogli, G.; Rossi, G.; Crovace, A.M. Effects of a Probiotic on the Morphology and Mucin Composition of Pig Intestine. Histol. Histopathol. 2019, 34, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Crovace, A.M.; Rossi, G.; Laudadio, V. Effect of a Dietary Probiotic Blend on Performance, Blood Characteristics, Meat Quality and Faecal Microbial Shedding in Growing-Finishing Pigs. S Afr. J. Anim. Sci. 2017, 47, 875–882. [Google Scholar] [CrossRef]
- Segers, M.E.; Lebeer, S. Towards a Better Understanding of Lactobacillus Rhamnosus GG—Host Interactions. Microb. Cell Fact. 2014, 13, S7. [Google Scholar] [CrossRef]
- Liu, Y.; Nawazish, H.; Farid, M.S.; Abdul Qadoos, K.; Habiba, U.E.; Muzamil, M.; Tanveer, M.; Sienkiewicz, M.; Lichota, A.; Łopusiewicz, Ł. Health-Promoting Effects of Lactobacillus Acidophilus and Its Technological Applications in Fermented Food Products and Beverages. Fermentation 2024, 10, 380. [Google Scholar] [CrossRef]
- Wen, K.; Li, G.; Bui, T.; Liu, F.; Li, Y.; Kocher, J.; Lin, L.; Yang, X.; Yuan, L. High Dose and Low Dose Lactobacillus Acidophilus Exerted Differential Immune Modulating Effects on T Cell Immune Responses Induced by an Oral Human Rotavirus Vaccine in Gnotobiotic Pigs. Vaccine 2012, 30, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Parreno, V.; Bai, M.; Liu, F.; Jing, J.; Olney, E.; Li, G.; Wen, K.; Yang, X.; Castellucc, T.B.; Kocher, J.F.; et al. Probiotic as Adjuvant Significantly Improves Protection of the Lanzhou Trivalent Rotavirus Vaccine against Heterologous Challenge in a Gnotobiotic Pig Model of Human Rotavirus Infection and Disease. Vaccines 2022, 10, 1529. [Google Scholar] [CrossRef]
- Liu, F.; Wen, K.; Li, G.; Yang, X.; Kocher, J.; Bui, T.; Jones, D.; Pelzer, K.; Clark-Deener, S.; Yuan, L. Dual Functions of Lactobacillus Acidophilus NCFM as Protection against Rotavirus Diarrhea. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 169–176. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Shepherd, M.; Wen, K.; Li, G.; Yang, X.; Kocher, J.; Giri-Rachman, E.; Dickerman, A.; Settlage, R.; et al. Probiotics and Virulent Human Rotavirus Modulate the Transplanted Human Gut Microbiota in Gnotobiotic Pigs. Gut Pathog. 2014, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Azevedo, M.S.P.; Gonzalez, A.M.; Saif, L.J.; Van Nguyen, T.; Wen, K.; Yousef, A.E.; Yuan, L. Influence of Probiotic Lactobacilli Colonization on Neonatal B Cell Responses in a Gnotobiotic Pig Model of Human Rotavirus Infection and Disease. Veter-Immunol. Immunopathol. 2008, 122, 175–181. [Google Scholar] [CrossRef]
- Wu, S.; Yuan, L.; Zhang, Y.; Liu, F.; Li, G.; Wen, K.; Kocher, J.; Yang, X.; Sun, J. Probiotic Lactobacillus Rhamnosus GG Mono-Association Suppresses Human Rotavirus-Induced Autophagy in the Gnotobiotic Piglet Intestine. Gut Pathog. 2013, 5, 22. [Google Scholar] [CrossRef]
- Hu, J.; Chen, L.; Tang, Y.; Xie, C.; Xu, B.; Shi, M.; Zheng, W.; Zhou, S.; Wang, X.; Liu, L.; et al. Standardized Preparation for Fecal Microbiota Transplantation in Pigs. Front. Microbiol. 2018, 9, 1328. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, Y.H.; Kim, S.J.; Han, J.H. Impact of Long-Term Supplementation with Probiotics on Gut Microbiota and Growth Performance in Post-Weaned Piglets. Animals 2024, 14, 1652. [Google Scholar] [CrossRef] [PubMed]
Features | References |
---|---|
Simple availability for clinical trials | [14,17,18] |
Omnivore diet | [9,19] |
Genome is similar to that of humans | [11,12] |
Analogous to human anatomy and organ size | [20] |
Analogous to human gastrointestinal physiology | [13,15,21] |
Systemic and mucosal immune responses similar to humans | [22] |
neurobiological similarities to humans | [13,23] |
Closely similar to human disease processes | [7] |
Molecular mechanism of taste perception | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, R.; Mainardi, E. Prebiotics and Probiotics Supplementation in Pigs as a Model for Human Gut Health and Disease. Biomolecules 2025, 15, 665. https://doi.org/10.3390/biom15050665
Rossi R, Mainardi E. Prebiotics and Probiotics Supplementation in Pigs as a Model for Human Gut Health and Disease. Biomolecules. 2025; 15(5):665. https://doi.org/10.3390/biom15050665
Chicago/Turabian StyleRossi, Raffaella, and Edda Mainardi. 2025. "Prebiotics and Probiotics Supplementation in Pigs as a Model for Human Gut Health and Disease" Biomolecules 15, no. 5: 665. https://doi.org/10.3390/biom15050665
APA StyleRossi, R., & Mainardi, E. (2025). Prebiotics and Probiotics Supplementation in Pigs as a Model for Human Gut Health and Disease. Biomolecules, 15(5), 665. https://doi.org/10.3390/biom15050665