Natural Compounds in Cancer Therapy: Revealing the Role of Flavonoids in Renal Cell Carcinoma Treatment
Abstract
:1. Introduction
2. Literature Search Strategy
3. Mechanisms of Anticancer Action of Flavonoids Against RCC
3.1. Flavones
3.2. Flavanones
3.3. Flavonols
3.4. Isoflavones
3.5. Chalcones
3.6. Flavanols
4. Future Research Directions
4.1. Enhancing the Bioavailability of Flavonoids
4.1.1. Novel Flavonoid Derivatives
4.1.2. Drug Delivery Systems
4.2. Combination Therapy Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RCC | Renal cell carcinoma |
ICIs | Immune checkpoint inhibitors |
TKIs | Tyrosine kinase inhibitors |
OS | Overall survival |
PFS | Progression-free survival |
TRAIL | Tumor necrosis factor-related apoptosis-inducing ligand |
HO-1 | Heme oxygenase-1 |
ROS | Reactive oxygen species |
EMT | Epithelial–mesenchymal transition |
EGCG | Epigallocatechin gallate |
TFPI-2 | Tissue factor pathway inhibitor-2 |
TFEB | Transcription factor EB |
VEGF | Vascular endothelial growth factor |
GSTp | Glutathione S-transferase pi |
6-PN | 6-Prenylnaringenin |
8-PN | 8-Prenylnaringenin |
SOD | Superoxide dismutase |
MDA | Malondialdehyde |
RAGE | Receptor for advanced glycation end products |
HA | Hyaluronic acid |
ECM | Extracellular matrix |
bFGF | Basic fibroblast growth factor |
MPNPs | Magnetic PLGA nanoparticles |
SLB-MPNPs | Silibinin-loaded magnetic PLGA nanoparticles |
Cx43 | Connexin43 |
DEDTC | Diethyldithiocarbamate |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.T.; Jani, Y.; Jansen, C.S.; Yildirim, A.; Kalemoglu, E.; Bilen, M.A. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol. Ther. 2024, 25, 2342599. [Google Scholar] [CrossRef] [PubMed]
- Numakura, K.; Sekine, Y.; Hatakeyama, S.; Muto, Y.; Sobu, R.; Kobayashi, M.; Sasagawa, H.; Kashima, S.; Yamamto, R.; Nara, T.; et al. Primary resistance to nivolumab plus ipilimumab therapy in patients with metastatic renal cell carcinoma. Cancer Med. 2023, 12, 16837–16845. [Google Scholar] [CrossRef]
- Huang, T.; Peng, Y.; Liu, R.; Ma, B.; Chen, J.; Wei, W.; Zhong, W.; Liu, Y.; Guo, S.; Han, H.; et al. Prognostic significance of immune evasion-related genes in clear cell renal cell carcinoma immunotherapy. Int. Immunopharmacol. 2024, 142, 113106. [Google Scholar] [CrossRef]
- Lee, S.H. Therapeutic Effects of Natural Products on Human Diseases. Life 2024, 14, 1166. [Google Scholar] [CrossRef]
- Dastmalchi, M.; Chen, X.; Hagel, J.M.; Chang, L.; Chen, R.; Ramasamy, S.; Yeaman, S.; Facchini, P.J. Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat. Chem. Biol. 2019, 15, 384–390. [Google Scholar] [CrossRef]
- Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, S.K.; Sinha, K.; Ghosh, B.; Sen, K.; Ghosh, N.; Sil, P.C. The Emerging Role of Natural Products in Cancer Treatment. Arch. Toxicol. 2024, 98, 2353–2391. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef]
- Das, A.; Ruhal, R. Potential of plants-based alkaloids, terpenoids and flavonoids as antibacterial agents: An update. Process Biochem. 2025, 150, 94–120. [Google Scholar] [CrossRef]
- Alizadeh, A.; Pourfallah-Taft, Y.; Khoshnazar, M.; Safdari, A.; Komari, S.V.; Zanganeh, M.; Sami, N.; Valizadeh, M.; Faridzadeh, A.; Alijanzadeh, D.; et al. Flavonoids against depression: A comprehensive review of literature. Front. Pharmacol. 2024, 15, 1411168. [Google Scholar] [CrossRef] [PubMed]
- Vazhappilly, C.G.; Amararathna, M.; Cyril, A.C.; Linger, R.; Matar, R.; Merheb, M.; Ramadan, W.S.; Radhakrishnan, R.; Rupasinghe, H.P.V. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J. Nutr. Biochem. 2021, 94, 108623. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Mishra, K.P. Role of Plant-Derived Flavonoids in Cancer Treatment. Nutr. Cancer 2023, 75, 430–449. [Google Scholar] [CrossRef]
- Kustiawan, P.M.; Siregar, K.A.A.K.; Jauhar, M.M.; Ramadhan, D.; Mardliyati, E.; Syaifie, P.H. Network pharmacology and bioinformatic integrative analysis reveals candidate gene targets and potential therapeutic of East Kalimantan propolis against hepatocellular carcinoma. Heliyon 2024, 10, e39142. [Google Scholar] [CrossRef]
- Han, S.; Lin, F.; Qi, Y.; Liu, C.; Zhou, L.; Xia, Y.; Chen, K.; Xing, J.; Liu, Z.; Yu, W.; et al. HO-1 Contributes to Luteolin-Triggered Ferroptosis in Clear Cell Renal Cell Carcinoma via Increasing the Labile Iron Pool and Promoting Lipid Peroxidation. Oxidative Med. Cell. Longev. 2022, 2022, 3846217. [Google Scholar] [CrossRef]
- Ou, Y.C.; Li, J.R.; Kuan, Y.H.; Raung, S.L.; Wang, C.C.; Hung, Y.Y.; Pan, P.H.; Lu, H.C.; Chen, C.J. Luteolin sensitizes human 786-O renal cell carcinoma cells to TRAIL-induced apoptosis. Life Sci. 2014, 100, 110–117. [Google Scholar] [CrossRef]
- Deng, W.; Han, W.; Fan, T.; Wang, X.; Cheng, Z.; Wan, B.; Chen, J. Scutellarin inhibits human renal cancer cell proliferation and migration via upregulation of PTEN. Biomed. Pharmacother. 2018, 107, 1505–1513. [Google Scholar] [CrossRef]
- Meng, S.; Zhu, Y.; Li, J.F.; Wang, X.; Liang, Z.; Li, S.Q.; Xu, X.; Chen, H.; Liu, B.; Zheng, X.Y.; et al. Apigenin inhibits renal cell carcinoma cell proliferation. Oncotarget 2017, 8, 19834–19842. [Google Scholar] [CrossRef]
- Bao, Y.; Wu, X.; Jin, X.; Kanematsu, A.; Nojima, M.; Kakehi, Y.; Yamamoto, S. Apigenin inhibits renal cell carcinoma cell proliferation through G2/M phase cell cycle arrest. Oncol. Rep. 2022, 47, 60. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, S.; Yin, M.; Guo, L.; Xu, M.; Wang, Y. Nobiletin inhibits hypoxia-induced epithelial-mesenchymal transition in renal cell carcinoma cells. J. Cell Biochem. 2019, 120, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Zhang, G.; Zhu, Z.; Zheng, Y.; Yan, F.; Pan, C.; Wang, Z.; Li, X.; Wang, F.; Meng, P.; et al. Nobiletin Inhibits Cell Viability via the SRC/AKT/STAT3/YY1AP1 Pathway in Human Renal Carcinoma Cells. Front. Pharmacol. 2019, 10, 690. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wu, D.; Fu, D.; Tang, C.; Ge, J.; Zhang, Z.; Zhou, W. Nobiletin inhibits viability of human renal carcinoma cells via the JAK2/STAT3 and PI3K/Akt pathway. Cell. Mol. Biol. 2020, 66, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, L.; Zou, Y.; Hu, X.; Zhang, W.; Zhou, T.; Luo, X.; Fu, W.; Xu, J. Nobiletin downregulates the SKP2-p21/p27-CDK2 axis to inhibit tumor progression and shows synergistic effects with palbociclib on renal cell carcinoma. Cancer Biol. Med. 2021, 18, 227–244. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, K.; Liang, C.; Wen, L.; Wu, J.; Liu, X.; Li, X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother. Res. 2024, 38, 3660–3694. [Google Scholar] [CrossRef]
- Woo, S.M.; Seo, S.U.; Kim, S.H.; Nam, J.O.; Kim, S.; Park, J.W.; Min, K.J.; Kwon, T.K. Hispidulin Enhances TRAIL-Mediated Apoptosis via CaMKKβ/AMPK/USP51 Axis-Mediated Bim Stabilization. Cancers 2019, 11, 1960. [Google Scholar] [CrossRef]
- Yang, C.; Luo, J.; Luo, X.; Jia, W.; Fang, Z.; Yi, S.; Li, L. Morusin exerts anti-cancer activity in renal cell carcinoma by disturbing MAPK signaling pathways. Ann. Transl. Med. 2020, 8, 327. [Google Scholar] [CrossRef]
- Woo, S.M.; Kwon, T.K. Jaceosidin induces apoptosis through Bax activation and down-regulation of Mcl-1 and c-FLIP expression in human renal carcinoma Caki cells. Chem. Biol. Interact. 2016, 260, 168–175. [Google Scholar] [CrossRef]
- Han, M.A.; Min, K.J.; Woo, S.M.; Seo, B.R.; Kwon, T.K. Eupafolin enhances TRAIL-mediated apoptosis through cathepsin S-induced down-regulation of Mcl-1 expression and AMPK-mediated Bim up-regulation in renal carcinoma Caki cells. Oncotarget 2016, 7, 65707–65720. [Google Scholar] [CrossRef]
- Zhong, W.; Wu, Z.; Chen, N.; Zhong, K.; Lin, Y.; Jiang, H.; Wan, P.; Lu, S.; Yang, L.; Liu, S. Eupatilin Inhibits Renal Cancer Growth by Downregulating MicroRNA-21 through the Activation of YAP1. BioMed Res. Int. 2019, 2019, 5016483. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, L.; Luo, S.; Hu, D.; Zhao, X.; Zhao, G.; Tang, W. Network Analysis and Basic Experiments on the Inhibition of Renal Cancer Proliferation and Migration by Alpinetin through PI3K/AKT/mTOR Pathway. Curr. Mol. Med. 2024, 24, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, A.; Saidullah, B.; Sultana, S. Anti-carcinogenic effect of hesperidin against renal cell carcinoma by targeting COX-2/PGE2 pathway in Wistar rats. Environ. Toxicol. 2018, 33, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Nagaprashantha, L.D.; Vatsyayan, R.; Singhal, J.; Lelsani, P.; Prokai, L.; Awasthi, S.; Singhal, S.S. 2′-hydroxyflavanone inhibits proliferation, tumor vascularization and promotes normal differentiation in VHL-mutant renal cell carcinoma. Carcinogenesis 2011, 32, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Busch, C.; Noor, S.; Leischner, C.; Burkard, M.; Lauer, U.M.; Venturelli, S. Anti-proliferative activity of hop-derived prenylflavonoids against human cancer cell lines. Wien. Med. Wochenschr. 2015, 165, 258–261. [Google Scholar] [CrossRef]
- Song, W.; Dang, Q.; Xu, D.; Chen, Y.; Zhu, G.; Wu, K.; Zeng, J.; Long, Q.; Wang, X.; He, D.; et al. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncol. Rep. 2014, 31, 1350–1356. [Google Scholar] [CrossRef]
- Hung, T.W.; Chen, P.N.; Wu, H.C.; Wu, S.W.; Tsai, P.Y.; Hsieh, Y.S.; Chang, H.R. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways. Int. J. Med. Sci. 2017, 14, 984–993. [Google Scholar] [CrossRef]
- Han, M.A.; Lee, D.H.; Woo, S.M.; Seo, B.R.; Min, K.J.; Kim, S.; Park, J.W.; Kim, S.H.; Choi, Y.H.; Kwon, T.K. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells. Sci. Rep. 2016, 6, 18642. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Chen, F.; Fang, J.; Xu, A.; Xi, W.; Zhang, S.; Wu, G.; Wang, Z. Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma. Mol. Med. Rep. 2016, 13, 4238–4244. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, Y.; Shi, S.; Wang, X.; Huang, S.; Ren, Y. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis. Phytomedicine 2022, 102, 154182. [Google Scholar] [CrossRef]
- Li, S.; Priceman, S.J.; Xin, H.; Zhang, W.; Deng, J.; Liu, Y.; Huang, J.; Zhu, W.; Chen, M.; Hu, W.; et al. Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS ONE 2013, 8, e81657. [Google Scholar] [CrossRef]
- Li, S.; An, F.; Guo, J.Y.; Gu, D.Q.; Zhao, C.L.; Li, Y.; Ji, J. Gossypin Inhibits Renal Cell Carcinoma Growth In Vivo through Targeting the Inflammatory Reaction. Lat. Am. J. Pharm. 2023, 42, 674–680. [Google Scholar]
- Yang, M.; Wu, X.; Liu, N.; Hu, X.; Shi, X. The isoflavone corylin suppresses tumor growth and metastasis in renal cell carcinoma by regulating RAGE transcription. J. Funct. Foods 2024, 120, 106349. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yuan, C.Y.; Xu, M.; Wang, M.F.; Feng, T.; Wang, Y.; Zheng, S.F.; Zhang, H.L.; Shi, G.H.; Cao, D.L.; et al. Calycosin inhibits the proliferation and metastasis of renal cell carcinoma through the MAZ/HAS2 signaling pathway. Phytother. Res. 2024, 38, 4774–4791. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiang, Y.; Chu, L.; Wu, T.; You, J. Alpinumisoflavone suppresses tumour growth and metastasis of clear-cell renal cell carcinoma. Am. J. Cancer Res. 2017, 7, 999–1015. [Google Scholar]
- Imai-Sumida, M.; Dasgupta, P.; Kulkarni, P.; Shiina, M.; Hashimoto, Y.; Shahryari, V.; Majid, S.; Tanaka, Y.; Dahiya, R.; Yamamura, S. Genistein Represses HOTAIR/Chromatin Remodeling Pathways to Suppress Kidney Cancer. Cell Physiol. Biochem. 2020, 54, 53–70. [Google Scholar] [CrossRef]
- Majid, S.; Dar, A.A.; Ahmad, A.E.; Hirata, H.; Kawakami, K.; Shahryari, V.; Saini, S.; Tanaka, Y.; Dahiya, A.V.; Khatri, G.; et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 2009, 30, 662–670. [Google Scholar] [CrossRef]
- Sasamura, H.; Takahashi, A.; Yuan, J.; Kitamura, H.; Masumori, N.; Miyao, N.; Itoh, N.; Tsukamoto, T. Antiproliferative and antiangiogenic activities of genistein in human renal cell carcinoma. Urology 2004, 64, 389–393. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, J.E.; Chae, I.G.; Park, G.; Lee, S.; Chun, K.S. Isoliquiritigenin inhibits the proliferation of human renal carcinoma Caki cells through the ROS-mediated regulation of the Jak2/STAT3 pathway. Oncol. Rep. 2017, 38, 575–583. [Google Scholar] [CrossRef]
- Xin, H.; Xu, W. Effect of licochalcone A on autophagy in renal cell carcinoma via PI3K/Akt/mTOR signaling pathway. Zhongguo Zhong Yao Za Zhi 2018, 43, 3545–3552. [Google Scholar] [CrossRef]
- Gu, B.; Ding, Q.; Xia, G.; Fang, Z. EGCG inhibits growth and induces apoptosis in renal cell carcinoma through TFPI-2 overexpression. Oncol. Rep. 2009, 21, 635–640. [Google Scholar]
- Wei, R.; Zhu, G.; Jia, N.; Yang, W. Epigallocatechin-3-gallate Sensitizes Human 786-O Renal Cell Carcinoma Cells to TRAIL-Induced Apoptosis. Cell Biochem. Biophys. 2015, 72, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Luo, L.; Yu, B.; Que, T.; Zhang, Y. EGCG inhibits migration, invasion and epithelial-mesenchymal transition of renal cell carcinoma by activating TFEB-mediated autophagy. Chem. Biol. Interact. 2024, 403, 111250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, F. Exploration of the mechanism of luteolin against colorectal cancer based on network pharmacology and experimental validation. Asian J. Surg. 2024, 48, 1597–1598. [Google Scholar] [CrossRef]
- Nguyen, T.T.K.; Woo, S.M.; Seo, S.U.; Banstola, A.; Kim, H.; Duwa, R.; Vu, A.T.T.; Hong, I.S.; Kwon, T.K.; Yook, S. Enhanced anticancer efficacy of TRAIL-conjugated and odanacatib-loaded PLGA nanoparticles in TRAIL resistant cancer. Biomaterials 2025, 312, 122733. [Google Scholar] [CrossRef]
- Qiao, L.; Liu, K.; Ren, Y.; Liu, Y.; Xu, Z.; Wang, S.; Zhang, Y. Scutellaria baicalensis ameliorates allergic airway inflammation through agonism and transcriptional regulation of TAS2Rs. J. Ethnopharmacol. 2025, 337, 118881. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, X.; Zhou, N.; Hu, T.; Shen, Y.; Chen, T.J.; Liu, Y.; Cui, H.; Zhu, S. Apigenin inhibits lipid metabolism of hepatocellular carcinoma cells by targeting the histone demethylase KDM1A. Phytomedicine 2024, 135, 156024. [Google Scholar] [CrossRef]
- Alam, F.; Mohammadin, K.; Shafique, Z.; Amjad, S.T.; bin Asad, M.H.H. Citrus flavonoids as potential therapeutic agents: A review. Phytother. Res. 2022, 36, 1417–1441. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, J.; Su, Y.; Guo, R.; Zhao, B.; Liu, J. Diosmetin Induces Apoptosis by Downregulating AKT Phosphorylation via P53 Activation in Human Renal Carcinoma ACHN Cells. Protein Pept. Lett. 2020, 27, 1022–1028. [Google Scholar] [CrossRef]
- Kim, K.; Leem, J. Hispidulin Ameliorates Endotoxin-Induced Acute Kidney Injury in Mice. Molecules 2022, 27, 2019. [Google Scholar] [CrossRef]
- Chaudhry, G.E.; Zeenia; Sharifi-Rad, J.; Calina, D. Hispidulin: A promising anticancer agent and mechanistic breakthrough for targeted cancer therapy. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 1919–1934. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Jiang, C.; Chen, Y.; Liu, F.; Xie, M.; Yim, W.Y.; Yao, D.; Qian, X.; Chen, S.; et al. Morusin Alleviates Aortic Valve Calcification by Inhibiting Valve Interstitial Cell Senescence Through Ccnd1/Trim25/Nrf2 Axis. Adv. Sci. 2024, 11, e2307319. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zuo, X.; Shao, F.; Yu, K.; Liang, Q. Jaceosidin attenuates the progression of hepatic fibrosis by inhibiting the VGLL3/HMGB1/TLR4 signaling pathway. Phytomedicine 2024, 128, 155502. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.M.; Tang, Y.J.; Cao, J.L.; Hou, W.S.; Wang, A.Q.; Wang, C.; Jin, C.H. Jaceosidin induces apoptosis and inhibits migration in AGS gastric cancer cells by regulating ROS-mediated signaling pathways. Redox Rep. 2024, 29, 2313366. [Google Scholar] [CrossRef]
- Yan, H.; Wang, P.; Zhou, Q.; Dong, X.; Wang, Q.; Yuan, Z.; Zhai, B.; Zhou, Y. Eupafolin hinders cross-talk between gastric cancer cells and cancer-associated fibroblasts by abrogating the IL18/IL18RAP signaling axis. Phytomedicine 2024, 134, 155984. [Google Scholar] [CrossRef]
- Lee, B.E.; Park, S.J.; Kim, G.H.; Joo, D.C.; Lee, M.W. Anti-inflammatory effects of eupatilin on Helicobacter pylori CagA-induced gastric inflammation. PLoS ONE 2024, 19, e0313251. [Google Scholar] [CrossRef]
- Wang, L.; Feng, T.; Su, Z.; Pi, C.; Wei, Y.; Zhao, L. Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch. Pharmacal Res. 2022, 45, 535–557. [Google Scholar] [CrossRef]
- Chen, H.; Liu, C.; Zhan, Y.; Wang, Y.; Hu, Q.; Zeng, Z. Alpinetin ameliorates bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation. Biomed. Pharmacother. 2024, 171, 116101. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Babiker, A.Y.; Anwar, S. Hesperidin, a Bioflavonoid in Cancer Therapy: A Review for a Mechanism of Action through the Modulation of Cell Signaling Pathways. Molecules 2023, 28, 5152. [Google Scholar] [CrossRef]
- Yue, Y.; Qian, W.; Li, J.; Wu, S.; Zhang, M.; Wu, Z.; Ma, Q.; Wang, Z. 2′-Hydroxyflavanone inhibits the progression of pancreatic cancer cells and sensitizes the chemosensitivity of EGFR inhibitors via repressing STAT3 signaling. Cancer Lett. 2020, 471, 135–146. [Google Scholar] [CrossRef]
- Tung, M.C.; Fung, K.M.; Hsu, H.M.; Tseng, T.S. Correction: Discovery of 8-prenylnaringenin from hop (Humulus lupulus L.) as a potent monoacylglycerol lipase inhibitor for treatments of neuroinflammation and Alzheimer’s disease. RSC Adv. 2022, 12, 20217. [Google Scholar] [CrossRef]
- Xiong, H.H.; Lin, S.Y.; Chen, L.L.; Ouyang, K.H.; Wang, W.J. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Li, Y.; Ma, K.; Zhao, W.; Yao, Z.; Zheng, Z.; Sun, F.; Mu, X.; Liu, Z.; Zheng, J. The microbiota and renal cell carcinoma. Cell. Oncol. 2024, 47, 397–413. [Google Scholar] [CrossRef] [PubMed]
- De Morais, E.F.; de Oliveira, L.Q.R.; de Farias Morais, H.G.; de Souto Medeiros, M.R.; de Almeida Freitas, R.; Rodini, C.O.; Coletta, R.D. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers 2024, 16, 585. [Google Scholar] [CrossRef]
- Ruan, G.Y.; Ye, L.X.; Lin, J.S.; Lin, H.Y.; Yu, L.R.; Wang, C.Y.; Mao, X.D.; Zhang, S.H.; Sun, P.M. An integrated approach of network pharmacology, molecular docking, and experimental verification uncovers kaempferol as the effective modulator of HSD17B1 for treatment of endometrial cancer. J. Transl. Med. 2023, 21, 204. [Google Scholar] [CrossRef]
- Zhu, Q.; Han, Y.; He, Y.; Fu, Y.; Yang, H.; Chen, Y.; Shi, Y. Kaempferol Improves Breast Cancer-Related Depression through the COX-2/PGE2 Pathway. Front. Biosci. 2023, 28, 311. [Google Scholar] [CrossRef]
- Pu, Y.; Han, Y.; Ouyang, Y.; Li, H.; Li, L.; Wu, X.; Yang, L.; Gao, J.; Zhang, L.; Zhou, J.; et al. Kaempferol inhibits colorectal cancer metastasis through circ_0000345 mediated JMJD2C/β-catenin signalling pathway. Phytomedicine 2024, 128, 155261. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Pu, L.; Yu, L.; Xiong, F.; Sun, L.; Yu, Q.; Cao, X.; Chen, Y.; Peng, F.; et al. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother. Res. 2023, 37, 5700–5723. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Yu, H.; Shi, H.; Chen, M.; Song, J.; Tang, W.; Teng, F.; Li, C.; Yi, L.; et al. TMT-based quantitative proteomics revealed protective efficacy of Icariside II against airway inflammation and remodeling via inhibiting LAMP2, CTSD and CTSS expression in OVA-induced chronic asthma mice. Phytomedicine 2023, 118, 154941. [Google Scholar] [CrossRef]
- Xu, F.; Wu, Q.; Li, L.; Gong, J.; Huo, R.; Cui, W. Icariside II: Anticancer Potential and Molecular Targets in Solid Cancers. Front. Pharmacol. 2021, 12, 663776. [Google Scholar] [CrossRef]
- Huong, N.T.; Son, N.T. Icaritin: A phytomolecule with enormous pharmacological values. Phytochemistry 2023, 213, 113772. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Hussain, S.A.; Gangireddygari, V.S.R.; Fan, Y. Gossypin exert lipopolysaccharide induced lung inflammation via alteration of Nrf2/HO-1 and NF-κB signaling pathway. Environ. Toxicol. 2023, 38, 1786–1799. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Y.; Su, Y.; Gao, L.; Yuan, H.; Xu, S.; Liu, Y.; Qiu, Y.; Liu, Z.; Li, Y. Corylin accelerated wound healing through SIRT1 and PI3K/AKT signaling: A candidate remedy for chronic non-healing wounds. Front. Pharmacol. 2023, 14, 1153810. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Huang, P.; Yang, J.; Du, H.; Wan, H.; He, Y. Calycosin alleviates cerebral ischemia/reperfusion injury by repressing autophagy via STAT3/FOXO3a signaling pathway. Phytomedicine 2023, 115, 154845. [Google Scholar] [CrossRef]
- Song, J.; Ham, J.; Park, S.; Park, S.J.; Kim, H.S.; Song, G.; Lim, W. Alpinumisoflavone Activates Disruption of Calcium Homeostasis, Mitochondria and Autophagosome to Suppress Development of Endometriosis. Antioxidants 2023, 12, 1324. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; et al. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxidative Med. Cell. Longev. 2021, 2021, 3268136. [Google Scholar] [CrossRef]
- Li, M.; Yu, Y.; Xue, K.; Li, J.; Son, G.; Wang, J.; Qian, W.; Wang, S.; Zheng, J.; Yang, C.; et al. Genistein mitigates senescence of bone marrow mesenchymal stem cells via ERRα-mediated mitochondrial biogenesis and mitophagy in ovariectomized rats. Redox Biol. 2023, 61, 102649. [Google Scholar] [CrossRef]
- Kaufman-Szymczyk, A.; Jalmuzna, J.; Lubecka-Gajewska, K. Soy-derived isoflavones as chemo-preventive agents targeting multiple signalling pathways for cancer prevention and therapy. Br. J. Pharmacol. 2025, 182, 2259–2286. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, W.; Yang, X.; Lu, T.; Liu, Y. Isoliquiritigenin, a potential therapeutic agent for treatment of inflammation-associated diseases. J. Ethnopharmacol. 2024, 318, 117059. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, Y.; Chen, S.; Luo, Z.; Liu, Y. Licochalcone A loaded multifunctional chitosan hyaluronic acid hydrogel with antibacterial and inflammatory regulating effects to promote wound healing. Int. J. Biol. Macromol. 2024, 283, 137458. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, J.; Li, S.; Liu, X.; Deng, W.; Liu, W.; Fu, B. Mitochondrial metabolic reprogramming-mediated immunogenic cell death reveals immune and prognostic features of clear cell renal cell carcinoma. Front. Oncol. 2023, 13, 1146657. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Jian, Y.; Liu, Y.; Jiang, S.; Muhammad, D.; Wang, W. Flavanols from Nature: A Phytochemistry and Biological Activity Review. Molecules 2022, 27, 719. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Zheng, Y.; Cao, H.; Huang, Q.; Xiao, J.; Chen, L. Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 378–393. [Google Scholar] [CrossRef]
- Li, J.; Tan, G.; Cai, Y.; Liu, R.; Xiong, X.; Gu, B.; He, W.; Liu, B.; Ren, Q.; Wu, J.; et al. A novel Apigenin derivative suppresses renal cell carcinoma via directly inhibiting wild-type and mutant MET. Biochem. Pharmacol. 2021, 190, 114620. [Google Scholar] [CrossRef]
- Bories, C.; Lejour, T.; Adolphe, F.; Kermasson, L.; Couvé, S.; Tanguy, L.; Luszczewska, G.; Watzky, M.; Poillerat, V.; Garnier, P.; et al. DCLRE1B/Apollo germline mutations associated with renal cell carcinoma impair telomere protection. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167107. [Google Scholar] [CrossRef]
- Aiello, P.; Consalvi, S.; Poce, G.; Raguzzini, A.; Toti, E.; Palmery, M.; Biava, M.; Bernardi, M.; Kamal, M.A.; Perry, G.; et al. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin. Cancer Biol. 2021, 69, 150–165. [Google Scholar] [CrossRef]
- Fan, Y.; Hou, T.; Dan, W.; Liu, T.; Luan, J.; Liu, B.; Li, L.; Zeng, J. Silibinin inhibits epithelial-mesenchymal transition of renal cell carcinoma through autophagy-dependent Wnt/β-catenin signaling. Int. J. Mol. Med. 2020, 45, 1341–1350. [Google Scholar] [CrossRef]
- Takke, A.; Shende, P. Magnetic-core-based silibinin nanopolymeric carriers for the treatment of renal cell cancer. Life Sci. 2021, 275, 119377. [Google Scholar] [CrossRef]
- Caparica, R.; Júlio, A.; Araújo, M.E.M.; Baby, A.R.; Fonte, P.; Costa, J.G.; Santos de Almeida, T. Anticancer Activity of Rutin and Its Combination with Ionic Liquids on Renal Cells. Biomolecules 2020, 10, 233. [Google Scholar] [CrossRef]
- Mazurakova, A.; Koklesova, L.; Csizmár, S.H.; Samec, M.; Brockmueller, A.; Šudomová, M.; Biringer, K.; Kudela, E.; Pec, M.; Samuel, S.M.; et al. Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells—A potential contribution to the predictive, preventive, and personalized medicine. J. Adv. Res. 2024, 55, 103–118. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Sun, S.; Liu, G.; Chen, L.; Xia, Y.; Cui, J.; Wang, W.; Jiang, X.; Zhang, L.; et al. Wogonin Induces Apoptosis and Reverses Sunitinib Resistance of Renal Cell Carcinoma Cells via Inhibiting CDK4-RB Pathway. Front. Pharmacol. 2020, 11, 1152. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, D.; Hao, Y.; Liu, Q.; Wu, Y.; Liu, X.; Luo, J.; Zhou, T.; Sun, B.; Luo, X.; et al. Cyanidin Curtails Renal Cell Carcinoma Tumorigenesis. Cell. Physiol. Biochem. 2018, 46, 2517–2531. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.H.; Tsai, J.P.; Yang, S.F.; Chiou, H.L.; Lin, C.L.; Hsieh, Y.H.; Chang, H.R. Fisetin Suppresses the Proliferation and Metastasis of Renal Cell Carcinoma through Upregulation of MEK/ERK-Targeting CTSS and ADAM9. Cells 2019, 8, 948. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Liang, Y.; Ji, Y.; Xue, Y. Fisetin enhances cisplatin sensitivity in renal cell carcinoma via the CDK6/PI3K/Akt/mTOR signaling pathway. Oncol. Lett. 2024, 27, 165. [Google Scholar] [CrossRef]
- Bai, Y.; Xiong, Y.; Zhang, Y.Y.; Cheng, L.; Liu, H.; Xu, K.; Wu, Y.Y.; Field, J.; Wang, X.D.; Zhou, L.M. Tangeretin Synergizes with 5-Fluorouracil to Induce Autophagy through MicroRNA-21 in Colorectal Cancer Cells. Am. J. Chin. Med. 2022, 50, 1681–1701. [Google Scholar] [CrossRef]
- Lai, Y.; Wu, W.; Liang, X.; Zhong, F.; An, L.; Chang, Z.; Cai, C.; He, Z.; Wu, W. Connexin43 is associated with the progression of clear cell renal carcinoma and is regulated by tangeretin to sygergize with tyrosine kinase inhibitors. Transl. Oncol. 2023, 35, 101712. [Google Scholar] [CrossRef]
- Singh, B.; Semwal, B.C. A Compressive Review on Source, Toxicity and Biological Activity of Flavonoid. Curr. Top. Med. Chem. 2024, 24, 2093–2116. [Google Scholar] [CrossRef]
- Ranawat, P.; Bakshi, N. Naringenin; a bioflavonoid, impairs the reproductive potential of male mice. Toxicol. Mech. Methods 2017, 27, 417–427. [Google Scholar] [CrossRef]
- Zhang, K.; Dong, R.; Sun, K.; Wang, X.; Wang, J.; Yang, C.S.; Zhang, J. Synergistic toxicity of epigallocatechin-3-gallate and diethyldithiocarbamate, a lethal encounter involving redox-active copper. Free Radic. Biol. Med. 2017, 113, 143–156. [Google Scholar] [CrossRef]
- Bisol, Â.; de Campos, P.S.; Lamers, M.L. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother. Res. 2020, 34, 568–582. [Google Scholar] [CrossRef]
- Li, X.; Xie, E.; Sun, S.; Shen, J.; Ding, Y.; Wang, J.; Peng, X.; Zheng, R.; Farag, M.A.; Xiao, J. Flavonoids for gastrointestinal tract local and associated systemic effects: A review of clinical trials and future perspectives. J. Adv. Res. 2025, in press. [Google Scholar] [CrossRef]
- Van Veldhuizen, P.J.; Faulkner, J.R.; Lara, P.N., Jr.; Gumerlock, P.H.; Goodwin, J.W.; Dakhil, S.R.; Gross, H.M.; Flanigan, R.C.; Crawford, E.D. A phase II study of flavopiridol in patients with advanced renal cell carcinoma: Results of Southwest Oncology Group Trial 0109. Cancer Chemother. Pharmacol. 2005, 56, 39–45. [Google Scholar] [CrossRef]
Categories | Name | Mechanism | Model | References | |
---|---|---|---|---|---|
Cell Lines Tested | Animal Models Used | ||||
Flavones | Luteolin | 1. Induced ferroptosis by promoting heme degradation and iron accumulation through upregulation of HO-1 expression. 2. Enhanced TRAIL-induced apoptosis by downregulating FLIP. | RCC cell lines: 786-O (10–40 μM), OS-RC-2 (60 μM), ACHN (10 μM) and A498 (10 μM) | / | [16,17] |
Scutellarin | 1. Inhibited cell proliferation and invasion by reducing MMP-2 and MMP-9. 2. Induced G0/G1 phase cell cycle arrest and promoted apoptosis. 3. Targeted PI3K/Akt/mTOR pathway and upregulated PTEN protein levels. | RCC cell lines: ACHN and 786-O (30–90 μM) | / | [18] | |
Apigenin | 1. Inhibited cell proliferation by inducing DNA damage and G2/M phase cell cycle arrest. 2. Regulated cell cycle progression by downregulating the cyclins and CDK1. | 1. RCC cell lines: ACHN (10–50 μM), Caki-1 (20–50 μM), 786-O (10–50 μM) and NC65 (0–100 μM) 2. Primary RCC cells (20–50 μM) | / | [19,20] | |
Nobiletin | 1. Reversed hypoxia-induced EMT process in RCC cells. 2. Targeted the SRC/AKT pathway, JAK2/STAT3 pathway, and PI3K/Akt pathway. 3. Inhibited cell proliferation, migration, and invasion, while inducing apoptosis. 4. Targeted SKP2 to enhances RCC sensitivity to palbociclib. | RCC cell lines: ACHN (80–120 μM), Caki-2 (40–80 μM), 786-O (12.5–100 μM), Caki-1 (12.5–25 μM), 769-P (12.5–25 μM) and OSRC-2 (25–50 μM) | Xenograft RCC nude mice (40 mg/kg) | [21,22,23,24] | |
Diosmetin | 1. Inhibited cell viability and induced apoptosis. 2. Disrupted the PI3K/Akt pathway by inducing p53 activation. | RCC cell lines: Caki-1 (5–20 μM) | / | [25] | |
Hispidulin | Enhanced TRAIL-induced apoptosis by regulating CaMKKβ/AMPK/USP51 signaling pathway. | RCC cell lines: ACHN, Caki-1, A498 and DU145 (10–30 μM) | Xenograft RCC nude mice (10 mg/kg) | [26] | |
Morusin | 1. Inhibited cell proliferation and invasion. 2. Induced cell cycle arrest and promoted apoptosis by targeting MAPK pathway. | RCC cell lines: 769-P, 786-O and OSRC-2 (2–8 μg/mL) | Xenograft RCC nude mice (20 mg/kg) | [27] | |
Jaceosidin | 1. Disrupted mitochondrial integrity. 2. Induced apoptosis by activating BAX and downregulating Mcl-1. | RCC cell lines: Caki-1, ACHN, A498 and 786-O (30–75 μM) | / | [28] | |
Eupafolin | Enhanced TRAIL-induced apoptosis by modulating Mcl-1 and Bim expression. | RCC cell lines: Caki-1 (10–30 μM) | Xenograft RCC nude mice (10 mg/kg) | [29] | |
Eupatilin | 1. Inhibited cell proliferation and migration. 2. Induced apoptosis by regulating miR-21/YAP1 axis. | RCC cell lines: 786-O (5–20 μM) | Xenograft RCC nude mice (10 mg/kg) | [30] | |
Flavanones | Alpinetin | 1. Inhibited cell proliferation and migration, and promoted apoptosis. 2. Targeted the PI3K/AKT/mTOR pathway. | RCC cell lines: 786-O and OS-RC-2 (50–100 μM) | Xenograft RCC nude mice (100 mg/kg) | [31] |
Hesperidin | 1. Inhibited RCC progression by targeting the COX-2/PGE2 pathway. 2. Prevented RCC by enhancing the renal antioxidant defense system. | / | Diethylnitrosamine initiated and ferric nitrilotriacetate promoted renal carcinogenesis in Wistar rats (100 or 200 mg/kg) | [32] | |
2′-Hydroxyflavanone | 1. Suppressed cell division by inducing G2/M cell cycle arrest. 2. Inhibited VHL-mutant RCC growth and metastasis by reducing EGFR/PI3K/Akt signaling pathways. 3. Promoted oxidative stress in RCC cells. 4. Reduced angiogenesis by lowering VEGF. | RCC cell lines: Caki-1 (20–100 μM), Caki-2 (25–50 μM), A498 (20–100 μM) and 786-O (25–50 μM) | Xenograft RCC nude mice (25 or 100 mg/kg) | [33] | |
Prenylnaringenin | Inhibited cell proliferation. | human renal carcinoma cell lines: UO.31 (6.25–100 μM) | / | [34] | |
Flavonols | Kaempferol | 1. Induced cell cycle arrest and apoptosis by targeting the EGFR/p38 pathway. 2. Inhibited cell invasion and migration by targeting the AKT and FAK pathways. | RCC cell lines: 769-P (50–150 μM) and 786-O (25–150 μM) | Xenograft RCC severe combined immunodeficient mice (2 or 10 mg/kg) | [35,36] |
Galangin | 1. Induced TRAIL-mediated apoptosis by inhibiting Bcl-2 and Mcl-1. 2. Inhibited cell proliferation and migration, and induced apoptosis by increasing intracellular ROS levels. | RCC cell lines: 786-O (25–100 μM), Caki-1 (10–100 μM), ACHN (10–30 μM) and A498 (10–30 μM) | / | [37,38] | |
Icariside II | 1. Inhibited cell viability, proliferation, and migration. 2. Induced ferroptosis by regulating miR-324-3p/GPX4 axis. | RCC cell lines: ACHN and Caki-1 (10–40 μM) | Xenograft RCC nude mice (15 or 25 or 35 mg/kg) | [39] | |
Icaritin | 1. Inhibited cell proliferation and induced apoptosis by targeting the JAK/STAT3 pathway. 2. Suppressed tumor growth and inhibited angiogenesis. | RCC cell lines: 786-O (1–30 μM) | Xenograft RCC BALB/c mice (10 mg/kg) | [40] | |
Gossypin | Inhibited tumor growth by reducing NFκB and STAT3, and targeting PI3K/Akt/mTOR signaling pathway. | / | Xenograft RCC nude mice | [41] | |
Isoflavones | Corylin | 1. Inhibited cell proliferation by blocking cell cycle. 2. Induced apoptosis and suppressed cell migration and invasion. 3. Suppressed energy metabolism by downregulating RAGE. | RCC cell lines: 786-O and A498 (5–40 μM) | Xenograft RCC NSG BALB/c mice (30 or 60 mg/kg) | [42] |
Calycosin | 1. Suppressed cell proliferation, migration, and invasion. 2. Promoted apoptosis by targeting MAZ/HAS2 signaling pathway. | RCC cell lines: 786-O (120–180 μM) and A498 (90–120 μM) | Xenograft RCC nude mice (40 mg/kg) | [43] | |
Alpinumisoflavone | Inhibited tumor growth and metastasis through modulating miR-101/RLIP76 signaling pathway. | RCC cell lines: 786-O (2.5–10 μM) | Xenograft RCC NSG BALB/c mice (40 or 80 mg/kg) | [44] | |
Genistein | 1. Inhibited cell migration and invasion by disrupting the binding of HOTAIR with PRC2 and upregulating ZO-1 expression. 2. Induced cell cycle arrest and inhibited cell proliferation by activating the BTG3 through demethylation and histone modifications. 3. Restricted tumor growth and dissemination by suppressing VEGF and bFGF expression and angiogenesis. | RCC cell lines: SMKT R1-4 (12.5–100 μg/mL), A498 (50 μM), HEK-293 (50 μM), 786-O (25 μM) and ACHN (25–50 μM) | / | [45,46,47] | |
Chalcones | Isoliquiritigenin | 1. Inhibitied RCC cells viability. 2. Induced apoptosis by decreasing Bcl-2 and Bcl-xl, increasing BAX and generating ROS. 3. Targeted the JAK2/STAT3 signaling pathway. | RCC cell lines: Caki-1 (5–50 μM) | / | [48] |
Licochalcone A | 1. Induced autophagy and suppressed proliferation, migration, and invasion. 2. Inhibited the PI3K/Akt/mTOR signaling pathway. | RCC cell lines: 786-O and 769-P (10–50 μM) | / | [49] | |
Flavanols | Epigallocatechin gallate | 1. Inhibited cell proliferation, migration, invasion, and the EMT process by upregulating TFPI-2. 2. Enhanced TRAIL-induced apoptosis. 3. Activated autophagy by upregulating TFEB. | RCC cell lines: 786-O (50 μg/mL or 10–80 μM) and ACHN (20–80 μM) | Xenograft RCC nude mice (50 mg/kg) | [50,51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liu, M. Natural Compounds in Cancer Therapy: Revealing the Role of Flavonoids in Renal Cell Carcinoma Treatment. Biomolecules 2025, 15, 620. https://doi.org/10.3390/biom15050620
Chen Z, Liu M. Natural Compounds in Cancer Therapy: Revealing the Role of Flavonoids in Renal Cell Carcinoma Treatment. Biomolecules. 2025; 15(5):620. https://doi.org/10.3390/biom15050620
Chicago/Turabian StyleChen, Zixuan, and Min Liu. 2025. "Natural Compounds in Cancer Therapy: Revealing the Role of Flavonoids in Renal Cell Carcinoma Treatment" Biomolecules 15, no. 5: 620. https://doi.org/10.3390/biom15050620
APA StyleChen, Z., & Liu, M. (2025). Natural Compounds in Cancer Therapy: Revealing the Role of Flavonoids in Renal Cell Carcinoma Treatment. Biomolecules, 15(5), 620. https://doi.org/10.3390/biom15050620