Molecular Mechanisms in the Carcinogenesis of Oral Squamous Cell Carcinoma: A Literature Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Literature Selection and Synthesis
2.4. Thematic Grouping
- Genetic and epigenetic alterations in OSCC;
- The role of the tumor microenvironment and immune evasion;
- Behavioral and environmental risk factors;
- Exosome-mediated signaling;
- Resistance mechanisms to conventional and targeted therapies;
- Promising molecular targets and ongoing experimental therapies.
3. Tumor Microenvironment (TME) in Oral Squamous Cell Carcinoma
3.1. Role of Exosomes in the Tumor Microenvironment of Oral Squamous Cell Carcinoma
3.2. Oral Microbiome and Its Role in OSCC
4. Genetic and Molecular Determinants of OSCC
4.1. Genetic Alterations
4.1.1. Oncogene TP53
Innovative Therapeutic Strategies for p53 Restoration
4.1.2. Oncogene RAS
4.1.3. Oncogenic Signaling in Oral Squamous Cell Carcinoma
4.2. Epigenetic
4.2.1. DNA Methylation
4.2.2. Histone Modifications
Histone Acetylation
Histone Methylation
4.2.3. Regulation by microRNAs
4.3. Genomic Instability
4.3.1. Mutations
4.3.2. Types of Mutations
Point Mutations
Chromosomal Rearrangements
Deletions and Insertions
Aneuploidy
Hypoxia
4.3.3. Consequences of Mutations
4.3.4. Treatment Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, N.W.; Jayasekara, P.; Hemantha, K.; Amarasinghe, A.A. Squamous Cell Carcinoma and Precursor Lesions of the Oral Cavity: Epidemiology and Aetiology. Periodontology 2011, 57, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Nair, R.; Jamieson, L.; Liu, Z.; Bi, P. Incidence Trends of Lip, Oral Cavity, and Pharyngeal Cancers: Global Burden of Disease 1990–2017. J. Dent. Res. 2020, 99, 143–151. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Johnson, N.W.; Kumar, N. Global Epidemiology of Head and Neck Cancers: A Continuing Challenge. Oncology 2016, 91, 13–23. [Google Scholar] [CrossRef]
- García-Martín, J.M.; Varela-Centelles, P.; González, M.; Seoane-Romero, J.M.; Seoane, J.; García-Pola, M.J. Epidemiology of Oral Cancer. In Oral Cancer Detection: Novel Strategies and Clinical Impact; Springer International Publishing: New York, NY, USA, 2019; pp. 81–93. ISBN 9783319612553. [Google Scholar]
- Nocini, R.; Lippi, G.; Mattiuzzi, C. Biological and Epidemiologic Updates on Lip and Oral Cavity Cancers. Ann. Cancer Epidemiol. 2020. [Google Scholar] [CrossRef]
- Szyfter, K. Genetics and Molecular Biology of Head and Neck Cancer. Biomolecules 2021, 11, 1293. [Google Scholar] [CrossRef]
- Leemans, C.R.; Braakhuis, B.J.M.; Brakenhoff, R.H. The Molecular Biology of Head and Neck Cancer. Nat. Rev. Cancer 2011, 11, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Jou, A.; Hess, J. Epidemiology and Molecular Biology of Head and Neck Cancer. Oncol. Res. Treat. 2017, 40, 328–332. [Google Scholar] [CrossRef]
- Shah, P.A.; Huang, C.; Li, Q.; Kazi, S.A.; Byers, L.A.; Wang, J.; Johnson, F.M.; Frederick, M.J. NOTCH1 Signaling in Head and Neck Squamous Cell Carcinoma. Cell 2020, 9, 2677. [Google Scholar] [CrossRef]
- Friedlander, P.L. Genomic instability in head and neck cancer patients. Head Neck 2001, 23, 683–691. [Google Scholar] [CrossRef]
- Chen, S.H.; Hsiao, S.Y.; Chang, K.Y.; Chang, J.Y. New Insights into Oral Squamous Cell Carcinoma: From Clinical Aspects to Molecular Tumorigenesis. Int. J. Mol. Sci. 2021, 22, 2252. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Noie Alamdari, A.; Noee Alamdari, Y.; Abak, A.; Hussen, B.M.; Taheri, M.; Jamali, E. Role of PI3K/AKT Pathway in Squamous Cell Carcinoma with an Especial Focus on Head and Neck Cancers. Cancer Cell Int. 2022, 22, 254. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and Neck Squamous Cell Carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef]
- Rehmani, H.S.; Issaeva, N. EGFR in Head and Neck Squamous Cell Carcinoma: Exploring Possibilities of Novel Drug Combinations. Ann. Transl. Med. 2020, 8, 813. [Google Scholar] [CrossRef] [PubMed]
- Gillison, M.L.; D’Souza, G.; Westra, W.; Sugar, E.; Xiao, W.; Begum, S.; Viscidi, R. Distinct Risk Factor Profiles for Human Papillomavirus Type 16-Positive and Human Papillomavirus Type 16-Negative Head and Neck Cancers. J. Natl. Cancer Inst. 2008, 100, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, M.E.; Chiocca, S. Human Papillomavirus as a Driver of Head and Neck Cancers. Br. J. Cancer 2020, 122, 306–314. [Google Scholar] [CrossRef]
- Galati, L.; Chiocca, S.; Duca, D.; Tagliabue, M.; Simoens, C.; Gheit, T.; Arbyn, M.; Tommasino, M. HPV and Head and Neck Cancers: Towards Early Diagnosis and Prevention. Tumour Virus Res. 2022, 14, 200245. [Google Scholar] [CrossRef]
- Soulières, D.; Aguilar, J.L.; Chen, E.; Misiukiewicz, K.; Ernst, S.; Lee, H.J.; Bryant, K.; He, S.; Obasaju, C.K.; Chang, S.C.; et al. Cetuximab plus Platinum-Based Chemotherapy in Head and Neck Squamous Cell Carcinoma: A Randomized, Double-Blind Safety Study Comparing Cetuximab Produced from Two Manufacturing Processes Using the EXTREME Study Regimen. BMC Cancer 2016, 16, e86697. [Google Scholar] [CrossRef]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.-H.; Adenis, A.; et al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef]
- Eckert, A.W.; Wickenhauser, C.; Salins, P.C.; Kappler, M.; Bukur, J.; Seliger, B. Clinical Relevance of the Tumor Microenvironment and Immune Escape of Oral Squamous Cell Carcinoma. J. Transl. Med. 2016, 14, 85. [Google Scholar] [CrossRef]
- Boxberg, M.; Leising, L.; Steiger, K.; Jesinghaus, M.; Alkhamas, A.; Mielke, M.; Pfarr, N.; Götz, C.; Wolff, K.D.; Weichert, W.; et al. Composition and Clinical Impact of the Immunologic Tumor Microenvironment in Oral Squamous Cell Carcinoma. J. Immunol. 2019, 202, 278–291. [Google Scholar] [CrossRef]
- Shan, Q.; Takabatake, K.; Omori, H.; Kawai, H.; Oo, M.W.; Nakano, K.; Ibaragi, S.; Sasaki, A.; Nagatsuka, H. Stromal Cells in the Tumor Microenvironment Promote the Progression of Oral Squamous Cell Carcinoma. Int. J. Oncol. 2021, 59, 72. [Google Scholar] [CrossRef] [PubMed]
- Elmusrati, A.; Wang, J.; Wang, C.Y. Tumor Microenvironment and Immune Evasion in Head and Neck Squamous Cell Carcinoma. Int. J. Oral Sci. 2021, 13, 24. [Google Scholar] [CrossRef]
- Whiteside, T.L. Regulatory T Cell Subsets in Human Cancer: Are They Regulating for or against Tumor Progression? Cancer Immunol. Immunother. 2014, 63, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.; Fulgêncio, L.B.; de Mendonça, E.F.; Leles, C.R.; Batista, A.C.; da Silva, T.A. T Regulatory Cell Markers in Oral Squamous Cell Carcinoma: Relationship with Survival and Tumor Aggressiveness. Oncol. Lett. 2010, 1, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, D.; Li, J.; Zhang, D.; Chen, Q. Regulatory T Cells in Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2016, 45, 635–639. [Google Scholar] [CrossRef]
- Ostrand-Rosenberg, S.; Fenselau, C. Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. J. Immunol. 2018, 200, 422–431. [Google Scholar] [CrossRef]
- Weber, R.; Fleming, V.; Hu, X.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Front. Immunol. 2018, 9, 1310. [Google Scholar] [CrossRef]
- Chen, Y.; Song, Y.; Du, W.; Gong, L.; Chang, H.; Zou, Z. Tumor-Associated Macrophages: An Accomplice in Solid Tumor Progression. J. Biomed. Sci. 2019, 26, 78. [Google Scholar] [CrossRef]
- De Palma, M.; Lewis, C.E. Macrophage Regulation of Tumor Responses to Anticancer Therapies. Cancer Cell 2013, 23, 277–286. [Google Scholar] [CrossRef]
- Seiwert, T.Y.; Burtness, B.; Mehra, R.; Weiss, J.; Berger, R.; Eder, J.P.; Heath, K.; McClanahan, T.; Lunceford, J.; Gause, C.; et al. Safety and Clinical Activity of Pembrolizumab for Treatment of Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-012): An Open-Label, Multicentre, Phase 1b Trial. Lancet Oncol. 2016, 17, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yang, R.; Li, H.; Zhang, X.; Zhang, X.; Li, X. Role of Exosomes in the Communication and Treatment between OSCC and Normal Cells. Heliyon 2024, 10, e28148. [Google Scholar] [CrossRef]
- Shi, S.; Yu, Z.L.; Jia, J. The Roles of Exosomes in the Diagnose, Development and Therapeutic Resistance of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2023, 24, 1968. [Google Scholar] [CrossRef]
- Wang, W.Z.; Cao, X.; Bian, L.; Gao, Y.; Yu, M.; Li, Y.T.; Xu, J.G.; Wang, Y.H.; Yang, H.F.; You, D.Y.; et al. Analysis of MRNA-MiRNA Interaction Network Reveals the Role of CAFs-Derived Exosomes in the Immune Regulation of Oral Squamous Cell Carcinoma. BMC Cancer 2023, 23, 591. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, G.; Sun, D.; Lei, M.; Li, Y.; Zhou, C.; Li, X.; Xue, W.; Wang, H.; Liu, C.; et al. Exosomes Containing MiR-21 Transfer the Characteristic of Cisplatin Resistance by Targeting PTEN and PDCD4 in Oral Squamous Cell Carcinoma. Acta Biochim. Biophys. Sin. 2017, 49, 808–816. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Wang, B.; Zheng, L.W.; Zhao, J.H.; Ren, J.G. Oral Cancer Cell to Endothelial Cell Communication via Exosomal MiR-21/RMND5A Pathway. BMC Oral Health 2024, 24, 82. [Google Scholar] [CrossRef]
- Meng, X.; Lou, Q.Y.; Yang, W.Y.; Wang, Y.R.; Chen, R.; Wang, L.; Xu, T.; Zhang, L. The Role of Non-Coding RNAs in Drug Resistance of Oral Squamous Cell Carcinoma and Therapeutic Potential. Cancer Commun. 2021, 41, 981–1006. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Davray, D.; Basu, S.; Kheur, S.; Pal, J.K.; Nagar, S.; Sanap, A.; Rudagi, B.M.; Gupta, S. Novel Insights on Oral Squamous Cell Carcinoma Management Using Long Non-Coding RNAs. Oncol. Res. 2024, 32, 1589–1612. [Google Scholar] [CrossRef]
- Li, Y.Y.; Tao, Y.W.; Gao, S.; Li, P.; Zheng, J.M.; Zhang, S.E.; Liang, J.; Zhang, Y. Cancer-Associated Fibroblasts Contribute to Oral Cancer Cells Proliferation and Metastasis via Exosome-Mediated Paracrine MiR-34a-5p. EBioMedicine 2018, 36, 209–220. [Google Scholar] [CrossRef]
- Wang, J.; Jing, J.; Zhou, C.; Fan, Y. Emerging Roles of Exosomes in Oral Diseases Progression. Int. J. Oral Sci. 2024, 16, 4. [Google Scholar] [CrossRef]
- Stashenko, P.; Yost, S.; Choi, Y.; Danciu, T.; Chen, T.; Yoganathan, S.; Kressirer, C.; Ruiz-Tourrella, M.; Das, B.; Kokaras, A.; et al. The Oral Mouse Microbiome Promotes Tumorigenesis in Oral Squamous Cell Carcinoma. mSystems 2019. [Google Scholar] [CrossRef]
- Chattopadhyay, I.; Verma, M.; Panda, M. Role of Oral Microbiome Signatures in Diagnosis and Prognosis of Oral Cancer. Technol. Cancer Res. Treat. 2019, 18, 1533033819867354. [Google Scholar] [CrossRef]
- Groeger, S.; Meyle, J. Oral Mucosal Epithelial Cells. Front. Immunol. 2019, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.F.; Lu, M.S.; Hsieh, C.C.; Chen, W.C. Porphyromonas gingivalis promotes tumor progression in esophageal squamous cell carcinoma. Cell. Oncol. 2020, 44, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Hans, M.; Madaan Hans, V. Epithelial Antimicrobial Peptides: Guardian of the Oral Cavity. Int. J. Pept. 2014, 2014, 370297. [Google Scholar] [CrossRef] [PubMed]
- Mello, F.W.; Melo, G.; Pasetto, J.J.; Silva, C.A.B.; Warnakulasuriya, S.; Rivero, E.R.C. The Synergistic Effect of Tobacco and Alcohol Consumption on Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Clin. Oral Investig. 2019, 23, 2849–2859. [Google Scholar] [CrossRef]
- Pushalkar, S.; Ji, X.; Li, Y.; Estilo, C.; Yegnanarayana, R.; Singh, B.; Li, X.; Saxena, D. Comparison of Oral Microbiota in Tumor and Non-Tumor Tissues of Patients with Oral Squamous Cell Carcinoma. BMC Microbiol. 2012, 12, 144. [Google Scholar] [CrossRef]
- Mager, D.L. Bacteria and Cancer: Cause, Coincidence or Cure? A Review. J. Transl. Med. 2006, 4, 14. [Google Scholar] [CrossRef]
- Kakabadze, M.Z.; Paresishvili, T.; Karalashvili, L.; Chakhunashvili, D.; Kakabadze, Z. Oral Microbiota and Oral Cancer: Review. Oncol. Rev. 2020, 14, 129–134. [Google Scholar] [CrossRef]
- Pizzo, F.; Maroccia, Z.; Ferri, I.H.; Fiorentini, C. Role of the Microbiota in Lung Cancer: Insights on Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 6138. [Google Scholar] [CrossRef]
- Wu, H.; Ganguly, S.; Tollefsbol, T.O. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022, 10, 1727. [Google Scholar] [CrossRef]
- Yu, A.Q.; Li, L. The Potential Role of Probiotics in Cancer Prevention and Treatment. Nutr. Cancer 2016, 68, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Feroz, W.; Sheikh, A.M.A. Exploring the Multiple Roles of Guardian of the Genome: P53. Egypt. J. Med. Hum. Genet. 2020, 21, 49. [Google Scholar] [CrossRef]
- Stojnev, S.; Golubović, M.; Babović, P. TP53 Gene Mutations—From Guardian of the Genome to Oncogene. Acta Medica Median. 2010, 49, 59–63. [Google Scholar]
- Blons, H.; Laurent-Puig, P. TP53 and Head and Neck Neoplasms. Hum. Mutat. 2003, 21, 252–257. [Google Scholar] [CrossRef]
- Peltonen, J.K.; Helppi, H.M.; Pääkkö, P.; Turpeenniemi-Hujanen, T.; Vähäkangas, K.H. P53 in Head and Neck Cancer: Functional Consequences and Environmental Implications of TP53 Mutations. Head Neck Oncol. 2010, 2, 36. [Google Scholar] [CrossRef]
- Klinakis, A.; Rampias, T. TP53 Mutational Landscape of Metastatic Head and Neck Cancer Reveals Patterns of Mutation Selection. EBioMedicine 2020, 58, 102905. [Google Scholar] [CrossRef]
- Lindemann, A.; Takahashi, H.; Patel, A.A.; Osman, A.A.; Myers, J.N. Targeting the DNA damage response in OSCC with TP 53 mutations. J. Dent. Res. 2018, 97, 635–644. [Google Scholar] [CrossRef]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The Mutational Landscape of Head and Neck Squamous Cell Carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef]
- Jambhekar, A.; Ackerman, E.E.; Alpay, B.A.; Lahav, G.; Lovitch, S.B. Comparison of TP53 Mutations in Myelodysplasia and Acute Leukemia Suggests Divergent Roles in Initiation and Progression. Blood Neoplasia 2024, 1, 100004. [Google Scholar] [CrossRef]
- Leroy, B.; Fournier, J.L.; Ishioka, C.; Monti, P.; Inga, A.; Fronza, G.; Soussi, T. The TP53 Website: An Integrative Resource Centre for the TP53 Mutation Database and TP53 Mutant Analysis. Nucleic Acids Res. 2013, 41, D962–D969. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, Y.; Li, Z.; Tan, Z.; Lei, Y.; Bai, S. Identification of Novel Characteristics in TP53-Mutant Hepatocellular Carcinoma Using Bioinformatics. Front. Genet. 2022, 13, 874805. [Google Scholar] [CrossRef] [PubMed]
- Chamoli, A.; Gosavi, A.S.; Shirwadkar, U.P.; Wangdale, K.V.; Behera, S.K.; Kurrey, N.K.; Kalia, K.; Mandoli, A. Overview of Oral Cavity Squamous Cell Carcinoma: Risk Factors, Mechanisms, and Diagnostics. Oral Oncol. 2021, 121, 105451. [Google Scholar] [CrossRef]
- Uehara, I.; Tanaka, N. Role of P53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression. Cancers 2018, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, D.; Song, N.; Chen, X.; Zhang, X.; Zheng, W.; Yu, Y.; Han, C. Mutant P53 in Head and Neck Squamous Cell Carcinoma: Molecular Mechanism of Gain-of-function and Targeting Therapy. Oncol. Rep. 2023, 50, 162. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, Z.; Xu, M.; Li, B.; Huang, Z.; Qin, S.; Nice, E.C.; Tang, J.; Huang, C. Oral Squamous Cell Carcinomas: State of the Field and Emerging Directions. Int. J. Oral Sci. 2023, 15, 44. [Google Scholar]
- Michaeli, O.; Luz, I.; Vatarescu, M.; Manko, T.; Weizman, N.; Korotinsky, Y.; Tsitrina, A.; Braiman, A.; Arazi, L.; Cooks, T. APR-246 as a Radiosensitization Strategy for Mutant P53 Cancers Treated with Alpha-Particles-Based Radiotherapy. Cell Death Dis. 2024, 15, 426. [Google Scholar] [CrossRef]
- Nagourney, A.J.; Gipoor, J.B.; Evans, S.S.; D’Amora, P.; Duesberg, M.S.; Bernard, P.J.; Francisco, F.; Nagourney, R.A. Therapeutic Targeting of P53: A Comparative Analysis of APR-246 and COTI-2 in Human Tumor Primary Culture 3-D Explants. Genes 2023, 14, 747. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Q.; Mao, Y.; Gao, W.; Duan, S. Targeting the P53 Signaling Pathway in Cancers: Molecular Mechanisms and Clinical Studies. MedComm 2023, 4, e288. [Google Scholar] [CrossRef]
- Lundstrom, K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr. Gene Ther. 2023, 23, 111–134. [Google Scholar] [CrossRef]
- Dhiman, S. Gene Drug Delivery for the Treatment of Cancer. Clin. Res. Source 2025. [Google Scholar] [CrossRef]
- Peng, Y.; Bai, J.; Li, W.; Su, Z.; Cheng, X. Advancements in P53-Based Anti-Tumor Gene Therapy Research. Molecules 2024, 29, 5315. [Google Scholar] [CrossRef]
- Qi, L.; Li, G.; Li, P.; Wang, H.; Fang, X.; He, T.; Li, J. Twenty Years of Gendicine® RAd-P53 Cancer Gene Therapy: The First-in-Class Human Cancer Gene Therapy in the Era of Personalized Oncology. Genes Dis. 2024, 11, 101155. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Yang, X.; Chai, H. Harnessing State-of-the-Art Gene Therapy to Transform Oral Cancer Treatment; Springer Nature: Berlin/Heidelberg, Germany, 2025. [Google Scholar]
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS Proteins and Their Regulators in Human Disease. Cell 2017, 170, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Jang, H.; Gu, S.; Zhang, J.; Nussinov, R. Drugging Ras GTPase: A Comprehensive Mechanistic and Signaling Structural View. Chem. Soc. Rev. 2016, 45, 4929–4952. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Hsu, H.T.; Ko, Y.C.; Yeh, K.T.; Chang, S.J.; Lin, C.Y.; Chang, J.G. Combined Mutational Analysis of RAS, BRAF, PIK3CA, and TP53 Genes in Taiwanese Patients with Oral Squamous Cell Carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, 110–116.e1. [Google Scholar] [CrossRef]
- Al-Rawi, N.; Merza, M.; Ghazi, A. PIK3CB and K-Ras in Oral Squamous Cell Carcinoma. A Possible Cross-Talk! J. Orofac. Sci. 2014, 6, 99. [Google Scholar] [CrossRef]
- Murugan, A.K.; Munirajan, A.K.; Tsuchida, N. Ras Oncogenes in Oral Cancer: The Past 20 Years. Oral Oncol. 2012, 48, 383–392. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Haraf, D.J.; Kunnavakkam, R.; Stenson, K.M.; Blair, E.A.; Brockstein, B.; Lester, E.P.; Salama, J.K.; Dekker, A.; Williams, R.; et al. Epidermal Growth Factor Receptor Inhibitor Gefitinib Added to Chemoradiotherapy in Locally Advanced Head and Neck Cancer. J. Clin. Oncol. 2010, 28, 3336–3343. [Google Scholar] [CrossRef]
- Cohen, Y.; Goldenberg-Cohen, N.; Shalmon, B.; Shani, T.; Oren, S.; Amariglio, N.; Dratviman-Storobinsky, O.; Shnaiderman-Shapiro, A.; Yahalom, R.; Kaplan, I.; et al. Mutational Analysis of PTEN/PIK3CA/AKT Pathway in Oral Squamous Cell Carcinoma. Oral Oncol. 2011, 47, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Song, W.; Cheng, C.; Liu, Z.; Li, X.; Cui, Y.; Gao, Y.; Li, D. Small Molecular Inhibitors for KRAS-Mutant Cancers. Front. Immunol. 2023, 14, 1223433. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; He, X.; Wang, R.; Xu, X.; Zhang, Z.; Ding, K.; Zhang, Z.M.; Tan, Y.; Li, Z. Simultaneous Covalent Modification of K-Ras(G12D) and K-Ras(G12C) with Tunable Oxirane Electrophiles. J. Am. Chem. Soc. 2023, 145, 20403–20411. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Qi, W.L.; Wang, Y.X.; Meng, L.H. Covalent Inhibitor Targets KRasG12C: A New Paradigm for Drugging the Undruggable and Challenges Ahead. Genes Dis. 2023, 10, 403–414. [Google Scholar] [CrossRef]
- Mustansar, T.; Mirza, T.; Hussain, M. RAS Gene Mutations and Histomorphometric Measurements in Oral Squamous Cell Carcinoma. Biotech. Histochem. 2023, 98, 382–390. [Google Scholar] [CrossRef]
- Coleman, N.; Marcelo, K.L.; Hopkins, J.F.; Israr Khan, N.; Du, R.; Hong, L.; Park, E.; Balsara, B.; Leoni, M.; Pickering, C.; et al. HRAS Mutations Define a Distinct Subgroup in Head and Neck Squamous Cell Carcinoma. JCO Precis. Oncol. 2023, 7, e2200211. [Google Scholar] [CrossRef]
- Kumar, K.V.; Hema, K.N. Extracellular Matrix in Invasion and Metastasis of Oral Squamous Cell Carcinoma. J. Oral Maxillofac. Pathol. 2019, 23, 10–16. [Google Scholar] [CrossRef]
- Zienolddiny, S.; Aguelon, A.M.; Mironov, N.; Mathew, B.; Thomas, G.; Sankaranarayanan, R.; Yamasaki, H. Genomic Instability in Oral Squamous Cell Carcinoma: Relationship to Betel-Quid Chewing. Oral Oncol. 2004, 40, 298–303. [Google Scholar] [CrossRef]
- Agrawal, N.; Frederick, M.J.; Pickering, C.R.; Bettegowda, C.; Chang, K.; Li, R.J.; Fakhry, C.; Xie, T.X.; Zhang, J.; Wang, J.; et al. Exome Sequencing of Head and Neck Squamous Cell Carcinoma Reveals Inactivating Mutations in NOTCH1. Science 2011, 333, 1154–1157. [Google Scholar] [CrossRef]
- Mirza, Y.; Ali, S.M.A.; Awan, M.S.; Idress, R.; Naeem, S.; Zahid, N.; Qadeer, U. Overexpression of EGFR in Oral Premalignant Lesions and OSCC and Its Impact on Survival and Recurrence. Oncomedicine 2018, 3, 28–36. [Google Scholar] [CrossRef]
- Diniz-Freitas, M.; García-Caballero, T.; Antúnez-López, J.; Gándara-Rey, J.M.; García-García, A. Pharmacodiagnostic Evaluation of EGFR Expression in Oral Squamous Cell Carcinoma. Oral Dis. 2007, 13, 285–290. [Google Scholar] [CrossRef]
- Hiraishi, Y.; Wada, T.; Nakatani, K.; Negoro, K.; Fujita, S. Immunohistochemical Expression of EGFR and P-EGFR in Oral Squamous Cell Carcinomas. Pathol. Oncol. Res. 2006, 12, 87–91. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Li, N.; Wang, F.; Xu, Y.; Shen, Z.; Yang, L.; Li, Z.; He, C. The CircEPSTI1/Mir-942-5p/LTBP2 Axis Regulates the Progression of OSCC in the Background of OSF via EMT and the PI3K/Akt/MTOR Pathway. Cell Death Dis. 2020, 11, 682. [Google Scholar] [CrossRef]
- Liu, H.; Gong, X.; Yang, K. Overexpression of the Clock Gene Per2 Suppresses Oral Squamous Cell Carcinoma Progression by Activating Autophagy via the PI3K/AKT/MTOR Pathway. J. Cancer 2020, 11, 3655–3666. [Google Scholar] [CrossRef]
- Yu, C.-C.; Hung, S.-K.; Lin, H.-Y.; Chiou, W.-Y.; Lee, M.-S.; Liao, H.-F.; Huang, H.-B.; Ho, H.-C.; Su, Y.-C. Targeting the PI3K/AKT/MTOR Signaling Pathway as an Effectively Radiosensitizing Strategy for Treating Human Oral Squamous Cell Carcinoma In Vitro and In Vivo. Oncotarget 2017, 8, 68641–68653. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Que, L.; Tang, X. The Immunoregulatory Protein B7-H3 Promotes Aerobic Glycolysis in Oral Squamous Carcinoma via PI3K/Akt/MTOR Pathway. J. Cancer 2019, 10, 5770–5784. [Google Scholar] [CrossRef]
- Su, Y.C.; Lee, W.C.; Wang, C.C.; Yeh, S.A.; Chen, W.H.; Chen, P.J. Targeting PI3K/AKT/MTOR Signaling Pathway as a Radiosensitization in Head and Neck Squamous Cell Carcinomas. Int. J. Mol. Sci. 2022, 23, 15749. [Google Scholar] [CrossRef]
- Rajendran, P.; Sekar, R.; Dhayasankar, P.S.; Ali, E.M.; Abdelsalam, S.A.; Balaraman, S.; Chellappan, B.V.; Metwally, A.M.; Abdallah, B.M. PI3K/AKT Signaling Pathway Mediated Autophagy in Oral Carcinoma—A Comprehensive Review. Int. J. Med. Sci. 2024, 21, 1165–1175. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Sun, J.; Yang, J.; Wu, D.; Wu, F.; Zhou, H. Down-Regulation of DNA Key Protein-FEN1 Inhibits OSCC Growth by Affecting Immunosuppressive Phenotypes via IFN-γ/JAK/STAT-1. Int. J. Oral Sci. 2023, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Xiang, L.; Xu, G. LncRNA MEG3 Suppresses Migration and Promotes Apoptosis by Sponging MiR-548d-3p to Modulate JAK–STAT Pathway in Oral Squamous Cell Carcinoma. IUBMB Life 2019, 71, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Low, J.T.; Silke, J.; O’Reilly, L.A. Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Front. Immunol. 2022, 13, 835997. [Google Scholar] [CrossRef]
- Huang, J.S.; Yao, C.J.; Chuang, S.E.; Yeh, C.T.; Lee, L.M.; Chen, R.M.; Chao, W.J.; Whang-Peng, J.; Lai, G.M. Honokiol Inhibits Sphere Formation and Xenograft Growth of Oral Cancer Side Population Cells Accompanied with JAK/STAT Signaling Pathway Suppression and Apoptosis Induction. BMC Cancer 2016, 16, 245. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Z.; Huang, J. Flavopereirine Suppresses the Progression of Human Oral Cancer by Inhibiting the Jak-Stat Signaling Pathway via Targeting Lasp1. Drug Des. Dev. Ther. 2021, 15, 1705–1716. [Google Scholar] [CrossRef]
- Iwai, S.; Yonekawa, A.; Harada, C.; Hamada, M.; Katagiri, W.; Nakazawa, M.; Yura, Y. Involvement of the Wnt-β-Catenin Pathway in Invasion and Migration of Oral Squamous Carcinoma Cells. Int. J. Oncol. 2010, 37, 1095–1103. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Liu, F.; Ou, Y. Clinical Significance of Activated Wnt/β-Catenin Signaling in Apoptosis Inhibition of Oral Cancer. Open Life Sci. 2021, 16, 1045–1052. [Google Scholar] [CrossRef]
- Reyes, M.; Flores, T.; Betancur, D.; Peña-Oyarzún, D.; Torres, V.A. Wnt/β-Catenin Signaling in Oral Carcinogenesis. Int. J. Mol. Sci. 2020, 21, 4682. [Google Scholar] [CrossRef]
- Qiao, C.; Qiao, T.; Yang, S.; Liu, L.; Zheng, M. SNHG17/MiR-384/ELF1 Axis Promotes Cell Growth by Transcriptional Regulation of CTNNB1 to Activate Wnt/β-Catenin Pathway in Oral Squamous Cell Carcinoma. Cancer Gene Ther. 2022, 29, 122–132. [Google Scholar] [CrossRef]
- Gasche, J.A.; Goel, A. Epigenetic Mechanisms in Oral Carcinogenesis. Future Oncol. 2012, 8, 1407–1425. [Google Scholar] [CrossRef]
- Hema, K.N.; Smitha, T.; Sheethal, H.; Mirnalini, S.A. Epigenetics in Oral Squamous Cell Carcinoma. J. Oral Maxillofac. Pathol. 2017, 21, 252–259. [Google Scholar] [CrossRef]
- Li, S.; Peng, Y.; Panchenko, A.R. DNA Methylation: Precise Modulation of Chromatin Structure and Dynamics. Curr. Opin. Struct. Biol. 2022, 75, 102430. [Google Scholar] [CrossRef]
- Kadayifci, F.Z.; Zheng, S.; Pan, Y.X. Molecular Mechanisms Underlying the Link between Diet and DNA Methylation. Int. J. Mol. Sci. 2018, 19, 4055. [Google Scholar] [CrossRef]
- Ishida, K.; Tomita, H.; Kanayama, T.; Noguchi, K.; Niwa, A.; Kawaguchi, M.; Miyai, M.; Matsuo, M.; Imaizumi, Y.; Kato, K.; et al. Specific Deletion of P16INK4a with Retention of P19ARF Enhances the Development of Invasive Oral Squamous Cell Carcinoma. Am. J. Pathol. 2020, 190, 1332–1342. [Google Scholar] [CrossRef]
- Ramakrishnan, P.; Sujatha, S.; Kundu, P. Methylation Status of P16INK4a and P14ARF Gene in Saliva of Smokeless Tobacco Users: A Pilot Descriptive Study. J. Oral Maxillofac. Surg. Med. Pathol. 2021, 33, 221–226. [Google Scholar] [CrossRef]
- Cui, S.H.; Hu, X.D.; Yan, Y. Wnt/β-Catenin Signaling Pathway Participates in the Effect of MiR-626 on Oral Squamous Cell Carcinoma by Targeting RASSF4. J. Oral Pathol. Med. 2021, 50, 1005–1017. [Google Scholar] [CrossRef]
- Ai, Y.; Wu, S.; Zou, C.; Wei, H. LINC00941 Promotes Oral Squamous Cell Carcinoma Progression via Activating CAPRIN2 and Canonical WNT/β-Catenin Signaling Pathway. J. Cell. Mol. Med. 2020, 24, 10512–10524. [Google Scholar] [CrossRef]
- Oliveira Alves, M.G.; da Silva Miguel, N.; Ferreira, C.C.P.; Alvarenga, E.R.; Tonon, B.M.; de Barros, P.P.; Carta, C.F.L.; Paschoal, M.B.N.; de Sales Chagas, J.F.; Bandeira, C.M.; et al. Expression of DNA Repair Genes in Oral Squamous Cell Carcinoma Using Reverse Transcription-Quantitative Polymerase Chain Reaction. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 298–305. [Google Scholar] [CrossRef]
- Padin-Iruegas, E.; Chamorro-Petronacci, C.M.; Sines-Cajade, I.; Lorenzo-Pouso, A.I.; Blanco-Carrión, A.; Pérez-Jardón, A.; Gándara-Vila, P.; Pérez-Sayans, M. DNA Methylation by Bisulfite Next-Generation Sequencing for MLH1 and MGMT in Oral Squamous Cell Carcinomas and Potentially Malignant Disorders: An Integrative Analysis towards Field Cancerization. Medicina 2022, 58, 878. [Google Scholar] [CrossRef]
- Li, Y.F.; Hsiao, Y.H.; Lai, Y.H.; Chen, Y.C.; Chen, Y.J.; Chou, J.L.; Chan, M.W.Y.; Lin, Y.H.; Tsou, Y.A.; Tsai, M.H.; et al. DNA Methylation Profiles and Biomarkers of Oral Squamous Cell Carcinoma. Epigenetics 2015, 10, 229–236. [Google Scholar] [CrossRef]
- Ogi, K.; Toyota, M.; Ohe-Toyota, M.; Tanaka, N.; Noguchi, M.; Sonoda, T.; Kohama, G.; Tokino, T. Aberrant Methylation of Multiple Genes and Clinicopathological Features in Oral Squamous Cell Carcinoma 1. Clin. Cancer Res. 2002, 8, 3164–3171. [Google Scholar]
- González-Ramírez, I.; García-Cuellar, C.; Sánchez-Pérez, Y.; Granados-García, M. DNA Methylation in Oral Squamous Cell Carcinoma: Molecular Mechanisms and Clinical Implications. Oral Dis. 2011, 17, 771–778. [Google Scholar] [CrossRef]
- Tramontano, A.; Boffo, F.L.; Russo, G.; De Rosa, M.; Iodice, I.; Pezone, A. Methylation of the Suppressor Gene P16INK4a: Mechanism and Consequences. Biomolecules 2020, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R. The Epigenetics of Oral Cancer. Int. J. Oral Maxillofac. Surg. 2006, 35, 101–108. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, W.; Saranath, D. Clinical Implications of Epigenetic Regulation in Oral Cancer. Oral Oncol. 2015, 51, 1061–1068. [Google Scholar] [CrossRef]
- Puspasari, K.; Pasaribu, T.A.S.; Surboyo, M.D.C.; Ayuningtyas, N.F.; Santosh, A.B.R.; Ernawati, D.S. Oral Field Cancerization: Genetic Profiling for a Prevention Strategy for Oral Potentially Malignant Disorders. Dent. J. 2023, 56, 189–196. [Google Scholar] [CrossRef]
- Díez-Pérez, R.; Campo-Trapero, J.; Cano-Sánchez, J.; López-Durán, M.; Gonzalez-Moles, M.A.; Bascones-Ilundain, J.; Bascones-Martinez, A. Methylation in Oral Cancer and Pre-Cancerous Lesions (Review). Oncol. Rep. 2011, 25, 1203–1209. [Google Scholar]
- Bologna, M. Biotargets of Cancer in Current Clinical Pathology; Springer Science & Business Media: Humana Totowa, NJ, USA, 2012. [Google Scholar]
- Arantes, L.M.R.B.; De Carvalho, A.C.; Melendez, M.E.; Centrone, C.C.; Góis-Filho, J.F.; Toporcov, T.N.; Caly, D.N.; Tajara, E.H.; Goloni-Bertollo, E.M.; Carvalho, A.L. Validation of Methylation Markers for Diagnosis of Oral Cavity Cancer. Eur. J. Cancer 2015, 51, 632–641. [Google Scholar] [CrossRef]
- Kanwal, R.; Gupta, S. Epigenetics and Cancer. J. Appl. Physiol. 2010, 109, 598–605. [Google Scholar] [CrossRef]
- Yang, C.M.; Wang, T.H.; Chen, H.C.; Li, S.C.; Lee, M.C.; Liou, H.H.; Liu, P.F.; Tseng, Y.K.; Shiue, Y.L.; Ger, L.P.; et al. Aberrant DNA Hypermethylation-Silenced SOX21-AS1 Gene Expression and Its Clinical Importance in Oral Cancer. Clin. Epigenet. 2016, 8, 129. [Google Scholar] [CrossRef]
- Dong, F.; Junhong, H. Histone Mutations and Cancer; Springer Nature: Singapore, 2021; Volume 1283. [Google Scholar]
- Bannister, A.J.; Kouzarides, T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jin, X.; Dan, H.; Chen, Q. Histone Modifications in Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Oral Dis. 2020, 26, 719–732. [Google Scholar] [CrossRef]
- Chen, Y.W.; Kao, S.Y.; Wang, H.J.; Yang, M.H. Histone Modification Patterns Correlate with Patient Outcome in Oral Squamous Cell Carcinoma. Cancer 2013, 119, 4259–4267. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Miller, K.M. Mammalian DNA Repair: HATs and HDACs Make Their Mark through Histone Acetylation. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2013, 750, 23–30. [Google Scholar] [CrossRef]
- Seto, E.; Yoshida, M. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [PubMed]
- Al-Khafaji, A.S.K.; Wang, L.M.; Alabdei, H.H.; Liloglou, T. Effect of Valproic Acid on Histone Deacetylase Expression in Oral Cancer (Review). Oncol. Lett. 2024, 27, 197. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.; Zhu, J.; Shu, Y.; Zou, X.; Ruan, Q.; Luo, S.; Wang, Y.; Wen, J. Advances in the Histone Acetylation Modification in the Oral Squamous Cell Carcinoma. J. Oncol. 2023, 2023, 4616682. [Google Scholar] [CrossRef]
- Zhang, W.; Oh, J.H.; Zhang, W.; Aldrich, C.C.; Sirianni, R.W.; Elmquist, W.F. Pharmacokinetics of Panobinostat: Interspecies Difference in Metabolic Stability. J. Pharmacol. Exp. Ther. 2024, 389, 96–105. [Google Scholar] [CrossRef] [PubMed]
- El Omari, N.; Khalid, A.; Makeen, H.A.; Alhazmi, H.A.; Albratty, M.; Mohan, S.; Tan, C.S.; Ming, L.C.; Chook, J.B.; Bouyahya, A. Stochasticity of Anticancer Mechanisms Underlying Clinical Effectiveness of Vorinostat. Heliyon 2024, 10, e33052. [Google Scholar] [CrossRef]
- El Omari, N.; Bakrim, S.; Khalid, A.; Albratty, M.; Abdalla, A.N.; Lee, L.H.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Anticancer Clinical Efficiency and Stochastic Mechanisms of Belinostat. Biomed. Pharmacother. 2023, 165, 115212. [Google Scholar] [CrossRef]
- Xu, M.; Hou, Y.; Li, N.; Yu, W.; Chen, L. Targeting Histone Deacetylases in Head and Neck Squamous Cell Carcinoma: Molecular Mechanisms and Therapeutic Targets. J. Transl. Med. 2024, 22, 418. [Google Scholar] [CrossRef]
- Jambhekar, A.; Dhall, A.; Shi, Y. Roles and Regulation of Histone Methylation in Animal Development. Nat. Rev. Mol. Cell Biol. 2019, 20, 625–641. [Google Scholar] [CrossRef]
- Greer, E.L.; Shi, Y. Histone Methylation: A Dynamic Mark in Health, Disease and Inheritance. Nat. Rev. Genet. 2012, 13, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, M.; Siano, M.; Ilardi, G.; Russo, D.; Merolla, F.; de Rosa, G.; Staibano, S. Epigenetic Disregulation in Oral Cancer. Int. J. Mol. Sci. 2012, 13, 2331–2353. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, F.; Li, Z.; Liu, N.; Yao, X.; Zhou, Y.; Zhang, L.; Jiang, P.; Liu, H.; Kong, L.; et al. Histone Lysine Methyltransferase SMYD3 Promotes Oral Squamous Cell Carcinoma Tumorigenesis via H3K4me3-Mediated HMGA2 Transcription. Clin. Epigenet. 2023, 15, 92. [Google Scholar] [CrossRef]
- Shahhosseini, A.; Bourova-Flin, E.; Derakhshan, S.; Aminishakib, P.; Goudarzi, A. High Levels of Histone H3 K27 Acetylation and Tri-Methylation Are Associated with Shorter Survival in Oral Squamous Cell Carcinoma Patients. BioMedicine 2023, 13, 22–38. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Cao, M.X.; Luo, X.J.; Li, L.; Wang, K.; Wang, S.S.; Wang, H.F.; Tang, Y.J.; Tang, Y.L.; Liang, X.H. EZH2 Promotes Invasion and Tumour Glycolysis by Regulating STAT3 and FoxO1 Signalling in Human OSCC Cells. J. Cell. Mol. Med. 2019, 23, 6942–6954. [Google Scholar] [CrossRef]
- Li, L.; Tang, D.; Dai, Y. The Role of Acetylation of Histone H3 and H4 in Oral Squamous Cell Carcinoma. Oncologie 2023, 25, 111–118. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Q.; Tan, H.; Liao, M.; Zhu, S.; Zheng, L.L.; Huang, H.; Liu, B. Targeting Cancer Epigenetic Pathways with Small-Molecule Compounds: Therapeutic Efficacy and Combination Therapies. Pharmacol. Res. 2021, 173, 105702. [Google Scholar] [CrossRef]
- Kelly, T.K.; De Carvalho, D.D.; Jones, P.A. Epigenetic Modifications as Therapeutic Targets. Nat. Biotechnol. 2010, 28, 1069–1078. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Hammond, S.M. An Overview of MicroRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef]
- Garzon, R.; Calin, G.A.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Med. 2009, 60, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.H.; Xiong, X.P.; Jia, J.; Zhang, W.F. MicroRNAs: New Actors in the Oral Cancer Scene. Oral Oncol. 2011, 47, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Min, A.; Zhu, C.; Peng, S.; Rajthala, S.; Costea, D.E.; Sapkota, D. MicroRNAs as Important Players and Biomarkers in Oral Carcinogenesis. BioMed Res. Int. 2015, 2015, 186904. [Google Scholar] [CrossRef]
- Shiiba, M.; Uzawa, K.; Tanzawa, H. MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC). Cancers 2010, 2, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, M.; Deva Magendhra Rao, A.K.; Arunkumar, G.; Manickavasagam, M.; Rajkumar, K.S.; Rajaraman, R.; Munirajan, A.K. Oral Squamous Cell Carcinoma: MicroRNA Expression Profiling and Integrative Analyses for Elucidation of Tumourigenesis Mechanism. Mol. Cancer 2016, 15, 28. [Google Scholar] [CrossRef]
- Aali, M.; Mesgarzadeh, A.H.; Najjary, S.; Abdolahi, H.M.; Kojabad, A.B.; Baradaran, B. Evaluating the Role of MicroRNAs Alterations in Oral Squamous Cell Carcinoma. Gene 2020, 757, 144936. [Google Scholar] [CrossRef]
- Ganci, F.; Sacconi, A.; Manciocco, V.; Sperduti, I.; Battaglia, P.; Covello, R.; Muti, P.; Strano, S.; Spriano, G.; Fontemaggi, G.; et al. MicroRNA Expression as Predictor of Local Recurrence Risk in Oral Squamous Cell Carcinoma. Head Neck 2016, 38, E189–E197. [Google Scholar] [CrossRef]
- Soga, D.; Yoshiba, S.; Shiogama, S.; Miyazaki, H.; Kondo, S.; Shintani, S. MicroRNA Expression Profiles in Oral Squamous Cell Carcinoma. Oncol. Rep. 2013, 30, 579–583. [Google Scholar] [CrossRef]
- Gao, L.; Ren, W.; Zhang, L.; Li, S.; Kong, X.; Zhang, H.; Dong, J.; Cai, G.; Jin, C.; Zheng, D.; et al. PTENp1, a Natural Sponge of MiR-21, Mediates PTEN Expression to Inhibit the Proliferation of Oral Squamous Cell Carcinoma. Mol. Carcinog. 2017, 56, 1322–1334. [Google Scholar] [CrossRef]
- Ahmad, A. Epigenetic Regulation of Immunosuppressive Tumor-Associated Macrophages through Dysregulated MicroRNAs. Semin. Cell Dev. Biol. 2022, 124, 26–33. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, S.; Gao, L.; Zhi, K.; Ren, W. The Molecular Basis and Therapeutic Aspects of Cisplatin Resistance in Oral Squamous Cell Carcinoma. Front. Oncol. 2021, 11, 761379. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Gao, J.; Sun, Q.W.; Wang, C.X.; Deng, W.; Mao, G.Y.; Li, H.Q.; Guo, S.S.; Cheng, J.; Wu, Y.N.; et al. MiR-34a Inhibits the Proliferation, Migration, and Invasion of Oral Squamous Cell Carcinoma by Directly Targeting SATB2. J. Cell. Physiol. 2020, 235, 4856–4864. [Google Scholar] [CrossRef]
- Ren, Y.; Pan, K.; Wang, Y.; Zhang, S.; Wang, Y.; Zhou, X.; Dan, H.X.; Chen, Q.; Ji, N.; Li, J. CircFANCA Accelerates the Malignant Process of OSCC by Modulating MiR-34a/PA28γ Signaling. Biochem. Biophys. Res. Commun. 2023, 665, 45–54. [Google Scholar] [CrossRef]
- Li, X.; Zhao, S.; Fu, Y.; Zhang, P.; Zhang, Z.; Cheng, J.; Liu, L.; Jiang, H. Mir-34a-5p Functions as a Tumor Suppressor in Head and Neck Squamous Cell Cancer Progression by Targeting Flotillin-2. Int. J. Biol. Sci. 2021, 17, 4327–4339. [Google Scholar] [CrossRef]
- Ni, Y.H.; Huang, X.F.; Wang, Z.Y.; Han, W.; Deng, R.Z.; Mou, Y.B.; Ding, L.; Hou, Y.Y.; Hu, Q.G. Upregulation of a Potential Prognostic Biomarker, MiR-155, Enhances Cell Proliferation in Patients with Oral Squamous Cell Carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 117, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, M.; Deva Magendhra Rao, A.K.; Rajkumar, K.S.; Rajaraman, R.; Munirajan, A.K. Altered levels of miR-21, miR-125b-2*, miR-138, miR-155, miR-184, and miR-205 in oral squamous cell carcinoma and association with clinicopathological characteristics. J. Oral Pathol. Med. 2015, 44, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Vastrad, S.J.; Ritesh, G.; Sowmya, S.V.; Saraswathy, G.R.; Augustine, D.; Alzahrani, K.J.; Alzahrani, F.M.; Halawani, I.F.; Ashi, H.; Alshahrani, M.; et al. Panoramic View of Key Cross-Talks Underpinning the Oral Squamous Cell Carcinoma Stemness—Unearthing the Future Opportunities. Front. Oncol. 2023, 13, 1247399. [Google Scholar] [CrossRef]
- Rishabh, K.; Khadilkar, S.; Kumar, A.; Kalra, I.; Kumar, A.P.; Kunnumakkara, A.B. Review Micrornas as Modulators of Oral Tumorigenesis—A Focused Review. Int. J. Mol. Sci. 2021, 22, 2561. [Google Scholar] [CrossRef]
- Jin, W. Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial—Mesenchymal Transition. Cells 2020, 9, 217. [Google Scholar] [CrossRef]
- Kirave, P.; Gondaliya, P.; Kulkarni, B.; Rawal, R.; Garg, R.; Jain, A.; Kalia, K. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition. Oncotarget 2020, 11, 1157. [Google Scholar] [CrossRef]
- Zeng, Q.; Tao, X.; Huang, F.; Wu, T.; Wang, J.; Jiang, X.; Kuang, Z.; Cheng, B. Overexpression of MiR-155 Promotes the Proliferation and Invasion of Oral Squamous Carcinoma Cells by Regulating BCL6/Cyclin D2. Int. J. Mol. Med. 2016, 37, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Moutabian, H.; Radi, U.K.; Saleman, A.Y.; Adil, M.; Zabibah, R.S.; Chaitanya, M.N.L.; Saadh, M.J.; Jawad, M.J.; Hazrati, E.; Bagheri, H.; et al. MicroRNA-155 and Cancer Metastasis: Regulation of Invasion, Migration, and Epithelial-to-Mesenchymal Transition. Pathol. Res. Pract. 2023, 250, 154789. [Google Scholar] [PubMed]
- Kawakubo-Yasukochi, T.; Morioka, M.; Hazekawa, M.; Yasukochi, A.; Nishinakagawa, T.; Ono, K.; Kawano, S.; Nakamura, S.; Nakashima, M. MiR-200c-3p Spreads Invasive Capacity in Human Oral Squamous Cell Carcinoma Microenvironment. Mol. Carcinog. 2018, 57, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Peng, C.Y.; Liao, Y.W.; Lu, M.Y.; Tsai, M.L.; Yeh, J.C.; Yu, C.H.; Yu, C.C. Sulforaphane Targets Cancer Stemness and Tumor Initiating Properties in Oral Squamous Cell Carcinomas via MiR-200c Induction. J. Formos. Med. Assoc. 2017, 116, 41–48. [Google Scholar] [CrossRef]
- Song, J.; Zhang, N.; Cao, L.; Xiao, D.; Ye, X.; Luo, E.; Zhang, Z. Down-Regulation of MiR-200c Associates with Poor Prognosis of Oral Squamous Cell Carcinoma. Int. J. Clin. Oncol. 2020, 25, 1072–1078. [Google Scholar] [CrossRef]
- Nieto, M.A.; Huang, R.Y.Y.J.; Jackson, R.A.A.; Thiery, J.P.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar]
- Kalluri, R.; Weinberg, R.A. The Basics of Epithelial-Mesenchymal Transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Krisanaprakornkit, S.; Iamaroon, A. Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma. Int. Sch. Res. Not. 2012, 2012, 681469. [Google Scholar] [CrossRef]
- Ling, Z.; Cheng, B.; Tao, X. Epithelial-to-Mesenchymal Transition in Oral Squamous Cell Carcinoma: Challenges and Opportunities. Int. J. Cancer 2021, 148, 1548–1561. [Google Scholar] [CrossRef]
- Bai, Y.; Sha, J.; Okui, T.; Moriyama, I.; Ngo, H.X.; Tatsumi, H.; Kanno, T. The Epithelial–Mesenchymal Transition Influences the Resistance of Oral Squamous Cell Carcinoma to Monoclonal Antibodies via Its Effect on Energy Homeostasis and the Tumor Microenvironment. Cancers 2021, 13, 5905. [Google Scholar] [CrossRef]
- Jenkins, G.; O’Byrne, K.J.; Panizza, B.; Richard, D.J. Genome Stability Pathways in Head and Neck Cancers. Int. J. Genom. 2013, 2013, 464720. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.; Maffe, A.; Williams, T.A.; Artigiani, S.; Gual, P.; Bardelli, A.; Basilico, C.; Michieli, P.; Comoglio, P.M. Different Point Mutations in the Met Oncogene Elicit Distinct Biological Properties. FASEB J. 2000, 14, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Ragos, V.; Mastronikolis, N.S.; Tsiambas, E.; Baliou, E.; Mastronikolis, S.N.; Tsoukalas, N.; Patsouri, E.E.; Fotiades, P.P. P53 Mutations in Oral Cavity Carcinoma. JBUON 2018, 23, 1569–1572. [Google Scholar]
- Batta, N.; Pandey, M. Mutational Spectrum of Tobacco Associated Oral Squamous Carcinoma and Its Therapeutic Significance. World J. Surg. Oncol. 2019, 17, 198. [Google Scholar] [CrossRef]
- Hasty, P.; Montagna, C. Chromosomal Rearrangements in Cancer: Detection and Potential Causal Mechanisms. Mol. Cell. Oncol. 2014, 1, e29904. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; Guthrie, V.B.; Masica, D.L.; Tokheim, C.; Kang, H.; Richmon, J.; Agrawal, N.; Fakhry, C.; Quon, H.; Subramaniam, R.M.; et al. Genomic Alterations in Head and Neck Squamous Cell Carcinoma Determined by Cancer Gene-Targeted Sequencing. Ann. Oncol. 2015, 26, 1216–1223. [Google Scholar] [CrossRef]
- Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H. The Molecular Landscape of Head and Neck Cancer. Nat. Rev. Cancer 2018, 18, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Wu, X.; Wang, H.; Li, B.; Long, Q.; Zhang, D.; Chen, H.; Xiao, N.; Li, F.; Zhang, S.; et al. Genomic Landscape of Head and Neck Squamous Cell Carcinoma Across Different Anatomic Sites in Chinese Population. Front. Genet. 2021, 12, 680699. [Google Scholar] [CrossRef]
- de Melo Filho, M.R.; Rocha, B.A.; de Oliveira Pires, M.B.; Fonseca, E.S.; de Freitas, E.M.; Martelli Junior, H.; Santos, F.B.G. Quality of Life of Patients with Head and Neck Cancer. Braz. J. Otorhinolaryngol. 2013, 79, 82–88. [Google Scholar] [CrossRef]
- Gadhikar, M.A.; Zhang, J.; Shen, L.; Rao, X.; Wang, J.; Zhao, M.; Kalu, N.N.; Johnson, F.M.; Byers, L.A.; Heymach, J.; et al. CDKN2A/P16 Deletion in Head and Neck Cancer Cells Is Associated with Cdk2 Activation, Replication Stress, and Vulnerability to CHK1 Inhibition. Cancer Res. 2018, 78, 781–797. [Google Scholar] [CrossRef]
- Wu-Chou, Y.H.; Hsieh, C.H.; Liao, C.T.; Lin, Y.T.; Fan, W.L.; Yang, C.H. NOTCH1 Mutations as Prognostic Marker in Oral Squamous Cell Carcinoma. Pathol. Res. Pract. 2021, 223, 153474. [Google Scholar] [CrossRef] [PubMed]
- Ramos-García, P.; Gil-Montoya, J.A.; Scully, C.; Ayén, A.; González-Ruiz, L.; Navarro-Triviño, F.J.; González-Moles, M.A. An Update on the Implications of Cyclin D1 in Oral Carcinogenesis. Oral Dis. 2017, 23, 897–912. [Google Scholar] [CrossRef]
- Odell, E.W. Aneuploidy and Loss of Heterozygosity as Risk Markers for Malignant Transformation in Oral Mucosa. Oral Dis. 2021, 27, 1993–2007. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, L.; Li, C.; Liu, W.; Shi, L. Relationship of DNA Aneuploidy with Distinctive Features of Oral Potentially Malignant Disorders: A Cytological Analysis of 748 Cases. J. Dent. Sci. 2022, 17, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, V.S.; Kyrodimos, E.; Tsiambas, E.; Giotakis, E.; Psyrri, A.; Ragos, V.; Chrysovergis, A. Chromosomal Instability in Oral Squamous Cell Carcinoma. JBUON 2018, 23, 1580–1582. [Google Scholar]
- Castagnola, P.; Zoppoli, G.; Gandolfo, S.; Monticone, M.; Malacarne, D.; Cirmena, G.; Brown, D.; Aiello, C.; Maffei, M.; Marino, R.; et al. Genomic DNA Copy Number Aberrations, Histological Diagnosis, Oral Subsite and Aneuploidy in OPMDs/OSCCs. PLoS ONE 2015, 10, e0142294. [Google Scholar] [CrossRef]
- Giaretti, W.; Pentenero, M.; Gandolfo, S.; Castagnola, P. Chromosomal Instability, Aneuploidy and Routine High-Resolution DNA Content Analysis in Oral Cancer Risk Evaluation. Future Oncol. 2012, 8, 1257–1271. [Google Scholar] [CrossRef]
- Wang, H.C.; Chan, L.P.; Wu, C.C.; Chang, S.J.; Moi, S.H.; Luo, C.W.; Pan, M.R. Silencing Dna Polymerase β Induces Aneuploidy as a Biomarker of Poor Prognosis in Oral Squamous Cell Cancer. Int. J. Mol. Sci. 2021, 22, 2402. [Google Scholar] [CrossRef]
- Feller, G.; Khammissa, R.A.G.; Ballyram, R.; Beetge, M.M.; Lemmer, J.; Feller, L. Tumour Genetic Heterogeneity in Relation to Oral Squamous Cell Carcinoma and Anti-Cancer Treatment. Int. J. Environ. Res. Public Health 2023, 20, 2392. [Google Scholar] [CrossRef]
- Hass, H.G.; Schmidt, A.; Nehls, O.; Kaiser, S. DNA Ploidy, Proliferative Capacity and Intratumoral Heterogeneity in Primary and Recurrent Head and Neck Squamous Cell Carcinomas (HNSCC)—Potential Implications for Clinical Management and Treatment Decisions. Oral Oncol. 2008, 44, 78–85. [Google Scholar] [CrossRef]
- Mroz, E.A.; Rocco, J.W. Intra-Tumor Heterogeneity in Head and Neck Cancer and Its Clinical Implications. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Eckert, A.W.; Kappler, M.; Große, I.; Wickenhauser, C.; Seliger, B. Current Understanding of the HIF-1-Dependent Metabolism in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2020, 21, 6083. [Google Scholar] [CrossRef]
- Pérez-Sayáns, M.; Suárez-Peñaranda, J.M.; Pilar, G.D.; Barros-Angueira, F.; Gándara-Rey, J.M.; García-García, A. Hypoxia-Inducible Factors in OSCC. Cancer Lett. 2011, 313, 1–8. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Anand, V.; Roy, S. Vascular Endothelial Growth Factor Signaling in Hypoxia and Inflammation. J. Neuroimmune Pharmacol. 2014, 9, 142–160. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, Y.; Glandorff, C.; Sun, M. Exploring the Mystery of Tumor Metabolism: Warburg Effect and Mitochondrial Metabolism Fighting Side by Side. Cell Signal 2024, 120, 111239. [Google Scholar] [CrossRef]
- Fedele, M.; Sgarra, R.; Battista, S.; Cerchia, L.; Manfioletti, G. The Epithelial–Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. Int. J. Mol. Sci. 2022, 23, 800. [Google Scholar] [CrossRef]
- Tam, S.Y.; Wu, V.W.; Law, H.K. Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Front. Oncol. 2020, 10, 486. [Google Scholar] [CrossRef]
- Yeh, Y.H.; Hsiao, H.F.; Yeh, Y.C.; Chen, T.W.; Li, T.K. Inflammatory Interferon Activates HIF-1α-Mediated Epithelial-to-Mesenchymal Transition via PI3K/AKT/MTOR Pathway. J. Exp. Clin. Cancer Res. 2018, 37, 70. [Google Scholar] [CrossRef]
- Hill, R.M.; Rocha, S.; Parsons, J.L. Overcoming the Impact of Hypoxia in Driving Radiotherapy Resistance in Head and Neck Squamous Cell Carcinoma. Cancers 2022, 14, 4130. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.M.; Heguedusch, D.; Rodini, C.O.; Nunes, F.D.; Destro Rodrigues, M.F.S. Mechanisms Involved in Cancer Stem Cell Resistance in Head and Neck Squamous Cell Carcinoma. Cancer Drug Resist. 2023, 6, 116–137. [Google Scholar] [CrossRef] [PubMed]
- Codony, V.L.; Tavassoli, M. Hypoxia-Induced Therapy Resistance: Available Hypoxia-Targeting Strategies and Current Advances in Head and Neck Cancer. Transl. Oncol. 2021, 14, 101017. [Google Scholar] [CrossRef] [PubMed]
- Vahabi, M.; Blandino, G.; Di Agostino, S. MicroRNAs in Head and Neck Squamous Cell Carcinoma: A Possible Challenge as Biomarkers, Determinants for the Choice of Therapy and Targets for Personalized Molecular Therapies. Transl. Cancer Res. 2021, 10, 3090–3110. [Google Scholar] [CrossRef]
- Wang, J.; Lv, N.; Lu, X.; Yuan, R.; Chen, Z.; Yu, J. Diagnostic and Therapeutic Role of MicroRNAs in Oral Cancer (Review). Oncol. Rep. 2021, 45, 58–64. [Google Scholar] [CrossRef]
- Gambari, R.; Brognara, E.; Spandidos, D.A.; Fabbri, E. Targeting OncomiRNAs and Mimicking Tumor Suppressor MiRNAs: Ew Trends in the Development of MiRNA Therapeutic Strategies in Oncology (Review). Int. J. Oncol. 2016, 49, 5–32. [Google Scholar] [PubMed]
- Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016, 76, 3666–3670. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; Fan, K.; Jiang, C. MicroRNA-21 and Its Impact on Signaling Pathways in Cervical Cancer (Review). Oncol. Lett. 2019, 17, 3066–3070. [Google Scholar] [CrossRef]
- Kalfert, D.; Ludvikova, M.; Pesta, M.; Ludvik, J.; Dostalova, L.; Kholová, I. Multifunctional Roles of MiR-34a in Cancer: A Review with the Emphasis on Head and Neck Squamous Cell Carcinoma and Thyroid Cancer with Clinical Implications. Diagnostics 2020, 10, 563. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Liu, R.; Kasinski, A.L.; Shen, H.; Slack, F.J.; Tang, D.G. MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Front. Cell Dev. Biol. 2021, 9, 640587. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Nanavati, R.; Modi, T.; Dobariya, C. Oral Cancer: Etiology and Risk Factors: A Review. J. Cancer Res. Ther. 2016, 12, 458–463. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, L.G.d.S.; Martins, I.M.; Paulo, E.P.d.A.; Pomini, K.T.; Poyet, J.-L.; Maria, D.A. Molecular Mechanisms in the Carcinogenesis of Oral Squamous Cell Carcinoma: A Literature Review. Biomolecules 2025, 15, 621. https://doi.org/10.3390/biom15050621
Cabral LGdS, Martins IM, Paulo EPdA, Pomini KT, Poyet J-L, Maria DA. Molecular Mechanisms in the Carcinogenesis of Oral Squamous Cell Carcinoma: A Literature Review. Biomolecules. 2025; 15(5):621. https://doi.org/10.3390/biom15050621
Chicago/Turabian StyleCabral, Laertty Garcia de Sousa, Isabela Mancini Martins, Ellen Paim de Abreu Paulo, Karina Torres Pomini, Jean-Luc Poyet, and Durvanei Augusto Maria. 2025. "Molecular Mechanisms in the Carcinogenesis of Oral Squamous Cell Carcinoma: A Literature Review" Biomolecules 15, no. 5: 621. https://doi.org/10.3390/biom15050621
APA StyleCabral, L. G. d. S., Martins, I. M., Paulo, E. P. d. A., Pomini, K. T., Poyet, J.-L., & Maria, D. A. (2025). Molecular Mechanisms in the Carcinogenesis of Oral Squamous Cell Carcinoma: A Literature Review. Biomolecules, 15(5), 621. https://doi.org/10.3390/biom15050621