Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Information Sources and Search Approach
2.3. Quality Assessment and Data Retrieval
3. Results
3.1. Study Selection
3.2. Proteins
Biomarker Category | No. of Studies | No. of Biomarkers | Biomarkers |
---|---|---|---|
Proteins | 5 [14,16,18,19,21] | 6 | Complement protein C4B, Histidine-rich glycoproteins (HRGs), Cathepsin B, Matrix metalloproteinase 2 (MMP-2), Matrix metalloproteinase 9 (MMP-9), and Lactoferrin |
Growth factors | 4 [22,23,24,25] | 5 | R-spondin2, Amphiregulin (AREG), Bone morphogenic protein-15 (BMP-15), Insulin-like growth factor-1 (IGF-1), and Stem cell factor (SCF) |
Steroid hormones | 6 [26,27,28,29,30,31] | 6 | Progesterone, Testosterone, Estradiol (E2), Dehydroepiandrosterone sulfate (DHEAS), 25-hydroxycholesterol (25-HC), and Deoxycorticosterone (DOC) |
Polypeptide hormones | 3 [16,29,32] | 3 | Anti-mullerian hormone (AMH), Relaxin, and Leptin |
Inflammation and Oxidative stress markers | 6 [33,34,35,36] | 8 | Interleukin-6 (IL-6), Monocyte chemotactic protein-1 (MCP-1), Coenzyme Q10 (CoQ10), Total antioxidant capacity (TAC), Nicotine glucuronide, 4,5-dihydroorotic acid (4,5-DHOA), 5,6-dihydrouridine (5,6-DHU), and Homocysteine (Hcy) |
Amino acids and related metabolites | 2 [30,31] | 5 | Phenylalanine, Leucine, Tryptophan, Maleylacetoacetic acid (MAAA), and Rhazidigenine Nb-oxide |
Vitamins and related metabolites | 4 [30,31,37,38] | 7 | Vitamin D, Vitamin A, Vitamin B6, Vitamin E, Lithocholic acid, 4-oxo-Retinoic acid (4-oxo-RA), and 13′-hydroxy-alpha-tocopherol (13′-HAT) |
Lipids and related metabolites * | 3 [28,30,31] | 3 types, 17 factors | - 3 energy production lipids - 10 phospholipids - 4 fatty acids |
MiRNAs | 1 [28] | 4 | miR-26b-5p, miR-34a-5p, miR-145-5p, and miR-204-5p |
First Author | Biomarker(s) Category | O.C. | O.Q. | F.R. | E.Q. | I.R. | P.R. | M.R. | L.B.R. |
---|---|---|---|---|---|---|---|---|---|
Sun X. et al. [14] | Proteins | x | |||||||
Bastu et al. [16] | Proteins, Polypeptide hormones | x | x | x | x | ||||
Atabakhsh et al. [18] | Proteins | x | x | x | x | ||||
Bilen et al. [19] | Proteins | x | x | x | |||||
Mostafa et al. [21] | Proteins | x | x | x | x | x | |||
Jasimkadim et al. [22] | Growth factors | x | x | ||||||
Wu et al. [23] | Growth factors | x | x | x | |||||
Mehta et al. [24] | Growth factors | x | x | x | |||||
Celik et al. [25] | Growth factors | x | |||||||
Carpintero et al. [26] | Steroid hormones | x | x | x | x | ||||
Yang et al. [27] | Steroid hormones, Inflammation, and Oxidative stress | x | x | x | x | ||||
Habibi et al. [28] | Steroid hormones, Lipids, MiRNAs | x | x | ||||||
Alzubaidy et al. [29] | Steroid and Polypeptide hormones | x | |||||||
Song et al. [30] | Steroid hormones, Amino acids, Vitamins, Lipids | x | |||||||
Sun Z. et al. [31] | Steroid hormones, Inflammation and Oxidative stress markers, Amino acids, Vitamins, Lipids | x | |||||||
Ahmeid et al. [32] | Polypeptide hormones | x | |||||||
Buyuk et al. [33] | Inflammation and Oxidative stress | x | |||||||
Akarsu et al. [34] | Inflammation and Oxidative stress | x | x | ||||||
Abdul-Razzaq et al. [35] | Inflammation and Oxidative stress | x | |||||||
Ocal et al. [36] | Inflammation and Oxidative stress | x | |||||||
Ekapatria et al. [37] | Vitamins | x | x | ||||||
Gode et al. [38] | Vitamins | x | x |
3.3. Growth Factors
3.4. Steroid Hormones
3.5. Polypeptide Hormones
3.6. Inflammation and Oxidative Stress Markers
3.7. Amino Acids
3.8. Vitamins
3.9. Lipids
3.10. MiRNAs
4. Discussion
4.1. Follicular Fluid (FF)
4.2. Proteins
4.2.1. Complement C4B
4.2.2. Histidine-Rich Glycoprotein (HRG)
4.2.3. Cathepsin B
4.2.4. Matrix Metalloproteinases (MMPs)
4.3. Growth Factors
4.3.1. R-Spondin2
4.3.2. Amphiregulin
4.3.3. Bone Morphogenic Protein-15 (BMP-15)
4.3.4. Insulin-like Growth Factor 1 (IGF-1)
4.4. Steroid Hormones
4.4.1. 25-Hydroxycholesterol (25-HC), Progesterone, and Estradiol (E2)
4.4.2. Dehydroepiandrosterone Sulfate (DHEAS) and Deoxycorticosterone (DOC)
4.5. Polypeptide Hormones
Anti-Mullerian Hormone (AMH)
4.6. Inflammation and Oxidative Stress Markers
4.6.1. Reactive Oxygen Species (ROS)
4.6.2. Interleukin-6 (IL-6)
4.6.3. Coenzyme Q10 (CoQ10) and Total Antioxidant Capacity (TAC)
4.6.4. Nicotine Glucuronide
4.6.5. Nucleic Acids
4.6.6. Homocysteine (Hcy)
4.7. Amino Acids
4.7.1. Phenylalanine, Leucine, and Tryptophan
4.7.2. Maleylacetoacetate (MAAA) and Rhazideginine Nb-Oxide
4.8. Vitamins
4.8.1. Vitamin D and Lithocholic Acid
4.8.2. Vitamin A and 4-Oxo-Retinoic Acid (4-oxo-RA)
4.8.3. 13′-Hydroxy-Alpha-Tocopherol (13′-HAT)
4.8.4. Vitamin B6
4.9. Lipids
4.9.1. Energy Production Lipids
4.9.2. Phospholipids
4.9.3. Fatty Acids
4.10. MiRNAs
4.10.1. MiR-26b-5p and PTGS2
4.10.2. MiR-34a-5p and AREG
4.10.3. MiR-145-5p, MiR-204-5p, CAMK1D, and EFNB2
4.10.4. MiRNA-MiRNA Regulation
4.10.5. Expected Targets
4.11. Future Applications of Follicular Fluid Metabolomics
4.11.1. Quantifying a Follicular Fluid Metabolome
4.11.2. An Interconnected Metabolome
4.11.3. Therapeutic Applications
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kushnir, V.A.; Smith, G.D.; Adashi, E.Y. The Future of IVF: The New Normal in Human Reproduction. Reprod. Sci. 2022, 29, 849. [Google Scholar] [CrossRef]
- Mazzilli, R.; Vaiarelli, A.; Dovere, L.; Cimadomo, D.; Ubaldi, N.; Ferrero, S.; Rienzi, L.; Lombardo, F.; Lenzi, A.; Tournaye, H.; et al. Severe Male Factor in in Vitro Fertilization: Definition, Prevalence, and Treatment. An Update. Asian J. Androl. 2022, 24, 125–134. [Google Scholar] [CrossRef]
- Patrizio, P.; Fragouli, E.; Bianchi, V.; Borini, A.; Wells, D. Molecular Methods for Selection of the Ideal Oocyte. Reprod. Biomed. Online 2007, 15, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A.; Griesinger, G.; Diedrich, K. Screening Oocytes by Polar Body Biopsy. Reprod. Biomed. Online 2006, 13, 104–109. [Google Scholar] [CrossRef]
- Revelli, A.; Piane, L.D.; Casano, S.; Molinari, E.; Massobrio, M.; Rinaudo, P. Follicular Fluid Content and Oocyte Quality: From Single Biochemical Markers to Metabolomics. Reprod. Biol. Endocrinol. 2009, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- La Poulsen, L.C.; Pla, I.; Sanchez, A.; Grøndahl, M.L.; Marko-Varga, G.; Yding Andersen, C.; Englund, A.L.M.; Malm, J. Progressive Changes in Human Follicular Fluid Composition over the Course of Ovulation: Quantitative Proteomic Analyses. Mol. Cell Endocrinol. 2019, 495, 110522. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, S.G.; Mamsen, L.S.; Jeppesen, J.V.; Bøtkjær, J.A.; Pors, S.E.; Borgbo, T.; Ernst, E.; Macklon, K.T.; Andersen, C.Y. Hallmarks of Human Small Antral Follicle Development: Implications for Regulation of Ovarian Steroidogenesis and Selection of the Dominant Follicle. Front. Endocrinol. 2018, 8, 376. [Google Scholar] [CrossRef]
- Zarqaoui, M.; Zakaria, M.; Louanjli, N.; En-Naciri, N.; Ennaji, M.; Jamil, M.; Kabit, A.; Brahim, S.; Romaissa, B. Follicular Fluid Aspiration and Oocyte Retrieval Techniques, Several Flushing, Difficulty Situations Damage Risk to the Cumulus Complex and Complications. Acta Sci. Women’s Health 2020, 2, 24–33. [Google Scholar] [CrossRef]
- Moussa, M.; Shu, J.; Zhang, X.H.; Zeng, F. Maternal Control of Oocyte Quality in Cattle “a Review”. Anim. Reprod. Sci. 2015, 155, 11–27. [Google Scholar] [CrossRef]
- Moreira, M.V.; Vale-Fernandes, E.; Albergaria, I.C.; Alves, M.G.; Monteiro, M.P. Follicular Fluid Composition and Reproductive Outcomes of Women with Polycystic Ovary Syndrome Undergoing in Vitro Fertilization: A Systematic Review. Rev. Endocr. Metab. Disord. 2023, 24, 1045–1073. [Google Scholar] [CrossRef]
- Brinca, A.T.; Peiró, A.M.; Evangelio, P.M.; Eleno, I.; Oliani, A.H.; Silva, V.; Vicente, L.F.; Ramalhinho, A.C.; Gallardo, E. Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis. Int. J. Mol. Sci. 2024, 25, 7177. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Poon, I.K.H.; Patel, K.K.; Davis, D.S.; Parish, C.R.; Hulett, M.D. Histidine-Rich Glycoprotein: The Swiss Army Knife of Mammalian Plasma. Blood 2011, 117, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jin, J.; Zhang, Y.L.; Ma, Y.; Zhang, S.; Tong, X. Decreased Histidine-Rich Glycoprotein and Increased Complement C4-B Protein Levels in Follicular Fluid Predict the IVF Outcomes of Recurrent Spontaneous Abortion. Clin. Proteom. 2022, 19, 47. [Google Scholar] [CrossRef]
- Barrett, A.J.; Kirschke, H. [41] Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol. 1981, 80 Pt C, 535–561. [Google Scholar] [CrossRef]
- Bastu, E.; Gokulu, S.G.; Dural, O.; Yasa, C.; Bulgurcuoglu, S.; Karamustafaoglu Balci, B.; Celik, C.; Buyru, F. The Association between Follicular Fluid Levels of Cathepsin B, Relaxin or AMH with Clinical Pregnancy Rates in Infertile Patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 187, 30–34. [Google Scholar] [CrossRef]
- Smith, M.F.; Ricke, W.A.; Bakke, L.J.; Dow, M.P.D.; Smith, G.W. Ovarian Tissue Remodeling: Role of Matrix Metalloproteinases and Their Inhibitors. Mol. Cell Endocrinol. 2002, 191, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Atabakhsh, M.; Khodadadi, I.; Amiri, I.; Mahjub, H.; Tavilani, H. Activity of Matrix Metalloproteinase 2 and 9 in Follicular Fluid and Seminal Plasma and Its Relation to Embryo Quality and Fertilization Rate. J. Reprod. Infertil. 2018, 19, 140. [Google Scholar]
- Bilen, E.; Tola, E.N.; Oral, B.; Doguç, D.K.; Günyeli, İ.; Köse, S.A.; İlhan, I. Do Follicular Fluid Gelatinase Levels Affect Fertilization Rates and Oocyte Quality? Arch. Gynecol. Obstet. 2014, 290, 1265–1271. [Google Scholar] [CrossRef]
- Yanaihara, A.; Mitsukawa, K.; Iwasaki, S.; Otsuki, K.; Kawamura, T.; Okai, T. High Concentrations of Lactoferrin in the Follicular Fluid Correlate with Embryo Quality during in Vitro Fertilization Cycles. Fertil. Steril. 2007, 87, 279–282. [Google Scholar] [CrossRef]
- Mostafa, M.; Faisal, M.; Mohamed, N.; Idle, F. Effect of Follicular Fluid Lactoferrin Level on Oocytes Quality and Pregnancy Rate in Intracytoplasmic Sperm Injection Cycles. Open J. Obstet. Gynecol. 2019, 9, 745. [Google Scholar] [CrossRef]
- Jasimkadim, E.; Al Wasiti, E.; Qader, H. Concentration of R-Spondin 2 in the Follicular Fluid Is Correlated with Implantation Rate, Estrogen and Amphiregulin, in Iraqi Women Undergo ICSI. Int. J. Sci. Res. 2020, 10, 32–37. [Google Scholar] [CrossRef]
- Wu, Y.T.; Wang, T.T.; Chen, X.J.; Zhu, X.M.; Dong, M.Y.; Sheng, J.Z.; Xu, C.M.; Huang, H.F. Bone Morphogenetic Protein-15 in Follicle Fluid Combined with Age May Differentiate between Successful and Unsuccessful Poor Ovarian Responders. Reprod. Biol. Endocrinol. 2012, 10, 116. [Google Scholar] [CrossRef]
- Mehta, B.N.; Chimote, N.M.; Chimote, M.N.; Chimote, N.N.; Nath, N.M. Follicular Fluid Insulin like Growth Factor-1 (FF IGF-1) Is a Biochemical Marker of Embryo Quality and Implantation Rates in in Vitro Fertilization Cycles. J. Hum. Reprod. Sci. 2013, 6, 140–146. [Google Scholar] [CrossRef]
- Celik, O.; Celik, E.; Yilmaz, E.; Celik, N.; Turkcuoglu, I.; Ulas, M.; Kumbak, B.; Aktan, E.; Ozerol, I. Effect of Ovarian Stimulation with Recombinant Follicle-Stimulating Hormone, Gonadotropin-Releasing Hormone Agonist and Antagonists, on Follicular Fluid Stem Cell Factor and Serum Urocortin 1 Levels on the Day of Oocyte Retrieval. Arch. Gynecol. Obstet. 2013, 288, 1417–1422. [Google Scholar] [CrossRef] [PubMed]
- Carpintero, N.L.; Suárez, O.A.; Mangas, C.C.; Varea, C.G.; Rioja, R.G. Follicular Steroid Hormones as Markers of Oocyte Quality and Oocyte Development Potential. J. Hum. Reprod. Sci. 2014, 7, 187–193. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.; Yang, H.; Bai, Y.; Zha, H.; Jiang, F.; Meng, Y. Interleukin 6 in Follicular Fluid Reduces Embryo Fragmentation and Improves the Clinical Pregnancy Rate. J. Assist. Reprod. Genet. 2020, 37, 1171–1176. [Google Scholar] [CrossRef]
- Habibi, B.; Novin, M.; Salehpour, S.; Novin, M.; Mohammadi Yeganeh, S.; Nazarian, H. Expression Analysis of Genes and MicroRNAs Involved in Recurrent Implantation Failure: New Noninvasive Biomarkers of Implantation. Biomed. Biotechnol. Res. J. 2022, 6, 145–155. [Google Scholar] [CrossRef]
- Alzubaidy, H.; Alizzi, F.; Mossa, H. The Correlation between Follicular Fluid Levels of Progesterone and Anti-Müllerian Hormone and Pregnancy Rate in ICSI-Cycle. Teikyo Med. J. 2023, 21, 2499–2503. [Google Scholar] [CrossRef]
- Song, J.; Wang, X.; Guo, Y.; Yang, Y.; Xu, K.; Wang, T.; Sa, Y.; Yuan, L.; Jiang, H.; Guo, J.; et al. Novel High-Coverage Targeted Metabolomics Method (SWATHtoMRM) for Exploring Follicular Fluid Metabolome Alterations in Women with Recurrent Spontaneous Abortion Undergoing in Vitro Fertilization. Sci. Rep. 2019, 9, 10873. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, H.; Lian, F.; Zhang, X.; Pang, C.; Guo, Y.; Song, J.; Wang, A.; Shi, L.; Han, L. Human Follicular Fluid Metabolomics Study of Follicular Development and Oocyte Quality. Chromatographia 2017, 80, 901–909. [Google Scholar] [CrossRef]
- Mutaz, S.; Ahmeid, M.B.; Ch, B. Correlation between Follicular Fluid Leptin and the Pregnancy Rate in Women Who Underwent ICSI. Tikrit Med. J. 2017, 22, 248–253. [Google Scholar]
- Buyuk, E.; Asemota, O.A.; Merhi, Z.; Charron, M.J.; Berger, D.S.; Zapantis, A.; Jindal, S.K. Serum and Follicular Fluid Monocyte Chemotactic Protein-1 Levels Are Elevated in Obese Women and Are Associated with Poorer Clinical Pregnancy Rate after in Vitro Fertilization: A Pilot Study. Fertil. Steril. 2017, 107, 632–640.e3. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, S.; Gode, F.; Isik, A.Z.; Dikmen, Z.G.; Tekindal, M.A. The Association between Coenzyme Q10 Concentrations in Follicular Fluid with Embryo Morphokinetics and Pregnancy Rate in Assisted Reproductive Techniques. J. Assist. Reprod. Genet. 2017, 34, 599–605. [Google Scholar] [CrossRef]
- Abdul-Razzaq, L.; Salih, K.; Al-Musawi, B.J. Evaluation of Total Antioxidant Capacity in Serum and Follicular Fluid of Women Undergoing ICSI and Its Association with Implantation Failure. Med.-Leg. Update 2020, 20, 549. [Google Scholar]
- Ocal, P.; Ersoylu, B.; Cepni, I.; Guralp, O.; Atakul, N.; Irez, T.; Idil, M. The Association between Homocysteine in the Follicular Fluid with Embryo Quality and Pregnancy Rate in Assisted Reproductive Techniques. J. Assist. Reprod. Genet. 2012, 29, 299–304. [Google Scholar] [CrossRef]
- Ekapatria, C.; Hartanto, B.; Wiryawan, P.; Tono, D.; Maringan Diapari Lumban, T.; Meita, D.; Arief, B.; Johanes Cornelius, M. The Effects of Follicular Fluid 25(OH)D Concentration on Intrafollicular Estradiol Level, Oocyte Quality, and Fertilization Rate in Women Who Underwent IVF Program. J. Obstet. Gynecol. India 2022, 72, 313–318. [Google Scholar] [CrossRef]
- Gode, F.; Akarsu, S.; Dikmen, Z.; Tamer, B.; Isik, A. The Effect Follicular Fluid Vitamin A, E, D and B6 on Embryo Morphokinetics and Pregnancy Rates in Patients Receiving Assisted Reproduction. Gynecol. Obstet. Reprod. Med. 2019, 25, 89–95. [Google Scholar] [CrossRef]
- Goessling, W.; North, T.E.; Loewer, S.; Lord, A.M.; Lee, S.; Stoick-Cooper, C.L.; Weidinger, G.; Puder, M.; Daley, G.Q.; Moon, R.T.; et al. Genetic Interaction of PGE2 and Wnt Signaling Regulates Developmental Specification of Stem Cells and Regeneration. Cell 2009, 136, 1136. [Google Scholar] [CrossRef]
- Aupperlee, M.D.; Leipprandt, J.R.; Bennett, J.M.; Schwartz, R.C.; Haslam, S.Z. Amphiregulin Mediates Progesterone-Induced Mammary Ductal Development during Puberty. Breast Cancer Res. 2013, 15, R44. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ Signalling in Context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- Adashi, E.Y.; Resnick, C.E.; D’Ercole, A.J.; Svoboda, M.E.; van Wyk, J.J. Insulin-like Growth Factors as Intraovarian Regulators of Granulosa Cell Growth and Function. Endocr. Rev. 1985, 6, 400–420. [Google Scholar] [CrossRef]
- Yong, E.L.; Baird, D.T.; Yates, R.; Reichert, L.E., Jr.; Hillier, S.G. Hormonal Regulation of the Growth and Steroidogenic Function of Human Granulosa Cells. J. Clin. Endocrinol. Metab. 1992, 74, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, M.; Rutanen, E.M.; Ritvos, O. Expression of C-Kit Ligand Messenger Ribonucleic Acids in Human Ovaries and Regulation of Their Steady State Levels by Gonadotropins in Cultured Granulosa-Luteal Cells. Endocrinology 1995, 136, 4407–4414. [Google Scholar] [CrossRef]
- Xu, S.; Hu, S.; Yu, X.; Zhang, M.; Yang, Y. 17α-hydroxylase/17,20-lyase Deficiency in Congenital Adrenal Hyperplasia: A Case Report. Mol. Med. Rep. 2017, 15, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, J.V.; Anderson, R.A.; Kelsey, T.W.; Christiansen, S.L.; Kristensen, S.G.; Jayaprakasan, K.; Raine-Fenning, N.; Campbell, B.K.; Yding Andersen, C. Which Follicles Make the Most Anti-Mullerian Hormone in Humans? Evidence for an Abrupt Decline in AMH Production at the Time of Follicle Selection. Mol. Hum. Reprod. 2013, 19, 519–527. [Google Scholar] [CrossRef] [PubMed]
- George, A.F.; Bagnell, C.A. Encyclopedia of Reproduction. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 591–596. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Vogel, K.; Weitsman, S.R.; Magoffin, D.A. Leptin Antagonizes the Insulin-like Growth Factor-I Augmentation of Steroidogenesis in Granulosa and Theca Cells of the Human Ovary. J. Clin. Endocrinol. Metab. 1999, 84, 1072–1076. [Google Scholar] [CrossRef]
- Brannian, J.D.; Hansen, K.A. Leptin and Ovarian Folliculogenesis: Implications for Ovulation Induction and ART Outcomes. Semin. Reprod. Med. 2002, 20, 103–112. [Google Scholar] [CrossRef]
- Stojanovic Gavrilovic, A.Z.; Cekovic, J.M.; Parandilovic, A.Z.; Nikolov, A.B.; Sazdanovic, P.S.; Velickovic, A.M.; Andjelkovic, M.V.; Sorak, M.P. IL-6 of Follicular Fluid and Outcome of in Vitro Fertilization. Medicine 2022, 101, E29624. [Google Scholar] [CrossRef]
- Dahm-Kähler, P.; Ghahremani, M.; Lind, A.K.; Sundfeldt, K.; Brännström, M. Monocyte Chemotactic Protein-1 (MCP-1), Its Receptor, and Macrophages in the Perifollicular Stroma during the Human Ovulatory Process. Fertil. Steril. 2009, 91, 231–239. [Google Scholar] [CrossRef]
- May-Panloup, P.; Chretien, M.F.; Malthiery, Y.; Reynier, P. Mitochondrial DNA in the Oocyte and the Developing Embryo. Curr. Top. Dev. Biol. 2007, 77, 51–83. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef]
- Bhardwaj, J.K.; Siwach, A.; Sachdeva, S.N. Nicotine as a Female Reproductive Toxicant-A Review. J. Appl. Toxicol. 2024, 45, 534–550. [Google Scholar] [CrossRef]
- Avendaño, C.; Menéndez, J.C. Antimetabolites That Interfere with Nucleic Acid Biosynthesis. In Medicinal Chemistry of Anticancer Drugs; Elsevier: Amsterdam, The Netherlands, 2015; pp. 23–79. [Google Scholar] [CrossRef]
- Topp, H.; Duden, R.; Schöch, G. 5,6-Dihydrouridine: A Marker Ribonucleoside for Determining Whole Body Degradation Rates of Transfer RNA in Man and Rats. Clin. Chim. Acta 1993, 218, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.S.; Slivka, A. Biological Chemistry of Thiols in the Vasculature and in Vascular-Related Disease. Nutr. Rev. 1996, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Raijmakers, M.T.M.; Steegers, E.A.P.; Peters, W.H.M. Glutathione S-Transferases and Thiol Concentrations in Embryonic and Early Fetal Tissues. Hum. Reprod. 2001, 16, 2445–2450. [Google Scholar] [CrossRef]
- Paudel, S.; Wu, G.; Wang, X. Amino Acids in Cell Signaling: Regulation and Function. Adv. Exp. Med. Biol. 2021, 1332, 17–33. [Google Scholar] [CrossRef]
- Li, A.; Li, F.; Song, W.; Lei, Z.; Sha, Q.; Liu, S.; Zhou, C.; Zhang, X.; Li, X.; Schatten, H.; et al. Gut Microbiota-Bile Acid-Vitamin D Axis Plays an Important Role in Determining Oocyte Quality and Embryonic Development. Clin. Transl. Med. 2023, 13, e1236. [Google Scholar] [CrossRef] [PubMed]
- Kedishvili, N.Y. Retinoic Acid Synthesis and Degradation. Subcell. Biochem. 2016, 81, 127–161. [Google Scholar] [CrossRef]
- Dunning, K.R.; Russell, D.L.; Robker, R.L. Lipids and Oocyte Developmental Competence: The Role of Fatty Acids and β-Oxidation. Reproduction 2014, 148, R15–R27. [Google Scholar] [CrossRef]
- Ye, X. Lysophospholipid Signaling in the Function and Pathology of the Reproductive System. Hum. Reprod. Update 2008, 14, 519–536. [Google Scholar] [CrossRef]
- Gauster, M.; Rechberger, G.; Sovic, A.; Hörl, G.; Steyrer, E.; Sattler, W.; Frank, S. Endothelial Lipase Releases Saturated and Unsaturated Fatty Acids of High Density Lipoprotein Phosphatidylcholine. J. Lipid Res. 2005, 46, 1517–1525. [Google Scholar] [CrossRef]
- Aoki, J.; Inoue, A.; Okudaira, S. Two Pathways for Lysophosphatidic Acid Production. Biochim. Biophys. Acta 2008, 1781, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Kurt, E.; LBassi, T.; Sa, L.; Xie, D. Biotechnological Production of Omega-3 Fatty Acids: Current Status and Future Perspectives. Front. Microbiol. 2023, 14, 1280296. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.I.; Puder, M.; Gura, K.M. The Use of Fish Oil Lipid Emulsion in the Treatment of Intestinal Failure Associated Liver Disease (IFALD). Nutrients 2012, 4, 1828–1850. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.J.; Lennard, D.E.; Lee, C.A.; Tiano, H.F.; Morham, S.G.; Wetsel, W.C.; Langenbach, R. Anovulation in Cyclooxygenase-2-Deficient Mice Is Restored by Prostaglandin E2 and Interleukin-1beta. Endocrinology 1999, 140, 2685–2695. [Google Scholar] [CrossRef]
- Kim, S.O.; Duffy, D.M. Mapping PTGERs to the Ovulatory Follicle: Regional Responses to the Ovulatory PGE2 Signal. Biol. Reprod. 2016, 95, 33. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Rodgers, R.J.; Irving-Rodgers, H.F. Formation of the Ovarian Follicular Antrum and Follicular Fluid. Biol. Reprod. 2010, 82, 1021–1029. [Google Scholar] [CrossRef]
- Richards, J.S.; Pangas, S.A. The Ovary: Basic Biology and Clinical Implications. J. Clin. Investig. 2010, 120, 963–972. [Google Scholar] [CrossRef]
- Fisch, B.; Goldberg, I.; Ovadia, J.; Tadir, Y. Physicochemical Properties of Follicular Fluid and Their Relation to in Vitro Fertilization (IVF) Outcome. J. Vitr. Fert. Embryo Transf. 1990, 7, 67–73. [Google Scholar] [CrossRef]
- Tagliani, E.; Erlebacher, A. Dendritic Cell Function at the Maternal-Fetal Interface. Expert. Rev. Clin. Immunol. 2011, 7, 593–602. [Google Scholar] [CrossRef]
- Wegmann, T.G. Foetal Protection against Abortion: Is It Immunosuppression or Immunostimulation? Ann. Immunol. 1984, 135D, 309–312. [Google Scholar] [CrossRef]
- Mor, G.; Cardenas, I. The Immune System in Pregnancy: A Unique Complexity. Am. J. Reprod. Immunol. 2010, 63, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Sarma, J.V.; Ward, P.A. The Complement System. Cell Tissue Res. 2011, 343, 227–235. [Google Scholar] [CrossRef]
- Wallis, R. Interactions between Mannose-Binding Lectin and MASPs during Complement Activation by the Lectin Pathway. Immunobiology 2007, 212, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, R.; Barton, A.; Sadovsky, Y.; Nelson, D.M. The C5b-9 Membrane Attack Complex of Complement Activation Localizes to Villous Trophoblast Injury in Vivo and Modulates Human Trophoblast Function in Vitro. Placenta 2008, 29, 855–861. [Google Scholar] [CrossRef]
- Mohlin, F.C.; Mercier, E.; Fremeaux-Bacchi, V.; Liszewski, M.K.; Atkinson, J.P.; Gris, J.C.; Blom, A.M. Analysis of Genes Coding for CD46, CD55, and C4b-Binding Protein in Patients with Idiopathic, Recurrent, Spontaneous Pregnancy Loss. Eur. J. Immunol. 2013, 43, 1617–1629. [Google Scholar] [CrossRef]
- Girardi, G.; Lingo, J.J.; Fleming, S.D.; Regal, J.F. Essential Role of Complement in Pregnancy: From Implantation to Parturition and Beyond. Front. Immunol. 2020, 11, 1681. [Google Scholar] [CrossRef]
- Sia, D.Y.; Rylatt, D.B.; Parish, C.R. Anti-Self Receptors. V. Properties of a Mouse Serum Factor That Blocks Autorosetting Receptors on Lymphocytes. Immunology 1982, 45, 207. [Google Scholar]
- Leung, L.L.K.; Harpel, P.C.; Nachman, R.L.; Rabellino, E.M. Histidine-Rich Glycoprotein Is Present in Human Platelets and Is Released Following Thrombin Stimulation. Blood 1983, 62, 1016–1021. [Google Scholar] [CrossRef]
- Nordqvist, S.; Kårehed, K.; Hambiliki, F.; Wånggren, K.; Stavreus-Evers, A.; Åkerud, H. The Presence of Histidine-Rich Glycoprotein in the Female Reproductive Tract and in Embryos. Reprod. Sci. 2010, 17, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Gorgani, N.N.; Parish, C.R.; Easterbrook Smith, S.B.; Altin, J.G. Histidine-Rich Glycoprotein Binds to Human IgG and C1q and Inhibits the Formation of Insoluble Immune Complexes. Biochemistry 1997, 36, 6653–6662. [Google Scholar] [CrossRef] [PubMed]
- Ireland, J.J.; Zielak-Steciwko, A.E.; Jimenez-Krassel, F.; Folger, J.; Bettegowda, A.; Scheetz, D.; Walsh, S.; Mossa, F.; Knight, P.G.; Smith, G.W.; et al. Variation in the Ovarian Reserve Is Linked to Alterations in Intrafollicular Estradiol Production and Ovarian Biomarkers of Follicular Differentiation and Oocyte Quality in Cattle. Biol. Reprod. 2009, 80, 954–964. [Google Scholar] [CrossRef]
- Oksjoki, S.; Söderström, M.; Vuorio, E.; Anttila, L. Differential Expression Patterns of Cathepsins B, H, K, L and S in the Mouse Ovary. Mol. Hum. Reprod. 2001, 7, 27–34. [Google Scholar] [CrossRef]
- Chen, C.; Ahmad, M.J.; Ye, T.Z.; Du, C.; Zhang, X.X.; Liang, A.X.; Yang, L.G. Cathepsin B Regulates Mice Granulosa Cells’ Apoptosis and Proliferation In Vitro. Int. J. Mol. Sci. 2021, 22, 11827. [Google Scholar] [CrossRef]
- Kostoulas, G.; Lang, A.; Nagase, H.; Baici, A. Stimulation of Angiogenesis through Cathepsin B Inactivation of the Tissue Inhibitors of Matrix Metalloproteinases. FEBS Lett. 1999, 455, 286–290. [Google Scholar] [CrossRef]
- Gogiel, T.; Wolańska, M.; Galewska, Z.; Kinalski, M.; Sobolewski, K.; Romanowicz, L. Cathepsin B in Human Myometrium and in Uterine Leiomyomas at Various Stages of Tumour Growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 185, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Curry, T.E.; Osteen, K.G. The Matrix Metalloproteinase System: Changes, Regulation, and Impact throughout the Ovarian and Uterine Reproductive Cycle. Endocr. Rev. 2003, 24, 428–465. [Google Scholar] [CrossRef]
- Alexander, C.M.; Hansell, E.J.; Behrendtsen, O.; Flannery, M.L.; Kishnani, N.S.; Hawkes, S.P.; Werb, Z. Expression and Function of Matrix Metalloproteinases and Their Inhibitors at the Maternal-Embryonic Boundary during Mouse Embryo Implantation. Development 1996, 122, 1723–1736. [Google Scholar] [CrossRef]
- Riley, S.C.; Gibson, A.H.; Leask, R.; Mauchline, D.J.W.; Pedersen, H.G.; Watson, E.D. Secretion of Matrix Metalloproteinases 2 and 9 and Tissue Inhibitor of Metalloproteinases into Follicular Fluid during Follicle Development in Equine Ovaries. Reproduction 2001, 121, 553–560. [Google Scholar] [CrossRef]
- Driancourt, M.A.; Quesnel, H.; Meduri, G.; Prunier, A.; Hermier, D. Luteinization and Proteolysis in Ovarian Follicles of Meishan and Large White Gilts during the Preovulatory Period. J. Reprod. Fertil. 1998, 114, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.U.; Yoon, J.D.; Kim, M.; Cai, L.; Choi, H.; Oh, D.; Kim, E.; Hyun, S.H. R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation. Animals 2021, 11, 709. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Jonnaert, M.; Labelle-Dumais, C.; Kuroda, K.; Clarke, H.J.; Dufort, D. Uterine Wnt/Beta-Catenin Signaling Is Required for Implantation. Proc. Natl. Acad. Sci. USA 2005, 102, 8579–8584. [Google Scholar] [CrossRef] [PubMed]
- Tepekoy, F.; Akkoyunlu, G.; Demir, R. The Role of Wnt Signaling Members in the Uterus and Embryo during Pre-Implantation and Implantation. J. Assist. Reprod. Genet. 2015, 32, 337–346. [Google Scholar] [CrossRef]
- Corada, M.; Nyqvist, D.; Orsenigo, F.; Caprini, A.; Giampietro, C.; Taketo, M.M.; Iruela-Arispe, M.L.; Adams, R.H.; Dejana, E. The Wnt/Beta-Catenin Pathway Modulates Vascular Remodeling and Specification by Upregulating Dll4/Notch Signaling. Dev. Cell 2010, 18, 938–949. [Google Scholar] [CrossRef]
- Inoue, Y.; Miyamoto, S.; Fukami, T.; Shirota, K.; Yotsumoto, F.; Kawarabayashi, T. Amphiregulin Is Much More Abundantly Expressed than Transforming Growth Factor-Alpha and Epidermal Growth Factor in Human Follicular Fluid Obtained from Patients Undergoing in Vitro Fertilization-Embryo Transfer. Fertil. Steril. 2009, 91, 1035–1041. [Google Scholar] [CrossRef]
- Fang, L.; Yu, Y.; Zhang, R.; He, J.; Sun, Y.P. Amphiregulin Mediates HCG-Induced StAR Expression and Progesterone Production in Human Granulosa Cells. Sci. Rep. 2016, 6, 24917. [Google Scholar] [CrossRef]
- Li, H.; Chang, H.M.; Li, S.; Klausen, C.; Shi, Z.; Leung, P.C.K. Characterization of the Roles of Amphiregulin and Transforming Growth Factor Β1 in Microvasculature-like Formation in Human Granulosa-Lutein Cells. Front. Cell Dev. Biol. 2022, 10, 968166. [Google Scholar] [CrossRef]
- Fang, L.; Yu, Y.; Li, Y.; Wang, S.; He, J.; Zhang, R.; Sun, Y.P. Upregulation of AREG, EGFR, and HER2 Contributes to Increased VEGF Expression in Granulosa Cells of Patients with OHSS. Biol. Reprod. 2019, 101, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yi, H.; Li, T.C.; Wang, Y.; Wang, H.; Chen, X. Role of Vascular Endothelial Growth Factor (VEGF) in Human Embryo Implantation: Clinical Implications. Biomolecules 2021, 11, 253. [Google Scholar] [CrossRef]
- Sung, D.C.; Chen, X.; Chen, M.; Yang, J.; Schultz, S.; Babu, A.; Xu, Y.; Gao, S.; Keller, T.S.; Mericko, P.; et al. VE-Cadherin Enables Trophoblast Endovascular Invasion and Spiral Artery Remodeling during Placental Development. eLlife 2022, 11, e77241. [Google Scholar] [CrossRef]
- Das, S.K.; Chakraborty, I.; Paria, B.C.; Wang, X.; Plowman, G.; Dey, S.K.; Ralph, S.L. Amphiregulin Is an Implantation-Specific and Progesterone-Regulated Gene in the Mouse Uterus. Mol. Endocrinol. 1995, 9, 691–705. [Google Scholar] [CrossRef]
- Dalbies-Tran, R.; Cadoret, V.; Desmarchais, A.; Elis, S.; Maillard, V.; Monget, P.; Monniaux, D.; Reynaud, K.; Saint-Dizier, M.; Uzbekova, S. A Comparative Analysis of Oocyte Development in Mammals. Cells 2020, 9, 1002. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Shimasaki, S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. Vitam. Horm. 2018, 107, 317–348. [Google Scholar] [CrossRef]
- Shimasaki, S. BMP-15 Regulation of Ovulation Quota in Mammals. Reprod. Med. Biol. 2006, 5, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Dube, J.L.; Wang, P.; Elvin, J.; Lyons, K.M.; Celeste, A.J.; Matzuk, M.M. The Bone Morphogenetic Protein 15 Gene Is X-Linked and Expressed in Oocytes. Mol. Endocrinol. 1998, 12, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Fountas, S.; Petinaki, E.; Bolaris, S.; Kargakou, M.; Dafopoulos, S.; Zikopoulos, A.; Moustakli, E.; Sotiriou, S.; Dafopoulos, K. The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. J. Clin. Med. 2024, 13, 3775. [Google Scholar] [CrossRef]
- Sugimura, S.; Ritter, L.J.; Sutton-McDowall, M.L.; Mottershead, D.G.; Thompson, J.G.; Gilchrist, R.B. Amphiregulin Co-Operates with Bone Morphogenetic Protein 15 to Increase Bovine Oocyte Developmental Competence: Effects on Gap Junction-Mediated Metabolite Supply. Mol. Hum. Reprod. 2014, 20, 499–513. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, X.; Fang, Z.; Zheng, X.; Zeng, Y.; Zhu, C.; Gu, J.; Tang, F.; Hu, Y.; Hu, G.; et al. Transcription Coactivator Cited1 Acts as an Inducer of Trophoblast-like State from Mouse Embryonic Stem Cells through the Activation of BMP Signaling. Cell Death Dis. 2018, 9, 924. [Google Scholar] [CrossRef]
- Lichtner, B.; Knaus, P.; Lehrach, H.; Adjaye, J. BMP10 as a Potent Inducer of Trophoblast Differentiation in Human Embryonic and Induced Pluripotent Stem Cells. Biomaterials 2013, 34, 9789–9802. [Google Scholar] [CrossRef] [PubMed]
- Magro-Lopez, E.; Muñoz-Fernández, M.Á. The Role of BMP Signaling in Female Reproductive System Development and Function. Int. J. Mol. Sci. 2021, 22, 11927. [Google Scholar] [CrossRef]
- Rege, J.; Nishimoto, H.K.; Nishimoto, K.; Rodgers, R.J.; Auchus, R.J.; Rainey, W.E. Bone Morphogenetic Protein-4 (BMP4): A Paracrine Regulator of Human Adrenal C19 Steroid Synthesis. Endocrinology 2015, 156, 2530–2540. [Google Scholar] [CrossRef] [PubMed]
- Kooijman, R. Regulation of Apoptosis by Insulin-like Growth Factor (IGF)-I. Cytokine Growth Factor. Rev. 2006, 17, 305–323. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, F.; Inoue, N.; Manabe, N.; Ohkura, S. Follicular Growth and Atresia in Mammalian Ovaries: Regulation by Survival and Death of Granulosa Cells. J. Reprod. Dev. 2012, 58, 44–50. [Google Scholar] [CrossRef]
- Smith, T.J. Insulin-like Growth Factor-I Regulation of Immune Function: A Potential Therapeutic Target in Autoimmune Diseases? Pharmacol. Rev. 2010, 62, 199–236. [Google Scholar] [CrossRef]
- Rutanen, E.M. Insulin-like Growth Factors in Endometrial Function. Gynecol. Endocrinol. 1998, 12, 399–406. [Google Scholar] [CrossRef]
- Zhou, C.; Lv, M.; Wang, P.; Guo, C.; Ni, Z.; Bao, H.; Tang, Y.; Cai, H.; Lu, J.; Deng, W.; et al. Sequential Activation of Uterine Epithelial IGF1R by Stromal IGF1 and Embryonic IGF2 Directs Normal Uterine Preparation for Embryo Implantation. J. Mol. Cell Biol. 2021, 13, 646–661. [Google Scholar] [CrossRef]
- Forbes, K.; Westwood, M. The IGF Axis and Placental Function: A Mini Review. Horm. Res. 2008, 69, 129–137. [Google Scholar] [CrossRef]
- Dumolt, J.H.; Powell, T.L.; Jansson, T. Placental Function and the Development of Fetal Overgrowth and Fetal Growth Restriction. Obstet. Gynecol. Clin. N. Am. 2021, 48, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Andersen, C.Y.; Rasmussen, F.R.; Cadenas, J.; Christensen, S.T.; Mamsen, L.S. Expression of Genes and Enzymes Involved in Ovarian Steroidogenesis in Relation to Human Follicular Development. Front. Endocrinol. 2023, 14, 1268248. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Kim, T.H.; Noh, E.J.; Han, J.W.; Kim, J.S.; Lee, S.K. 25-Hydroxycholesterol Induces Oxidative Stress, Leading to Apoptosis and Ferroptosis in Extravillous Trophoblasts. Chem. Biol. Interact. 2024, 403, 111214. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.-J.; Azhar, S.; Kraemer, F.B. ACTH Regulation of Adrenal SR-B1. Front. Endocrinol. 2016, 7, 42. [Google Scholar] [CrossRef]
- Scarpin, K.M.; Graham, J.D.; Mote, P.A.; Clarke, C.L. Progesterone Action in Human Tissues: Regulation by Progesterone Receptor (PR) Isoform Expression, Nuclear Positioning and Coregulator Expression. Nucl. Recept. Signal 2009, 7, e009. [Google Scholar] [CrossRef]
- Klinge, C.M. Estrogen Receptor Interaction with Estrogen Response Elements. Nucleic Acids Res. 2001, 29, 2905–2919. [Google Scholar] [CrossRef]
- Peluso, J.J. Progesterone as a Regulator of Granulosa Cell Viability. J. Steroid Biochem. Mol. Biol. 2003, 85, 167–173. [Google Scholar] [CrossRef]
- Liu, W.; Xin, Q.; Wang, X.; Wang, S.; Wang, H.; Zhang, W.; Yang, Y.; Zhang, Y.; Zhang, Z.; Wang, C.; et al. Estrogen Receptors in Granulosa Cells Govern Meiotic Resumption of Pre-Ovulatory Oocytes in Mammals. Cell Death Dis. 2017, 8, e2662. [Google Scholar] [CrossRef]
- Otsuka, F.; Moore, R.K.; Wang, X.; Sharma, S.; Miyoshi, T.; Shimasaki, S. Essential Role of the Oocyte in Estrogen Amplification of Follicle-Stimulating Hormone Signaling in Granulosa Cells. Endocrinology 2005, 146, 3362–3367. [Google Scholar] [CrossRef]
- Rajaram, R.D.; Brisken, C. Paracrine Signaling by Progesterone. Mol. Cell Endocrinol. 2012, 357, 80–90. [Google Scholar] [CrossRef]
- Waters, K.M.; Safe, S.; Gaido, K.W. Differential Gene Expression in Response to Methoxychlor and Estradiol through ERalpha, ERbeta, and AR in Reproductive Tissues of Female Mice. Toxicol. Sci. 2001, 63, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Song, B.S.; Lee, S.R.; Yoon, S.B.; Huh, J.W.; Kim, S.U.; Kim, E.; Kim, S.H.; Choo, Y.K.; Koo, D.B.; et al. Supplementation with Estradiol-17β Improves Porcine Oocyte Maturation and Subsequent Embryo Development. Fertil. Steril. 2011, 95, 2582–2584. [Google Scholar] [CrossRef] [PubMed]
- Motomura, K.; Miller, D.; Galaz, J.; Liu, T.N.; Romero, R.; Gomez-Lopez, N. The Effects of Progesterone on Immune Cellular Function at the Maternal-Fetal Interface and in Maternal Circulation. J. Steroid Biochem. Mol. Biol. 2023, 229, 2582–2584. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Saint-Pol, J.; Dib, S.; Pot, C.; Gosselet, F. 25-Hydroxycholesterol in Health and Diseases. J. Lipid Res. 2024, 65, 106254. [Google Scholar] [CrossRef]
- Thor, D.; Zhang, R.; Anderson, L.; Bose, D.D.; Dubé, G.P.; Rahimian, R. Effects of 17 β-Estradiol on Lipopolysacharride-Induced Intracellular Adhesion Molecule-1 MRNA Expression and Ca2+ Homeostasis Alteration in Human Endothelial Cells. Vasc. Pharmacol. 2010, 53, 230–238. [Google Scholar] [CrossRef]
- Soloff, M.S.; Jeng, Y.J.; Izban, M.G.; Sinha, M.; Luxon, B.A.; Stamnes, S.J.; England, S.K. Effects of Progesterone Treatment on Expression of Genes Involved in Uterine Quiescence. Reprod. Sci. 2011, 18, 781–797. [Google Scholar] [CrossRef]
- Mesen, T.B.; Young, S.L. Progesterone and the Luteal Phase: A Requisite to Reproduction. Obstet. Gynecol. Clin. N. Am. 2015, 42, 135. [Google Scholar] [CrossRef]
- Rusidzé, M.; Gargaros, A.; Fébrissy, C.; Dubucs, C.; Weyl, A.; Ousselin, J.; Aziza, J.; Arnal, J.F.; Lenfant, F. Estrogen Actions in Placental Vascular Morphogenesis and Spiral Artery Remodeling: A Comparative View between Humans and Mice. Cells 2023, 12, 620. [Google Scholar] [CrossRef]
- Chernykh, E.R.; Leplina, O.Y.; Tikhonova, M.A.; Seledtsova, N.V.; Tyrinova, T.V.; Khonina, N.A.; Ostanin, A.A.; Pasman, N.M. Elevated Levels of Dehydroepiandrosterone as a Potential Mechanism of Dendritic Cell Impairment during Pregnancy. BMC Immunol. 2015, 16, 2. [Google Scholar] [CrossRef]
- Young, W.F. Endocrine Causes of Hypertension. In Cardiovascular Therapeutics: A Companion to Braunwald’s Heart Disease, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 490–500. [Google Scholar] [CrossRef]
- Sneeringer, R.; Penzias, A.S.; Barrett, B.; Usheva, A. High Levels of Mineralocorticoids in Preovulatory Follicular Fluid Could Contribute to Oocyte Development. Fertil. Steril. 2011, 95, 182–187. [Google Scholar] [CrossRef]
- Bhaumik, S.; Lockett, J.; Cuffe, J.; Clifton, V.L. Glucocorticoids and Their Receptor Isoforms: Roles in Female Reproduction, Pregnancy, and Foetal Development. Biology 2023, 12, 1104. [Google Scholar] [CrossRef]
- DI Clemente, N.; Racine, C.; Pierre, A.; Taieb, J. Anti-Müllerian Hormone in Female Reproduction. Endocr. Rev. 2021, 42, 753–782. [Google Scholar] [CrossRef] [PubMed]
- Moolhuijsen, L.M.E.; Visser, J.A. Anti-Müllerian Hormone and Ovarian Reserve: Update on Assessing Ovarian Function. J. Clin. Endocrinol. Metab. 2020, 105, 3361–3373. [Google Scholar] [CrossRef] [PubMed]
- Pellatt, L.; Rice, S.; Dilaver, N.; Heshri, A.; Galea, R.; Brincat, M.; Brown, K.; Simpson, E.R.; Mason, H.D. Anti-Müllerian Hormone Reduces Follicle Sensitivity to Follicle-Stimulating Hormone in Human Granulosa Cells. Fertil. Steril. 2011, 96, 1246–1251.e1. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Du, S.; Huang, X.; Hao, C. Follicular Fluid Estradiol Is an Improved Predictor of in Vitro Fertilization/Intracytoplasmic Sperm Injection and Embryo Transfer Outcomes. Exp. Ther. Med. 2020, 20, 131. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The Effects of Oxidative Stress on Female Reproduction: A Review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cell Signal 2012, 24, 981–990. [Google Scholar] [CrossRef]
- Khazaei, M.; Aghaz, F. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. Int. J. Fertil. Steril. 2017, 11, 63–70. [Google Scholar] [CrossRef]
- Costello, M.F.; Shrestha, B.; Eden, J.; Johnson, N.P.; Sjoblom, P. Metformin versus Oral Contraceptive Pill in Polycystic Ovary Syndrome: A Cochrane Review. Hum. Reprod. 2007, 22, 1200–1209. [Google Scholar] [CrossRef]
- Yadav, D.K.; Kumar, S.; Choi, E.H.; Chaudhary, S.; Kim, M.H. Molecular Dynamic Simulations of Oxidized Skin Lipid Bilayer and Permeability of Reactive Oxygen Species. Sci. Rep. 2019, 9, 4496. [Google Scholar] [CrossRef]
- Didion, S.P. Cellular and Oxidative Mechanisms Associated with Interleukin-6 Signaling in the Vasculature. Int. J. Mol. Sci. 2017, 18, 2563. [Google Scholar] [CrossRef] [PubMed]
- Leonard, M.; Ryan, M.P.; Watson, A.J.; Schramek, H.; Healy, E. Role of MAP Kinase Pathways in Mediating IL-6 Production in Human Primary Mesangial and Proximal Tubular Cells. Kidney Int. 1999, 56, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Nicholson, S.E.; Zhang, Q.; Schwacha, M.G. Damage-Associated Molecular Patterns (DAMPs) Released after Burn Are Associated with Inflammation and Monocyte Activation. Burns 2017, 43, 297–303. [Google Scholar] [CrossRef]
- Prins, J.R.; Gomez-Lopez, N.; Robertson, S.A. Interleukin-6 in Pregnancy and Gestational Disorders. J. Reprod. Immunol. 2012, 95, 1–14. [Google Scholar] [CrossRef]
- Tabibzadeh, S.; Kong, Q.F.; Babaknia, A.; May, L.T. Progressive Rise in the Expression of Interleukin-6 in Human Endometrium during Menstrual Cycle Is Initiated during the Implantation Window. Hum. Reprod. 1995, 10, 2793–2799. [Google Scholar] [CrossRef]
- Poehlmann, T.G.; Fitzgerald, J.S.; Meissner, A.; Wengenmayer, T.; Schleussner, E.; Friedrich, K.; Markert, U.R. Trophoblast Invasion: Tuning through LIF, Signalling via Stat3. Placenta 2005, 26 (Suppl. SA), S37–S41. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT Signaling Pathway. J. Cell Sci. 2004, 117, 1281–1283. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Li, H.; Zhou, M.; Li, F.; Chu, C.; Zhang, Y.; Zhu, X.; Ju, H.; Li, X. Research Progress on the STAT Signaling Pathway in Pregnancy and Pregnancy-Associated Disorders. Front. Immunol. 2024, 14, 1331964. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, J.; Li, Y.; Gao, X.; Ji, M.; Liu, M.; Tian, Y.; Feng, G.; Deng, W.; Wang, H.; et al. Shp2 in Uterine Stromal Cells Critically Regulates on Time Embryo Implantation and Stromal Decidualization by Multiple Pathways during Early Pregnancy. PLoS Genet. 2022, 18, e1010018. [Google Scholar] [CrossRef]
- Jones, H.N.; Jansson, T.; Powell, T.L. IL-6 Stimulates System A Amino Acid Transporter Activity in Trophoblast Cells through STAT3 and Increased Expression of SNAT2. Am. J. Physiol. Cell Physiol. 2009, 297, C1228–C1235. [Google Scholar] [CrossRef]
- Kossakowska, A.E.; Edwards, D.R.; Prusinkiewicz, C.; Zhang, M.C.; Guo, D.; Urbanski, S.J.; Grogan, T.; Marquez, L.A.; Janowska-Wieczorek, A. Interleukin-6 Regulation of Matrix Metalloproteinase (MMP-2 and MMP-9) and Tissue Inhibitor of Metalloproteinase (TIMP-1) Expression in Malignant Non-Hodgkin’s Lymphomas. Blood 1999, 94, 2080–2089. [Google Scholar] [CrossRef] [PubMed]
- Shochet, G.E.; Komemi, O.; Sadeh-Mestechkin, D.; Pomeranz, M.; Fishman, A.; Drucker, L.; Lishner, M.; Matalon, S.T. Heat Shock Protein-27 (HSP27) Regulates STAT3 and EIF4G Levels in First Trimester Human Placenta. J. Mol. Histol. 2016, 47, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Yang, C.; Cheng, Y.; Wang, J.; Zhang, S.; Yan, S.; He, F.; Yin, T.; Yang, J. Trophoblast-Derived IL-6 Serves as an Important Factor for Normal Pregnancy by Activating Stat3-Mediated M2 Macrophages Polarization. Int. Immunopharmacol. 2021, 90, 555–563. [Google Scholar] [CrossRef]
- Hsiao, E.Y.; Patterson, P.H. Activation of the Maternal Immune System Induces Endocrine Changes in the Placenta via IL-6. Brain Behav. Immun. 2011, 25, 604–615. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, H.; Liu, M.; Yuan, Y.; Wang, Z.; Chen, Y.; Wei, J.; Su, F.; Zhang, J. Treg/Th17 Cell Imbalance and IL-6 Profile in Patients With Unexplained Recurrent Spontaneous Abortion. Reprod. Sci. 2017, 24, 882–890. [Google Scholar] [CrossRef]
- Pantos, K.; Grigoriadis, S.; Maziotis, E.; Pistola, K.; Xystra, P.; Pantou, A.; Kokkali, G.; Pappas, A.; Lambropoulou, M.; Sfakianoudis, K.; et al. The Role of Interleukins in Recurrent Implantation Failure: A Comprehensive Review of the Literature. Int. J. Mol. Sci. 2022, 23, 2198. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Yang, H.Y.; Huang, S.W.; Ou, G.; Hsu, Y.F.; Hsu, M.J. Interleukin-6 Induces Vascular Endothelial Growth Factor-C Expression via Src-FAK-STAT3 Signaling in Lymphatic Endothelial Cells. PLoS ONE 2016, 11, e0158839. [Google Scholar] [CrossRef]
- Niu, G.; Wright, K.L.; Huang, M.; Song, L.; Haura, E.; Turkson, J.; Zhang, S.; Wang, T.; Sinibaldi, D.; Coppola, D.; et al. Constitutive Stat3 Activity Up-Regulates VEGF Expression and Tumor Angiogenesis. Oncogene 2002, 21, 2000–2008. [Google Scholar] [CrossRef]
- Omere, C.; Richardson, L.; Saade, G.R.; Bonney, E.A.; Kechichian, T.; Menon, R. Interleukin (IL)-6: A Friend or Foe of Pregnancy and Parturition? Evidence From Functional Studies in Fetal Membrane Cells. Front. Physiol. 2020, 11, 891. [Google Scholar] [CrossRef]
- Fu, Y.; Tang, L.; Hu, M.; Xiang, Z.; Hu, Y. Changes of Serum Interleukin-6 in Healthy Pregnant Women and Establishment of Relevant Reference Intervals. Clin. Chim. Acta 2020, 502, 116–119. [Google Scholar] [CrossRef]
- del Barco, E.; Franco-Jarava, C.; Vargas, M.; Maíz, N.; Arevalo, S.; Sánchez, M.Á.; Avilés, M.T.; Rodó, C.; Mendoza, M.; Goya, M.; et al. Reference Values for Interleukin-6 in the Amniotic Fluid of Asymptomatic Pregnant Women. Acta Obstet. Gynecol. Scand. 2023, 102, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Bentinger, M.; Brismar, K.; Dallner, G. The Antioxidant Role of Coenzyme Q. Mitochondrion 2007, 7, S41–S50. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Humaidan, P.; Alviggi, C.; Fischer, R. The Novel POSEIDON Stratification of “Low Prognosis Patients in Assisted Reproductive Technology” and Its Proposed Marker of Successful Outcome. F1000Research 2016, 5, 2911. [Google Scholar] [CrossRef]
- Ben-Meir, A.; Burstein, E.; Borrego-Alvarez, A.; Chong, J.; Wong, E.; Yavorska, T.; Naranian, T.; Chi, M.; Wang, Y.; Bentov, Y.; et al. Coenzyme Q10 Restores Oocyte Mitochondrial Function and Fertility during Reproductive Aging. Aging Cell 2015, 14, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Özcan, P.; Fıçıcıoğlu, C.; Kizilkale, O.; Yesiladali, M.; Tok, O.E.; Ozkan, F.; Esrefoglu, M. Can Coenzyme Q10 Supplementation Protect the Ovarian Reserve against Oxidative Damage? J. Assist. Reprod. Genet. 2016, 33, 1223–1230. [Google Scholar] [CrossRef]
- Takeuchi, T.; Neri, Q.V.; Katagiri, Y.; Rosenwaks, Z.; Palermo, G.D. Effect of Treating Induced Mitochondrial Damage on Embryonic Development and Epigenesis. Biol. Reprod. 2005, 72, 584–592. [Google Scholar] [CrossRef]
- Yildirim, R.M.; Seli, E. The Role of Mitochondrial Dynamics in Oocyte and Early Embryo Development. Semin. Cell Dev. Biol. 2024, 159–160, 52–61. [Google Scholar] [CrossRef]
- Altindag, O.; Erel, O.; Soran, N.; Celik, H.; Selek, S. Total Oxidative/Anti-Oxidative Status and Relation to Bone Mineral Density in Osteoporosis. Rheumatol. Int. 2008, 28, 317–321. [Google Scholar] [CrossRef]
- Edwards, D.; Jones, C.J.P.; Sibley, C.P.; Nelson, D.M. Paracellular Permeability Pathways in the Human Placenta: A Quantitative and Morphological Study of Maternal-Fetal Transfer of Horseradish Peroxidase. Placenta 1993, 14, 63–73. [Google Scholar] [CrossRef]
- Polidoro, G.; Di Ilio, C.; Del Boccio, G.; Zulli, P.; Federici, G. Glutathione S-Transferase Activity in Human Placenta. Biochem. Pharmacol. 1980, 29, 1677–1680. [Google Scholar] [CrossRef]
- Bristol, S.K.; Woodruff, T.K. Follicle-Restricted Compartmentalization of Transforming Growth Factor Beta Superfamily Ligands in the Feline Ovary. Biol. Reprod. 2004, 70, 846–859. [Google Scholar] [CrossRef]
- Yalçinkaya, E.; Çakiroǧlu, Y.; Doǧer, E.; Budak, Ö.; Çekmen, M.; Çalişkan, E. Effect of Follicular Fluid NO, MDA and GSH Levels on in Vitro Fertilization Outcomes. J. Turk. Ger. Gynecol. Assoc. 2013, 14, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Varela, C.; Labarta, E. Clinical Application of Antioxidants to Improve Human Oocyte Mitochondrial Function: A Review. Antioxidants 2020, 9, 1197. [Google Scholar] [CrossRef]
- Cheng, S.F.; Qin, X.S.; Han, Z.L.; Sun, X.F.; Feng, Y.N.; Yang, F.; Ge, W.; Li, L.; Zhao, Y.; De Felici, M.; et al. Nicotine Exposure Impairs Germ Cell Development in Human Fetal Ovaries Cultured in Vitro. Aging 2018, 10, 1556–1574. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Mabood Khan, M.; Serajuddin, M. Adverse Effect of Tobacco on Gynecological Disorders and Risk of Infection-Knowledge and Updates. Toxin Rev. 2024, 44, 1–14. [Google Scholar] [CrossRef]
- Sadeu, J.C.; Foster, W.G. Cigarette Smoke Condensate Exposure Delays Follicular Development and Function in a Stage-Dependent Manner. Fertil. Steril. 2011, 95, 2410–2417. [Google Scholar] [CrossRef]
- Amos, A.; Amos, A.; Wu, L.; Xia, H. The Warburg Effect Modulates DHODH Role in Ferroptosis: A Review. Cell Commun. Signal 2023, 21, 100. [Google Scholar] [CrossRef]
- Mohamad Fairus, A.K.; Choudhary, B.; Hosahalli, S.; Kavitha, N.; Shatrah, O. Dihydroorotate Dehydrogenase (DHODH) Inhibitors Affect ATP Depletion, Endogenous ROS and Mediate S-Phase Arrest in Breast Cancer Cells. Biochimie 2017, 135, 154–163. [Google Scholar] [CrossRef]
- Ertay, A.; Ewing, R.M.; Wang, Y. Synthetic Lethal Approaches to Target Cancers with Loss of PTEN Function. Genes Dis. 2023, 10, 2511–2527. [Google Scholar] [CrossRef]
- Hai, Y.; Fan, R.; Zhao, T.; Lin, R.; Zhuang, J.; Deng, A.; Meng, S.; Hou, Z.; Wei, G. A Novel Mitochondria-Targeting DHODH Inhibitor Induces Robust Ferroptosis and Alleviates Immune Suppression. Pharmacol. Res. 2024, 202, 107115. [Google Scholar] [CrossRef]
- Suzuki, T.; Suzuki, T. A Complete Landscape of Post-Transcriptional Modifications in Mammalian Mitochondrial TRNAs. Nucleic Acids Res. 2014, 42, 7346–7357. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, B.; Sochacka, E.; Düchler, M. TRNA Structural and Functional Changes Induced by Oxidative Stress. Cell Mol. Life Sci. 2011, 68, 4023. [Google Scholar] [CrossRef]
- Ebisch, I.M.W.; Peters, W.H.M.; Thomas, C.M.G.; Wetzels, A.M.M.; Peer, P.G.M.; Steegers-Theunissen, R.P.M. Homocysteine, Glutathione and Related Thiols Affect Fertility Parameters in the (Sub)Fertile Couple. Hum. Reprod. 2006, 21, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Ota, K.; Takahashi, T.; Han, A.; Damvaeba, S.; Mizunuma, H.; Kwak-Kim, J. Effects of MTHFR C677T Polymorphism on Vitamin D, Homocysteine and Natural Killer Cell Cytotoxicity in Women with Recurrent Pregnancy Losses. Hum. Reprod. 2020, 35, 1276–1287. [Google Scholar] [CrossRef]
- Dai, C.; Fei, Y.; Li, J.; Shi, Y.; Yang, X. A Novel Review of Homocysteine and Pregnancy Complications. Biomed. Res. Int. 2021, 2021, 6652231. [Google Scholar] [CrossRef]
- Guo, L.; Zheng, C.; Chen, J.; Du, R.; Li, F. Phenylalanine Regulates Milk Protein Synthesis via LAT1-MTOR Signaling Pathways in Bovine Mammary Epithelial Cells. Int. J. Mol. Sci. 2024, 25, 13135. [Google Scholar] [CrossRef] [PubMed]
- González, I.M.; Martin, P.M.; Burdsal, C.; Sloan, J.L.; Mager, S.; Harris, T.; Sutherland, A.E. Leucine and Arginine Regulate Trophoblast Motility through MTOR-Dependent and Independent Pathways in the Preimplantation Mouse Embryo. Dev. Biol. 2012, 361, 286–300. [Google Scholar] [CrossRef]
- Karahoda, R.; Abad, C.; Horackova, H.; Kastner, P.; Zaugg, J.; Cerveny, L.; Kucera, R.; Albrecht, C.; Staud, F. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front. Cell Dev. Biol. 2020, 8, 574034. [Google Scholar] [CrossRef]
- Fei, H.; Hou, J.; Wu, Z.; Zhang, L.; Zhao, H.; Dong, X.; Chen, Y. Plasma Metabolomic Profile and Potential Biomarkers for Missed Abortion. Biomed. Chromatogr. 2016, 30, 1942–1952. [Google Scholar] [CrossRef]
- Van Thuan, N.; Harayama, H.; Miyake, M. Characteristics of Preimplantational Development of Porcine Parthenogenetic Diploids Relative to the Existence of Amino Acids in Vitro. Biol. Reprod. 2002, 67, 1688–1698. [Google Scholar] [CrossRef]
- Rosario, F.J.; Urschitz, J.; Powell, T.L.; Brown, T.L.; Jansson, T. Overexpression of the LAT1 in Primary Human Trophoblast Cells Increases the Uptake of Essential Amino Acids and Activates MTOR Signaling. Clin. Sci. 2023, 137, 1651–1664. [Google Scholar] [CrossRef]
- Devran Bıldırcın, F.; Çelik, H.; Zehra Özdemir, A.; Karlı, P.; Avcı, B.; Batıoğlu, S. Effects of Tryptophan, a Precursor for Melatonin, on IVF Outcomes and Doppler Parameters. J. Health Sci. Med. 2020, 3, 97–101. [Google Scholar] [CrossRef]
- Ross, A.C.; Caballero, B.H.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease, 11th ed.; Wolters Kluwer Health Adis (ESP): Waltham, MA, USA, 2012; Volume 40, ISBN 9781605474618. [Google Scholar]
- Rasmussen, D.D.; Ishizuka, B.; Quigley, M.E.; Yen, S.S.C. Effects of Tyrosine and Tryptophan Ingestion on Plasma Catecholamine and 3,4-Dihydroxyphenylacetic Acid Concentrations. J. Clin. Endocrinol. Metab. 1983, 57, 760–763. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; DA Chuffa, L.G.; Zuccari, D.A.; Amaral, F.G.; Cipolla-Neto, J. Melatonin-Mediated Actions and Circadian Functions That Improve Implantation, Fetal Health and Pregnancy Outcome. Reprod. Toxicol. 2024, 124, 108534. [Google Scholar] [CrossRef] [PubMed]
- Perić, M.; Bečeheli, I.; Čičin-Šain, L.; Desoye, G.; Štefulj, J. Serotonin System in the Human Placenta—The Knowns and Unknowns. Front. Endocrinol. 2022, 13, 1061317. [Google Scholar] [CrossRef]
- Van Spronsen, F.J.; Burlina, A.; Vici, C.D. Tyrosine Metabolism. In Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 353–364. [Google Scholar] [CrossRef]
- Markey, S.; Biemann, K.; Witkop, B. Isolation of Rhazidine and Akuammidine from Aspiosperma Quebracho Blanco. The Structure of Rhazidine. Tetrahedron Lett. 1967, 8, 157–160. [Google Scholar] [CrossRef]
- Hino, T.; Nakagawa, M. Chapter 1 Chemistry and Reactions of Cyclic Tautomers of Tryptamines and Tryptophans. Alkaloids Chem. Pharmacol. 1989, 34, 1–75. [Google Scholar] [CrossRef]
- Éles, J.; Kalaus, G.; Lévai, A.; Greiner, I.; Kajtár-Peredy, M.; Szabó, P.; Szabó, L.; Szántay, C. Synthesis of Vinca Alakaloids and Realated Compounds 98. Oxidation with Dimethyldioxirane of Compounds Containing the Aspidospermane and Quebrachamine Ring System. A Simple Synthesis of (7S,20S)-(+)-Rhazidigenine and (2R,7S,20S)-(+)-Rhazidine. J. Heterocycl. Chem. 2002, 39, 767–771. [Google Scholar] [CrossRef]
- Ngan, V.K.; Bellman, K.; Hill, B.T.; Wilson, L.; Jordan, M.A. Mechanism of Mitotic Block and Inhibition of Cell Proliferation by the Semisynthetic Vinca Alkaloids Vinorelbine and Its Newer Derivative Vinflunine. Mol. Pharmacol. 2001, 60, 225–232. [Google Scholar] [CrossRef]
- Haussler, M.R.; Whitfield, G.K.; Haussler, C.A.; Hsieh, J.C.; Thompson, P.D.; Selznick, S.H.; Dominguez, C.E.; Jurutka, P.W. The Nuclear Vitamin D Receptor: Biological and Molecular Regulatory Properties Revealed. J. Bone Miner. Res. 1998, 13, 325–349. [Google Scholar] [CrossRef]
- Thill, M.; Becker, S.; Fischer, D.; Cordes, T.; Hornemann, A.; Diedrich, K.; Salehin, D.; Friedrich, M. Expression of Prostaglandin Metabolising Enzymes COX-2 and 15-PGDH and VDR in Human Granulosa Cells. Anticancer Res. 2009, 29, 3611–3618. [Google Scholar] [PubMed]
- Merhi, Z.; Buyuk, E.; Cipolla, M.J. Advanced Glycation End Products Alter Steroidogenic Gene Expression by Granulosa Cells: An Effect Partially Reversible by Vitamin D. Mol. Hum. Reprod. 2018, 24, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Parikh, G.; Varadinova, M.; Suwandhi, P.; Araki, T.; Rosenwaks, Z.; Poretsky, L.; Seto-Young, D. Vitamin D Regulates Steroidogenesis and Insulin-like Growth Factor Binding Protein-1 (IGFBP-1) Production in Human Ovarian Cells. Horm. Metab. Res. 2010, 42, 754–757. [Google Scholar] [CrossRef] [PubMed]
- Alnimera, A.; Bhamidimarri, P.M.; Talaat, I.M.; Alkhayaal, N.; Eltayeb, A.; Ali, N.; Abusnana, S.; Hamoudi, R.; Bendardaf, R. Association Between Expression of Vitamin D Receptor and Insulin-Like Growth Factor 1 Receptor Among Breast Cancer Patients. World J. Oncol. 2023, 14, 67–74. [Google Scholar] [CrossRef]
- Ameri, P.; Giusti, A.; Boschetti, M.; Murialdo, G.; Minuto, F.; Ferone, D. Interactions between Vitamin D and IGF-I: From Physiology to Clinical Practice. Clin. Endocrinol. 2013, 79, 457–463. [Google Scholar] [CrossRef]
- Li, W.; Yu, T. Relationship between 25-Hydroxyvitamin D and IGF1: A Cross-Sectional Study of the Third National Health and Nutrition Examination Survey Participants. J. Health Popul. Nutr. 2023, 42, 35. [Google Scholar] [CrossRef]
- Kinuta, K.; Tanaka, H.; Moriwake, T.; Aya, K.; Kato, S.; Seino, Y. Vitamin D Is an Important Factor in Estrogen Biosynthesis of Both Female and Male Gonads. Endocrinology 2000, 141, 1317–1324. [Google Scholar] [CrossRef]
- Hong, S.H.; Lee, J.E.; Kim, H.S.; Jung, Y.J.; Hwang, D.Y.; Lee, J.H.; Yang, S.Y.; Kim, S.C.; Cho, S.K.; An, B.S. Effect of Vitamin D3 on Production of Progesterone in Porcine Granulosa Cells by Regulation of Steroidogenic Enzymes. J. Biomed. Res. 2016, 30, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Kim, M.; Son, Y.; Huang, X.; Kim, H.; Lee, J.H.; Cho, J.; Ulrich, B.; Broxmeyer, H.E.; Kim, C.H. Cutting Edge: Progesterone Directly Upregulates Vitamin d Receptor Gene Expression for Efficient Regulation of T Cells by Calcitriol. J. Immunol. 2015, 194, 883–886. [Google Scholar] [CrossRef]
- Monastra, G.; De Grazia, S.; De Luca, L.; Vittorio, S.; Unfer, V. Vitamin D: A Steroid Hormone with Progesterone-like Activity. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2502–2512. [Google Scholar] [CrossRef]
- Moridi, I.; Chen, A.; Tal, O.; Tal, R. The Association between Vitamin D and Anti-Müllerian Hormone: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1567. [Google Scholar] [CrossRef]
- Di Rosa, M.; Malaguarnera, M.; Nicoletti, F.; Malaguarnera, L. Vitamin D3: A Helpful Immuno-Modulator. Immunology 2011, 134, 123–139. [Google Scholar] [CrossRef]
- Liu, N.Q.; Kaplan, A.T.; Lagishetty, V.; Ouyang, Y.B.; Ouyang, Y.; Simmons, C.F.; Equils, O.; Hewison, M. Vitamin D and the Regulation of Placental Inflammation. J. Immunol. 2011, 186, 5968–5974. [Google Scholar] [CrossRef]
- Azmi, A.; Rismani, M.; Pourmontaseri, H.; Mirzaii, E.; Niknia, S.; Miladpour, B. The Role of Vitamin D Receptor and IL-6 in COVID-19. Mol. Genet. Genom. Med. 2023, 11, e2172. [Google Scholar] [CrossRef]
- Cimmino, G.; Conte, S.; Morello, M.; Pellegrino, G.; Marra, L.; Morello, A.; Nicoletti, G.; De Rosa, G.; Golino, P.; Cirillo, P. Vitamin D Inhibits IL-6 Pro-Atherothrombotic Effects in Human Endothelial Cells: A Potential Mechanism for Protection against COVID-19 Infection? J. Cardiovasc. Dev. Dis. 2022, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Agrawal, D.K. Vitamin D and Inflammatory Diseases. J. Inflamm. Res. 2014, 7, 69–87. [Google Scholar] [CrossRef]
- Ozkan, S.; Jindal, S.; Greenseid, K.; Shu, J.; Zeitlian, G.; Hickmon, C.; Pal, L. Replete Vitamin D Stores Predict Reproductive Success Following in Vitro Fertilization. Fertil. Steril. 2010, 94, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, S.; Porri, D.; De Giuseppe, R.; Manuelli, M.; Alessio, F.; Cena, H. The Controversial Role of Vitamin D as an Antioxidant: Results from Randomised Controlled Trials. Nutr. Res. Rev. 2019, 32, 99–105. [Google Scholar] [CrossRef]
- Jain, S.K.; Micinski, D. Vitamin D Upregulates Glutamate Cysteine Ligase and Glutathione Reductase, and GSH Formation, and Decreases ROS and MCP-1 and IL-8 Secretion in High-Glucose Exposed U937 Monocytes. Biochem. Biophys. Res. Commun. 2013, 437, 7–11. [Google Scholar] [CrossRef]
- Nagy, R.A.; Hollema, H.; Andrei, D.; Jurdzinski, A.; Kuipers, F.; Hoek, A.; Tietge, U.J.F. The Origin of Follicular Bile Acids in the Human Ovary. Am. J. Pathol. 2019, 189, 2036–2045. [Google Scholar] [CrossRef]
- Nagy, R.A.; Van Montfoort, A.P.A.; Dikkers, A.; Van Echten-Arends, J.; Homminga, I.; Land, J.A.; Hoek, A.; Tietge, U.J.F. Presence of Bile Acids in Human Follicular Fluid and Their Relation with Embryo Development in Modified Natural Cycle IVF. Hum. Reprod. 2015, 30, 1102–1109. [Google Scholar] [CrossRef]
- Luddi, A.; Capaldo, A.; Focarelli, R.; Gori, M.; Morgante, G.; Piomboni, P.; De Leo, V. Antioxidants Reduce Oxidative Stress in Follicular Fluid of Aged Women Undergoing IVF. Reprod. Biol. Endocrinol. 2016, 14, 57. [Google Scholar] [CrossRef]
- Schweigert, F.J.; Zucker, H. Concentrations of Vitamin A, Beta-Carotene and Vitamin E in Individual Bovine Follicles of Different Quality. J. Reprod. Fertil. 1988, 82, 575–579. [Google Scholar] [CrossRef]
- Damdimopoulou, P.; Chiang, C.; Flaws, J.A. Retinoic Acid Signaling in Ovarian Folliculogenesis and Steroidogenesis. Reprod. Toxicol. 2019, 87, 32–41. [Google Scholar] [CrossRef]
- Berry, D.C.; Levi, L.; Noy, N. Holo-Retinol-Binding Protein and Its Receptor STRA6 Drive Oncogenic Transformation. Cancer Res. 2014, 74, 6341–6351. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.W.; Ingold, K.U. Autoxidation of Biological Molecules. 1. The Antioxidant Activity of Vitamin E and Related Chain-Breaking Phenolic Antioxidants in Vitro. J. Am. Chem. Soc. 1981, 103, 6472–6477. [Google Scholar] [CrossRef]
- Gupta, S.; Agarwal, A.; Banerjee, J.; Alvarez, J.G. The Role of Oxidative Stress in Spontaneous Abortion and Recurrent Pregnancy Loss: A Systematic Review. Obstet. Gynecol. Surv. 2007, 62, 335–347. [Google Scholar] [CrossRef]
- Hsu, C.C.; Cheng, C.H.; Hsu, C.L.; Lee, W.J.; Huang, S.C.; Huang, Y.C. Role of Vitamin B6 Status on Antioxidant Defenses, Glutathione, and Related Enzyme Activities in Mice with Homocysteine-Induced Oxidative Stress. Food Nutr. Res. 2015, 59, 25702. [Google Scholar] [CrossRef]
- Kannan, K.; Jain, S.K. Effect of Vitamin B6 on Oxygen Radicals, Mitochondrial Membrane Potential, and Lipid Peroxidation in H2O2-Treated U937 Monocytes. Free Radic. Biol. Med. 2004, 36, 423–428. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.M.; Xu, W.H.; Tian, Y.Q.; Liu, X.L.; Xia, C.Y.; Zhang, L.; Li, S.S.; Jin, Z.; Wu, X.L.; et al. Status of Maternal Serum B Vitamins and Pregnancy Outcomes: New Insights from in Vitro Fertilization and Embryo Transfer (IVF-ET) Treatment. Front. Nutr. 2022, 9, 962212. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Yu, Y.; Sun, Z.-G.; Song, J.-Y.; Wang, A.-J. Metabolomic Analysis of Human Follicular Fluid: Potential Follicular Fluid Markers of Reproductive Aging. Available online: https://www.researchgate.net/publication/329290484_Metabolomic_Analysis_Of_Human_Follicular_Fluid_Potential_Follicular_Fluid_Markers_Of_Reproductive_Aging (accessed on 31 December 2024).
- Hu, Y.; Zhang, R.; Zhang, S.; Ji, Y.; Zhou, Q.; Leng, L.; Meng, F.; Gong, F.; Lu, G.; Lin, G.; et al. Transcriptomic Profiles Reveal the Characteristics of Oocytes and Cumulus Cells at GV, MI, and MII in Follicles before Ovulation. J. Ovarian Res. 2023, 16, 225. [Google Scholar] [CrossRef] [PubMed]
- Brecher, P. The Interaction of Long-Chain Acyl CoA with Membranes. Mol. Cell Biochem. 1983, 57, 3–15. [Google Scholar] [CrossRef]
- Mingorance, C.; Rodriguez-Rodriguez, R.; Justo, M.L.; Herrera, M.D.; de Sotomayor, M.A. Pharmacological Effects and Clinical Applications of Propionyl-L-Carnitine. Nutr. Rev. 2011, 69, 279–290. [Google Scholar] [CrossRef]
- Muoio, D.M.; Neufer, P.D. Lipid-Induced Mitochondrial Stress and Insulin Action in Muscle. Cell Metab. 2012, 15, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Mosior, M.; Epand, R.M. Mechanism of Activation of Protein Kinase C: Roles of Diolein and Phosphatidylserine. Biochemistry 1993, 32, 66–75. [Google Scholar] [CrossRef]
- Wen, X.; Kuang, Y.; Zhou, L.; Yu, B.; Chen, Q.; Fu, Y.; Yan, Z.; Guo, H.; Lyu, Q.; Xie, J.; et al. Lipidomic Components Alterations of Human Follicular Fluid Reveal the Relevance of Improving Clinical Outcomes in Women Using Progestin-Primed Ovarian Stimulation Compared to Short-Term Protocol. Med. Sci. Monit. 2018, 24, 3357–3365. [Google Scholar] [CrossRef]
- Yang, L.V.; Radu, C.G.; Wang, L.; Riedinger, M.; Witte, O.N. Gi-Independent Macrophage Chemotaxis to Lysophosphatidylcholine via the Immunoregulatory GPCR G2A. Blood 2005, 105, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, A.B.; Iaciura, B.M.F.; Nohara, L.L.; Lopes, C.D.; Veas, E.M.C.; Mariano, V.S.; Bozza, P.T.; Lopes, U.G.; Atella, G.C.; Almeida, I.C.; et al. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-ΚB Translocation and MAPK/ERK Phosphorylation. PLoS ONE 2013, 8, e76233. [Google Scholar] [CrossRef]
- Huang, Y.H.; Schäfer-Elinder, L.; Wu, R.; Claesson, H.E.; Frostegård, J. Lysophosphatidylcholine (LPC) Induces Proinflammatory Cytokines by a Platelet-Activating Factor (PAF) Receptor-Dependent Mechanism. Clin. Exp. Immunol. 1999, 116, 326–331. [Google Scholar] [CrossRef]
- Sato, A.; Kumagai, T.; Ebina, K. A Synthetic Biotinylated Peptide, BP21, Inhibits the Induction of MRNA Expression of Inflammatory Substances by Oxidized- and Lyso-Phosphatidylcholine. Drug Dev. Res. 2014, 75, 246–256. [Google Scholar] [CrossRef]
- Kuniyasu, A.; Tokunaga, M.; Yamamoto, T.; Inoue, S.; Obama, K.; Kawahara, K.; Nakayama, H. Oxidized LDL and Lysophosphatidylcholine Stimulate Plasminogen Activator Inhibitor-1 Expression through Reactive Oxygen Species Generation and ERK1/2 Activation in 3T3-L1 Adipocytes. Biochim. Biophys. Acta 2011, 1811, 153–162. [Google Scholar] [CrossRef]
- Hasegawa, H.; Lei, J.; Matsumoto, T.; Onishi, S.; Suemori, K.; Yasukawa, M. Lysophosphatidylcholine Enhances the Suppressive Function of Human Naturally Occurring Regulatory T Cells through TGF-β Production. Biochem. Biophys. Res. Commun. 2011, 415, 526–531. [Google Scholar] [CrossRef]
- Inoue, M.; Ma, L.; Aoki, J.; Ueda, H. Simultaneous Stimulation of Spinal NK1 and NMDA Receptors Produces LPC Which Undergoes ATX-Mediated Conversion to LPA, an Initiator of Neuropathic Pain. J. Neurochem. 2008, 107, 1556–1565. [Google Scholar] [CrossRef]
- Sonoda, H.; Aoki, J.; Hiramatsu, T.; Ishida, M.; Bandoh, K.; Nagai, Y.; Taguchi, R.; Inoue, K.; Arai, H. A Novel Phosphatidic Acid-Selective Phospholipase A1 That Produces Lysophosphatidic Acid. J. Biol. Chem. 2002, 277, 34254–34263. [Google Scholar] [CrossRef]
- Boruszewska, D.; Torres, A.C.; Kowalczyk-Zieba, I.; Diniz, P.; Batista, M.; Lopes-Da-Costa, L.; Woclawek-Potocka, I. The Effect of Lysophosphatidic Acid during in Vitro Maturation of Bovine Oocytes: Embryonic Development and MRNA Abundances of Genes Involved in Apoptosis and Oocyte Competence. Mediat. Inflamm. 2014, 2014, 670670. [Google Scholar] [CrossRef]
- Woclawek-Potocka, I.; Kondraciuk, K.; Skarzynski, D.J. Lysophosphatidic Acid Stimulates Prostaglandin E2 Production in Cultured Stromal Endometrial Cells through LPA1 Receptor. Exp. Biol. Med. 2009, 234, 986–993. [Google Scholar] [CrossRef]
- Blunsom, N.J. Different CDP-Diacylglycerol Synthase (CDS) Enzymes Participate in the Synthesis of Cardiolipin in Mitochondria and Phosphatidylinositol at the Endoplasmic Reticulum. Ph.D. Thesis, UCL (University College London), London, UK, 2020. [Google Scholar]
- Semba, R.D.; Zhang, P.; Adelnia, F.; Sun, K.; Gonzalez-Freire, M.; Salem, N.; Brennan, N.; Spencer, R.G.; Fishbein, K.; Khadeer, M.; et al. Low Plasma Lysophosphatidylcholines Are Associated with Impaired Mitochondrial Oxidative Capacity in Adults in the Baltimore Longitudinal Study of Aging. Aging Cell 2019, 18, e12915. [Google Scholar] [CrossRef]
- Rios Candelore, M.; Wright, M.J.; Tota, L.M.; Milligan, J.; Shei, G.j.; Bergstrom, J.D.; Mandala, S.M. Phytosphingosine 1-Phosphate: A High Affinity Ligand for the S1P4/Edg-6 Receptor. Biochem. Biophys. Res. Commun. 2002, 297, 600–606. [Google Scholar] [CrossRef]
- Schürer, N.Y.; Plewig, G.; Elias, P.M. Stratum Corneum Lipid Function. Dermatologica 1991, 183, 77–94. [Google Scholar] [CrossRef]
- Cha, H.J.; Lee, J.P.; Lee, K.S.; Lee, K.K.; Choi, M.J.; Lee, D.K.; Kim, K.N.; An, S. Phytosphigosine-1-Phosphate Increases Sensitivity of EGF-Dependent Cell Proliferation. Int. J. Mol. Med. 2014, 33, 649–653. [Google Scholar] [CrossRef]
- Kwon, S.B.; An, S.; Kim, M.J.; Kim, K.R.; Choi, Y.M.; Ahn, K.J.; An, I.S.; Cha, H.J. Phytosphingosine-1-Phosphate and Epidermal Growth Factor Synergistically Restore Extracellular Matrix in Human Dermal Fibroblasts in Vitro and in Vivo. Int. J. Mol. Med. 2017, 39, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Jantan, I.; Haque, M.A.; Arshad, L.; Harikrishnan, H.; Septama, A.W.; Mohamed-Hussein, Z.A. Dietary Polyphenols Suppress Chronic Inflammation by Modulation of Multiple Inflammation-Associated Cell Signaling Pathways. J. Nutr. Biochem. 2021, 93, 108634. [Google Scholar] [CrossRef]
- Mendoza, G.; Álvarez, A.I.; Pulido, M.M.; Molina, A.J.; Merino, G.; Real, R.; Fernandes, P.; Prieto, J.G. Inhibitory Effects of Different Antioxidants on Hyaluronan Depolymerization. Carbohydr. Res. 2007, 342, 96–102. [Google Scholar] [CrossRef]
- Thomas, J.M.F.; Hullin, F.; Chap, H.; Douste-Blazy, L. Phosphatidylcholine Is the Major Phospholipid Providing Arachidonic Acid for Prostacyclin Synthesis in Thrombin-Stimulated Human Endothelial Cells. Thromb. Res. 1984, 34, 117–123. [Google Scholar] [CrossRef]
- Martins, T.S.; Fonseca, B.M.; Rebelo, I. The Role of Macrophages Phenotypes in the Activation of Resolution Pathways within Human Granulosa Cells. Reprod. Biol. Endocrinol. 2022, 20, 116. [Google Scholar] [CrossRef]
- Boots, C.E.; Jungheim, E.S. Inflammation and Human Ovarian Follicular Dynamics. Semin. Reprod. Med. 2015, 33, 270–275. [Google Scholar] [CrossRef]
- Pirman, D.A.; Efuet, E.; Ding, X.P.; Pan, Y.; Tan, L.; Fischer, S.M.; DuBois, R.N.; Yang, P. Changes in Cancer Cell Metabolism Revealed by Direct Sample Analysis with MALDI Mass Spectrometry. PLoS ONE 2013, 8, e61379. [Google Scholar] [CrossRef]
- Robertson, R.P. The COX-2/PGE2/EP3/Gi/o/CAMP/GSIS Pathway in the Islet: The Beat Goes On. Diabetes 2017, 66, 1464–1466. [Google Scholar] [CrossRef]
- Hawcroft, G.; Loadman, P.M.; Belluzzi, A.; Hull, M.A. Effect of Eicosapentaenoic Acid on E-Type Prostaglandin Synthesis and EP4 Receptor Signaling in Human Colorectal Cancer Cells. Neoplasia 2010, 12, 618–627. [Google Scholar] [CrossRef]
- Prihandoko, R.; Alvarez-Curto, E.; Hudson, B.D.; Butcher, A.J.; Ulven, T.; Miller, A.M.; Tobin, A.B.; Milligan, G. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120. Mol. Pharmacol. 2016, 89, 505–520. [Google Scholar] [CrossRef]
- Su, Y.Q.; Denegre, J.M.; Wigglesworth, K.; Pendola, F.L.; O’Brien, M.J.; Eppig, J.J. Oocyte-Dependent Activation of Mitogen-Activated Protein Kinase (ERK1/2) in Cumulus Cells Is Required for the Maturation of the Mouse Oocyte-Cumulus Cell Complex. Dev. Biol. 2003, 263, 126–138. [Google Scholar] [CrossRef]
- Basak, S.; Mallick, R.; Duttaroy, A.K. Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients 2020, 12, 3615. [Google Scholar] [CrossRef] [PubMed]
- Lager, S.; Gaccioli, F.; Ramirez, V.I.; Jones, H.N.; Jansson, T.; Powell, T.L. Oleic Acid Stimulates System A Amino Acid Transport in Primary Human Trophoblast Cells Mediated by Toll-like Receptor 4. J. Lipid Res. 2013, 54, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Varga, T.; Czimmerer, Z.; Nagy, L. PPARs Are a Unique Set of Fatty Acid Regulated Transcription Factors Controlling Both Lipid Metabolism and Inflammation. Biochim. Biophys. Acta 2011, 1812, 1007–1022. [Google Scholar] [CrossRef]
- Wieser, F.; Waite, L.; Depoix, C.; Taylor, R.N. PPAR Action in Human Placental Development and Pregnancy and Its Complications. PPAR Res. 2008, 2008, 527048. [Google Scholar] [CrossRef]
- Jawerbaum, A.; Capobianco, E. Review: Effects of PPAR Activation in the Placenta and the Fetus: Implications in Maternal Diabetes. Placenta 2011, 32, S212–S217. [Google Scholar] [CrossRef]
- Nasri, K.; Ben Jamaa, N.; Siala Gaigi, S.; Feki, M.; Marrakchi, R. Docosahexaenoic Acid, Eicosapentaenoic Acid, Arachidonic Acid, and Neural Tube Defects in Tunisian Population. Birth Defects Res. 2024, 116, e2372. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, F. Linoleic Acid Induces Human Ovarian Granulosa Cell Inflammation and Apoptosis through the ER-FOXO1-ROS-NFκB Pathway. Sci. Rep. 2024, 14, 6392. [Google Scholar] [CrossRef]
- Zhou, X.; Mo, Z.; Li, Y.; Huang, L.; Yu, S.; Ge, L.; Hu, Y.; Shi, S.; Zhang, L.; Wang, L.; et al. Oleic Acid Reduces Steroidogenesis by Changing the Lipid Type Stored in Lipid Droplets of Ovarian Granulosa Cells. J. Anim. Sci. Biotechnol. 2022, 13, 27. [Google Scholar] [CrossRef]
- Duffy, D.M. Novel Contraceptive Targets to Inhibit Ovulation: The Prostaglandin E2 Pathway. Hum. Reprod. Update 2015, 21, 652–670. [Google Scholar] [CrossRef]
- Demers, L.M.; Rees, M.C.P.; Turnbull, A.C. Arachidonic Acid Metabolism by the Non-Pregnant Human Uterus. Prostaglandins Leukot. Med. 1984, 14, 175–180. [Google Scholar] [CrossRef]
- Ben-Ami, I.; Freimann, S.; Armon, L.; Dantes, A.; Strassburger, D.; Friedler, S.; Raziel, A.; Seger, R.; Ron-El, R.; Amsterdam, A. PGE2 Up-Regulates EGF-like Growth Factor Biosynthesis in Human Granulosa Cells: New Insights into the Coordination between PGE2 and LH in Ovulation. Mol. Hum. Reprod. 2006, 12, 593–599. [Google Scholar] [CrossRef]
- Peng, L.; Chelariu-raicu, A.; Ye, Y.; Ma, Z.; Yang, H.; Ishikawa-ankerhold, H.; Rahmeh, M.; Mahner, S.; Jeschke, U.; von Schönfeldt, V. Prostaglandin E2 Receptor 4 (EP4) Affects Trophoblast Functions via Activating the CAMP-PKA-PCREB Signaling Pathway at the Maternal-Fetal Interface in Unexplained Recurrent Miscarriage. Int. J. Mol. Sci. 2021, 22, 9134. [Google Scholar] [CrossRef]
- Sales, K.J.; Grant, V.; Catalano, R.D.; Jabbour, H.N. Chorionic Gonadotrophin Regulates CXCR4 Expression in Human Endometrium via E-Series Prostanoid Receptor 2 Signalling to PI3K-ERK1/2: Implications for Fetal-Maternal Crosstalk for Embryo Implantation. Mol. Hum. Reprod. 2011, 17, 22–32. [Google Scholar] [CrossRef]
- Hoggatt, J.; Singh, P.; Sampath, J.; Pelus, L.M. Prostaglandin E2 Enhances Hematopoietic Stem Cell Homing, Survival, and Proliferation. Blood 2009, 113, 5444–5455. [Google Scholar] [CrossRef]
- Zhou, W.H.; Du, M.R.; Dong, L.; Yu, J.; Li, D.J. Chemokine CXCL12 Promotes the Cross-Talk between Trophoblasts and Decidual Stromal Cells in Human First-Trimester Pregnancy. Hum. Reprod. 2008, 23, 2669–2679. [Google Scholar] [CrossRef]
- Jabbour, H.N.; Boddy, S.C. Prostaglandin E2 Induces Proliferation of Glandular Epithelial Cells of the Human Endometrium via Extracellular Regulated Kinase 1/2-Mediated Pathway. J. Clin. Endocrinol. Metab. 2003, 88, 4481–4487. [Google Scholar] [CrossRef]
- Gentilini, D.; Busacca, M.; Di Francesco, S.; Vignali, M.; Viganò, P.; Di Blasio, A.M. PI3K/Akt and ERK1/2 Signalling Pathways Are Involved in Endometrial Cell Migration Induced by 17beta-Estradiol and Growth Factors. Mol. Hum. Reprod. 2007, 13, 317–322. [Google Scholar] [CrossRef]
- Dimitriadis, E.; Stoikos, C.; Baca, M.; Fairlie, W.D.; McCoubrie, J.E.; Salamonsen, L.A. Relaxin and Prostaglandin E(2) Regulate Interleukin 11 during Human Endometrial Stromal Cell Decidualization. J. Clin. Endocrinol. Metab. 2005, 90, 3458–3465. [Google Scholar] [CrossRef]
- Yates, L.A.; Norbury, C.J.; Gilbert, R.J.C. The Long and Short of MicroRNA. Cell 2013, 153, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Jin, L.; Zhang, F.; Sarnow, P.; Kay, M.A. Biological Basis for Restriction of MicroRNA Targets to the 3′ Untranslated Region in Mammalian MRNAs. Nat. Struct. Mol. Biol. 2009, 16, 144–150. [Google Scholar] [CrossRef]
- Lee, I.; Ajay, S.S.; Jong, I.Y.; Hyun, S.K.; Su, H.H.; Nam, H.K.; Dhanasekaran, S.M.; Chinnaiyan, A.M.; Athey, B.D. New Class of MicroRNA Targets Containing Simultaneous 5′-UTR and 3′-UTR Interaction Sites. Genome Res. 2009, 19, 1175–1183. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, Z.; Liao, Z.; Zhang, Y.; Qu, M.; Wu, F.; Tian, J.; Zhao, H.; Peng, Q.; Zheng, W.; et al. MiRNA Profiling of Granulosa Cell-Derived Exosomes Reveals Their Role in Promoting Follicle Development. J. Cell Physiol. 2024, 239, 20–35. [Google Scholar] [CrossRef]
- Qasemi, M.; Amidi, F. Extracellular MicroRNA Profiling in Human Follicular Fluid: New Biomarkers in Female Reproductive Potential. J. Assist. Reprod. Genet. 2020, 37, 1769–1780. [Google Scholar] [CrossRef]
- Sohel, M.M.H.; Hoelker, M.; Noferesti, S.S.; Salilew-Wondim, D.; Tholen, E.; Looft, C.; Rings, F.; Uddin, M.J.; Spencer, T.E.; Schellander, K.; et al. Exosomal and Non-Exosomal Transport of Extra-Cellular MicroRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence. PLoS ONE 2013, 8, e78505. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. MiRDB: An Online Database for Prediction of Functional MicroRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, X. Prediction of Functional MicroRNA Targets by Integrative Modeling of MicroRNA Binding and Target Expression Data. Genome Biol. 2019, 20, 18. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. MiRDB—MicroRNA Target Prediction Database. Available online: https://mirdb.org/index.html (accessed on 26 December 2024).
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. RefSeq: NCBI Reference Sequence Database. Available online: https://www.ncbi.nlm.nih.gov/refseq/ (accessed on 26 December 2024).
- Bandyopadhyay, S.; Mitra, R. TargetMiner: MicroRNA Target Prediction with Systematic Identification of Tissue-Specific Negative Examples. Bioinformatics 2009, 25, 2625–2631. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Mitra, R. TargetMiner|List of MiRNA Targets Predicted by TargetMiner|Sanghamitra Bandyopadhyay and Ramkrishna Mitra. Available online: https://www.isical.ac.in/~bioinfo_miu/mirnalist.html (accessed on 26 December 2024).
- Sengupta, D.; Bandyopadhyay, S. Participation of MicroRNAs in Human Interactome: Extraction of MicroRNA-MicroRNA Regulations. Mol. Biosyst. 2011, 7, 1966–1973. [Google Scholar] [CrossRef]
- Sengupta, D.; Bandyopadhyay, S. PmmR|Putative MicroRNA MicroRNA Regulations|Debarka Sengupta and Sanghamitra Bandyopadhyay. Available online: https://www.isical.ac.in/~bioinfo_miu/pmmr.php (accessed on 26 December 2024).
- Predicted Targets for Hsa-MiR-26b-5p in MiRDB. Available online: https://mirdb.org/cgi-bin/search.cgi?searchType=miRNA&full=mirbase&searchBox=MIMAT0000083 (accessed on 26 December 2024).
- TargetMiner: Prediction of Hsa-MiR-26b-5p Targets. Available online: https://www.isical.ac.in/~bioinfo_miu/final_html_targetminer/hsa-miR-26b-5p (accessed on 26 December 2024).
- Homo Sapiens Prostaglandin-Endoperoxide Synthase 2 (PTGS2), MRNA–Nucleotide–NCBI. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NM_000963.4 (accessed on 26 December 2024).
- Jiang, X.; Renkema, H.; Pennings, B.; Pecheritsyna, S.; Schoeman, J.C.; Hankemeier, T.; Smeitink, J.; Beyrath, J. Mechanism of Action and Potential Applications of Selective Inhibition of Microsomal Prostaglandin E Synthase-1-Mediated PGE2 Biosynthesis by Sonlicromanol’s Metabolite KH176m. Sci. Rep. 2021, 11, 880. [Google Scholar] [CrossRef]
- Homo Sapiens Prostaglandin-Endoperoxide Synthase 1 (PTGS1), Transcript Variant 2, MRNA–Nucleotide–NCBI. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NM_080591.3 (accessed on 26 December 2024).
- Homo Sapiens Prostaglandin-Endoperoxide Synthase 1 (PTGS1), Transcript Variant 1, MRNA–Nucleotide–NCBI. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NM_000962.4 (accessed on 26 December 2024).
- Li, J.; Kong, X.; Zhang, J.; Luo, Q.; Li, X.; Fang, L. MiRNA-26b Inhibits Proliferation by Targeting PTGS2 in Breast Cancer. Cancer Cell Int. 2013, 13, 7. [Google Scholar] [CrossRef]
- Pairet, M.; Van Ryn, J.; Mauz, A.; Schierok, H.; Diederen, W.; Türck, D.; Engelhardt, G. Differential Inhibition of COX-1 and COX-2 by NSAIDs: A Summary of Results Obtained Using Various Test Systems. In Selective COX-2 Inhibitors; Springer: Berlin/Heidelberg, Germany, 1998; pp. 27–46. [Google Scholar] [CrossRef]
- Homo Sapiens 15-Hydroxyprostaglandin Dehydrogenase (HPGD), Transcript–Nucleotide–NCBI. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NM_000860.6 (accessed on 26 December 2024).
- Palla, A.R.; Ravichandran, M.; Wang, Y.X.; Alexandrova, L.; Yang, A.V.; Kraft, P.; Holbrook, C.A.; Schürch, C.M.; Ho, A.T.V.; Blau, H.M. Inhibition of Prostaglandin-Degrading Enzyme 15-PGDH Rejuvenates Aged Muscle Mass and Strength. Science 2021, 371, eabc8059. [Google Scholar] [CrossRef]
- Predicted Targets for Hsa-MiR-34a-5p in MiRDB. Available online: https://mirdb.org/cgi-bin/search.cgi?searchType=miRNA&full=mirbase&searchBox=MIMAT0000255 (accessed on 26 December 2024).
- TargetMiner: Prediction of Hsa-MiR-34a-5p Targets. Available online: https://www.isical.ac.in/~bioinfo_miu/final_html_targetminer/hsa-miR-34a-5p (accessed on 26 December 2024).
- Homo Sapiens Amphiregulin (AREG), MRNA–Nucleotide–NCBI. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NM_001657.4 (accessed on 26 December 2024).
- Predicted Targets for Hsa-MiR-145-5p in MiRDB. Available online: https://mirdb.org/cgi-bin/search.cgi?searchType=miRNA&full=mirbase&searchBox=MIMAT0000437 (accessed on 26 December 2024).
- Predicted Targets for Hsa-MiR-204-5p in MiRDB. Available online: https://mirdb.org/cgi-bin/search.cgi?searchType=miRNA&full=mirbase&searchBox=MIMAT0000265 (accessed on 26 December 2024).
- Homo Sapiens Calcium/Calmodulin Dependent Protein Kinase ID (CAMK1D),–Nucleotide–NCBI. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NM_153498.4 (accessed on 26 December 2024).
- Homo Sapiens Ephrin B2 (EFNB2), Transcript Variant 1, MRNA–Nucleotide–NCBI. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NM_004093.4 (accessed on 26 December 2024).
- Wathlet, S.; Adriaenssens, T.; Segers, I.; Verheyen, G.; Janssens, R.; Coucke, W.; Devroey, P.; Smitz, J. New Candidate Genes to Predict Pregnancy Outcome in Single Embryo Transfer Cycles When Using Cumulus Cell Gene Expression. Fertil. Steril. 2012, 98, 432–439.e4. [Google Scholar] [CrossRef]
- Simard, J.; Ricketts, M.L.; Gingras, S.; Soucy, P.; Feltus, F.A.; Melner, M.H. Molecular Biology of the 3beta-Hydroxysteroid Dehydrogenase/Delta5-Delta4 Isomerase Gene Family. Endocr. Rev. 2005, 26, 525–582. [Google Scholar] [CrossRef]
- Payne, A.H.; Hales, D.B. Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones. Endocr. Rev. 2004, 25, 947–970. [Google Scholar] [CrossRef]
- Du, E.; Li, X.; He, S.; Li, X.; He, S. The Critical Role of the Interplays of EphrinB2/EphB4 and VEGF in the Induction of Angiogenesis. Mol. Biol. Rep. 2020, 47, 4681–4690. [Google Scholar] [CrossRef]
- Shi, C.; Shen, H.; Fan, L.J.; Guan, J.; Zheng, X.B.; Chen, X.; Liang, R.; Zhang, X.W.; Cui, Q.H.; Sun, K.K.; et al. Endometrial MicroRNA Signature during the Window of Implantation Changed in Patients with Repeated Implantation Failure. Chin. Med. J. Engl. 2017, 130, 566–573. [Google Scholar] [CrossRef]
- Demir, K.; Caliskan, S.T.; Celik, S.; Akdeniz, M.; Goc, R.Y. The Effect of Folic Acid, B12, D, and E Vitamins and Melatonin Levels in the Follicular Fluid Taken by the Intracytoplasmic Sperm Injection Method on Pregnancy. Pak. J. Med. Sci. 2024, 40, 433–437. [Google Scholar] [CrossRef]
- He, C.-S.; Gleeson, M.; Fraser, W.D. Measurement of Circulating 25-Hydroxy Vitamin d Using Three Commercial Enzyme-Linked Immunosorbent Assay Kits with Comparison to Liquid Chromatography: Tandem Mass Spectrometry Method. ISRN Nutr. 2013, 2013, 723139. [Google Scholar] [CrossRef]
- Hanquez, C.; Urios, P.; Desfosses, B.; Samake, H.; Lince, E.; Rajkowski, K.M.; Cittanova, N. Enzyme-Linked Immunosorbent Assay (ELISA) for Steroid Hormones with Polyclonal and Monoclonal Antibodies: An Assay for Urinary Aldosterone. Clin. Chim. Acta 1987, 164, 71–82. [Google Scholar] [CrossRef]
- Daly, D.S.; White, A.M.; Varnum, S.M.; Anderson, K.K.; Zangar, R.C. Evaluating Concentration Estimation Errors in ELISA Microarray Experiments. BMC Bioinform. 2005, 6, 17. [Google Scholar] [CrossRef]
- Gonzalez, R.M.; Seurynck-Servoss, S.L.; Crowley, S.A.; Brown, M.; Omenn, G.S.; Hayes, D.F.; Zangar, R.C. Development and Validation of Sandwich ELISA Microarrays with Minimal Assay Interference. J. Proteome Res. 2008, 7, 2406–2414. [Google Scholar] [CrossRef]
- Selvarajah, S.; Negm, O.H.; Hamed, M.R.; Tubby, C.; Todd, I.; Tighe, P.J.; Harrison, T.; Fairclough, L.C. Development and Validation of Protein Microarray Technology for Simultaneous Inflammatory Mediator Detection in Human Sera. Mediat. Inflamm. 2014, 2014, 820304. [Google Scholar] [CrossRef]
- Seidel, M.; Niessner, R. Chemiluminescence Microarrays in Analytical Chemistry: A Critical Review. Anal. Bioanal. Chem. 2014, 406, 5589–5612. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, J.; Yang, Y.; He, Y.; Song, Y.; Hu, J.; Wang, Y.; Li, Q.; Yang, S. Comparison of a Chemiluminescence Immunoassay with LC-MS/MS in the Determination of the Plasma Aldosterone Concentration in Patients with Impaired Renal Function. Steroids 2025, 213, 109540. [Google Scholar] [CrossRef]
- Chafkin, J.E.; O’Brien, J.M.; Medrano, F.N.; Lee, H.Y.; Yeager, D.S.; Josephs, R.A. Chemiluminescent Immunoassay Overestimates Hormone Concentrations and Obscures Testosterone Sex Differences Relative to LC-MS/MS in a Field Study of Diverse Adolescents. Compr. Psychoneuroendocrinol. 2022, 10, 100132. [Google Scholar] [CrossRef]
- Rahman, A.; Al-Taiar, A.; Shaban, L.; Al-Sabah, R.; Mojiminiyi, O. The Routine Chemiluminescence Assay for Plasma 25-Hydroxyvitamin D Analysis Does Not Overestimate the Prevalence of Vitamin D Deficiency in Adolescents. Nutr. Res. 2020, 79, 60–67. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Gan, Y.; Yang, T.F.; Rao, F.; Yang, J. Comparison of the Serum Total 25-Hydroxyvitamin D Concentrations Using Chemiluminescent Immunoassay and Liquid Chromatography-Tandem Mass Spectrometry in Children. J. Nutr. Sci. Vitaminol. 2022, 68, 181–188. [Google Scholar] [CrossRef]
- Kang, J.; David, L.; Li, Y.; Cang, J.; Chen, S. Three-in-One Simultaneous Extraction of Proteins, Metabolites and Lipids for Multi-Omics. Front. Genet. 2021, 12, 635971. [Google Scholar] [CrossRef]
- Mahabee-Gittens, E.M.; Mazzella, M.J.; Doucette, J.T.; Merianos, A.L.; Stone, L.; Wullenweber, C.A.; Busgang, S.A.; Matt, G.E. Comparison of Liquid Chromatography Mass Spectrometry and Enzyme-Linked Immunosorbent Assay Methods to Measure Salivary Cotinine Levels in Ill Children. Int. J. Environ. Res. Public Health 2020, 17, 1157. [Google Scholar] [CrossRef]
- Dalvie, M.A.; Sinanovic, E.; London, L.; Cairncross, E.; Solomon, A.; Adam, H. Cost Analysis of ELISA, Solid-Phase Extraction, and Solid-Phase Microextraction for the Monitoring of Pesticides in Water. Environ. Res. 2005, 98, 143–150. [Google Scholar] [CrossRef]
- Ribeiro Neto, L.M.; Spinosa, H.S.; Salvadori, M.C. The Use of ELISA Tests and Immunoaffinity Chromatography Combined with Reversed-Phase High-Performance Liquid Chromatography for Dexamethasone Detection in Equine Urine. J. Anal. Toxicol. 1997, 21, 393–396. [Google Scholar] [CrossRef]
- Scalici, E.; Traver, S.; Mullet, T.; Molinari, N.; Ferrières, A.; Brunet, C.; Belloc, S.; Hamamah, S. Circulating MicroRNAs in Follicular Fluid, Powerful Tools to Explore in Vitro Fertilization Process. Sci. Rep. 2016, 6, 24976. [Google Scholar] [CrossRef]
- Cui, C.; Wang, J.; Han, X.; Wang, Q.; Zhang, S.; Liang, S.; Li, H.; Meng, L.; Zhang, C.; Chen, H. Identification of Small Extracellular Vesicle-Linked MiRNA Specifically Derived from Intrafollicular Cells in Women with Polycystic Ovary Syndrome. Reprod. Biomed. Online 2021, 42, 870–880. [Google Scholar] [CrossRef]
- Allanach, K.; Mengel, M.; Einecke, G.; Sis, B.; Hidalgo, L.G.; Mueller, T.; Halloran, P.F. Comparing Microarray versus RT-PCR Assessment of Renal Allograft Biopsies: Similar Performance despite Different Dynamic Ranges. Am. J. Transplant. 2008, 8, 1006–1015. [Google Scholar] [CrossRef]
- Raymond, F.; Carbonneau, J.; Boucher, N.; Robitaille, L.; Boisvert, S.; Wu, W.K.; De Serres, G.; Boivin, G.; Corbeil, J. Comparison of Automated Microarray Detection with Real-Time PCR Assays for Detection of Respiratory Viruses in Specimens Obtained from Children. J. Clin. Microbiol. 2009, 47, 743–750. [Google Scholar] [CrossRef]
- Busato, F.; Ursuegui, S.; Deleuze, J.F.; Tost, J. Multiplex Digital PCR for the Simultaneous Quantification of a MiRNA Panel. Anal. Chim. Acta 2025, 1335, 343440. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Tran, M.T.; Gomez, S.V.; Alenicheva, V.; Remcho, V.T. A Paper-Based Assay for the Determination of Total Antioxidant Capacity in Human Serum Samples. Biosensors 2024, 14, 559. [Google Scholar] [CrossRef]
- Tsao, Y.T.; Hsueh, Y.J.; Chen, H.C.; Cheng, C.M. Protocol for Assessing Total Antioxidant Capacity in Minimal Volumes of Varying Clinical Human Samples. STAR Protoc. 2024, 5, 102822. [Google Scholar] [CrossRef]
- Cassano, E.; Tosto, L.; Balestrieri, M.; Zicarelli, L.; Abrescia, P. Antioxidant Defense in the Follicular Fluid of Water Buffalo. Cell Physiol. Biochem. 1999, 9, 106–116. [Google Scholar] [CrossRef]
- Jerzak, M.; Putowski, L.; Baranowski, W. Homocysteine Level in Ovarian Follicular Fluid or Serum as a Predictor of Successful Fertilization. Ginekol. Pol. 2003, 74, 949–952. [Google Scholar]
- Otsuka, F.; Yao, Z.; Lee, T.H.; Yamamoto, S.; Erickson, G.F.; Shimasaki, S. Bone Morphogenetic Protein-15. Identification of Target Cells and Biological Functions. J. Biol. Chem. 2000, 275, 39523–39528. [Google Scholar] [CrossRef]
- Wang, Y.; Zagorevski, D.V.; Lennartz, M.R.; Loegering, D.J.; Stenken, J.A. Detection of in Vivo Matrix Metalloproteinase Activity Using Microdialysis Sampling and Liquid Chromatography/Mass Spectrometry. Anal. Chem. 2009, 81, 9961–9971. [Google Scholar] [CrossRef]
- Alam, S.F.; Kumar, S.; Ganguly, P. Measurement of Homocysteine: A Historical Perspective. J. Clin. Biochem. Nutr. 2019, 65, 171–177. [Google Scholar] [CrossRef]
- Bahrami, M.; Morris, M.B.; Day, M.L. Amino Acid Supplementation of a Simple Inorganic Salt Solution Supports Efficient in Vitro Maturation (IVM) of Bovine Oocytes. Sci. Rep. 2019, 9, 11739. [Google Scholar] [CrossRef]
- Bahrami, M.; Morris, M.B.; Day, M.L. Glutamine, Proline, and Isoleucine Support Maturation and Fertilisation of Bovine Oocytes. Theriogenology 2023, 201, 59–67. [Google Scholar] [CrossRef]
- Rezaei, N.; Chian, R.-C. Effects of Essential and Non-Essential Amino Acids on In-Vitro Maturation, Fertilization and Development of Immature Bovine Oocytes. Available online: https://www.researchgate.net/publication/26453667_Effects_of_essential_and_non-essential_amino_acids_on_in-vitro_maturation_fertilization_and_development_of_immature_bovine_oocytes (accessed on 30 December 2024).
- Sawado, A.; Ezoe, K.; Miki, T.; Ohata, K.; Amagai, A.; Shimazaki, K.; Okimura, T.; Kato, K. Fatty Acid Supplementation during Warming Improves Pregnancy Outcomes after Frozen Blastocyst Transfers: A Propensity Score-Matched Study. Sci. Rep. 2024, 14, 9343. [Google Scholar] [CrossRef]
- Ohata, K.; Ezoe, K.; Miki, T.; Kouraba, S.; Fujiwara, N.; Yabuuchi, A.; Kobayashi, T.; Kato, K. Effects of Fatty Acid Supplementation during Vitrification and Warming on the Developmental Competence of Mouse, Bovine and Human Oocytes and Embryos. Reprod. Biomed. Online 2021, 43, 14–25. [Google Scholar] [CrossRef]
- McKeegan, P.J.; Sturmey, R.G. The Role of Fatty Acids in Oocyte and Early Embryo Development. Reprod. Fertil. Dev. 2011, 24, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ullah, M.W.; Siddique, R.; Nabi, G.; Manan, S.; Yousaf, M.; Hou, H. Role of Recombinant DNA Technology to Improve Life. Int. J. Genom. 2016, 2016, 2405954. [Google Scholar] [CrossRef] [PubMed]
- Boissonneault, V.; St-Gelais, N.; Plante, I.; Provost, P. A Polymerase Chain Reaction-Based Cloning Strategy Applicable to Functional MicroRNA Studies. Anal. Biochem. 2008, 381, 166–168. [Google Scholar] [CrossRef] [PubMed]
Category | Detection Method | Follicular Fluid Biomarker | # | O.C. | O.Q. | F.R. | E.Q. | I.R. | P.R. | M.R. | L.B.R. |
---|---|---|---|---|---|---|---|---|---|---|---|
Proteins | ELISA | Complement C4B [14] | 1 | ↓ | |||||||
HRG [14] | 1 | ↑ | |||||||||
Cathepsin B [16] | 1 | ↑ | ↑ | ↑ | ↑ | ||||||
ELISA and Zymography | MMP-2 [18,19] | 2 | N | ↑/N | N | ↑ | |||||
MMP-9 [18,19] | 2 | N | ↑ | ↑/N | N | ||||||
Growth factors | ELISA | R-spondin2 and AREG [22] | 1 | ↑ | N | ||||||
ELISA and WB | BMP-15 [22,23] | 2 | ↑/N | ↑/N | ↑ | ||||||
ELISA | IGF-1 [24] | 1 | ↑ | ↑ | ↑ | ||||||
Steroid and Polypeptide hormones | ELISA and CLIA | Progesterone [26,28,29] | 3 | ↑ | N | ↑/N | |||||
Estradiol (E2) [26,27] | 2 | N | ↑ | ↑/N | |||||||
LC-MS | DHEAS [30] | 1 | N | N | N | ↑ | |||||
25-HC [30] | 1 | ↓ | |||||||||
DOC [31] | 1 | ↓ | |||||||||
ELISA | AMH [16,29] | 2 | N | N | N | ↑/N | |||||
Inflammation and Oxidative stress markers | IL-6 [27] | 1 | N | ↑ | ↑ | ||||||
LC-MS | Coenzyme Q10 [34] | 1 | ↑ | ↑ | |||||||
Peroxidase assay | TAC [35] | 1 | ↑ | ||||||||
LC-MS | Nicotine, 4,5-DHOA, 5,6-DHU [31] | 1 | ↓ | ||||||||
Nephelometry | Homocysteine [36] | 1 | ↓ | ||||||||
Amino acids and related metabolites | LC-MS | Phenylalanine, Leucine, Tryptophan [30] | 1 | ↓ | |||||||
MAAA and Rhazidigenine [31] | 1 | ↓ | |||||||||
Vitamins and related metabolites | LC-MS and CLIA | Vitamin D [30,37] | 2 | ↑ | N | N | N | ↓ | |||
LC-MS | Lithocholic acid, 13′-HAT [30] | 1 | N | ↓ | |||||||
Vitamin A and Vitamin B6 [38] | 1 | ↑ | N | ||||||||
4-oxo-Retinoic acid [31] | 1 | ↓ | |||||||||
Lipids and related metabolites * | Energy metabolism lipids [31] | 1 | ↑ | ||||||||
Phospholipids [30,31] | 2 | ↑ | ↑ | ||||||||
LC-MS and ELISA | Fatty acids [28,30] | 2 | ↑ | ↓ | |||||||
MiRNAs | RT-qPCR | miR-26b-5p [28] | 1 | ↑ | ↑ | ||||||
miR-34a-5p [28] | 1 | ↓ | ↓ | ||||||||
miR-145-5p and miR-204-5p [28] | 1 | N | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albeitawi, S.; Bani-Mousa, S.-U.; Jarrar, B.; Aloqaily, I.; Al-Shlool, N.; Alsheyab, G.; Kassab, A.; Qawasmi, B.; Awaisheh, A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women—A Systematic Review. Biomolecules 2025, 15, 443. https://doi.org/10.3390/biom15030443
Albeitawi S, Bani-Mousa S-U, Jarrar B, Aloqaily I, Al-Shlool N, Alsheyab G, Kassab A, Qawasmi B, Awaisheh A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women—A Systematic Review. Biomolecules. 2025; 15(3):443. https://doi.org/10.3390/biom15030443
Chicago/Turabian StyleAlbeitawi, Soha, Saif-Ulislam Bani-Mousa, Baraa Jarrar, Ibrahim Aloqaily, Nour Al-Shlool, Ghaida Alsheyab, Ahmad Kassab, Baha’a Qawasmi, and Abdalrahman Awaisheh. 2025. "Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women—A Systematic Review" Biomolecules 15, no. 3: 443. https://doi.org/10.3390/biom15030443
APA StyleAlbeitawi, S., Bani-Mousa, S.-U., Jarrar, B., Aloqaily, I., Al-Shlool, N., Alsheyab, G., Kassab, A., Qawasmi, B., & Awaisheh, A. (2025). Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women—A Systematic Review. Biomolecules, 15(3), 443. https://doi.org/10.3390/biom15030443