THOP1 Is Entailed in a Genetic Fingerprint Associated with Late-Onset Alzheimer’s Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Santos, N.B.; Franco, R.D.; Camarini, R.; Munhoz, C.D.; Eichler, R.A.; Gewehr, M.C.; Reckziegel, P.; Llanos, R.P.; Dale, C.S.; da Silva, V.R.O.; et al. Thimet oligopeptidase (EC 3.4.24.15) key functions suggested by knockout mice phenotype characterization. Biomolecules 2019, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Fontenele-Neto, J.D.; Massarelli, E.E.; Garrido, P.A.G.; Beaudet, A.; Ferro, E.S. Comparative fine structural distribution of endopeptidase 24.15 (EC3.4.24.15) and 24.16 (EC3.4.24.16) in rat brain. J. Comp. Neurol. 2001, 438, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Ferro, E.S.; Tambourgi, D.V.; Gobersztejn, F.; Gomes, M.D.; Sucupira, M.; Armelin, M.C.; Kipnis, T.L.; Camargo, A.C.M. Secretion of a neuropeptide-metabolizing enzyme similar to endopeptidase 22.19 by glioma C6 cells. Biochem. Biophys. Res. Commun. 1993, 191, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Carreño, F.R.; Goñi, C.N.; Castro, L.M.; Ferro, E.S. 14-3-3 epsilon modulates the stimulated secretion of endopeptidase 24.15. J. Neurochem. 2005, 93, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Garrido, P.A.G.; Vandenbulcke, F.; Ramjaun, A.R.; Vincent, B.; Checler, F.; Ferro, E.; Beaudet, A. Confocal Microscopy Reveals Thimet Oligopeptidase (EC 3.4.24.15) and Neurolysin (EC 3.4.24.16) in the Classical Secretory Pathway. DNA Cell Biol. 1999, 18, 323–331. [Google Scholar] [CrossRef]
- Ferro, E.S.; Tullai, J.W.; Glucksman, M.J.; Roberts, J.L. Secretion of Metalloendopeptidase 24.15 (EC 3.4.24.15). DNA Cell Biol. 1999, 18, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Ferro, E.S.; Gewehr, M.C.F.; Navon, A. Thimet oligopeptidase biochemical and biological significances: Past, present, and future directions. Biomolecules 2020, 10, 1229. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.; Hines, C.S.; Coll-Rodriguez, J.; Rodgers, D.W. Crystal Structure of Human Thimet Oligopeptidase Provides Insight into Substrate Recognition, Regulation, and Localization. J. Biol. Chem. 2004, 279, 20480–20489. [Google Scholar] [CrossRef]
- Healy, D.P.; Orlowski, M. Immunocytochemical localization of endopeptidase 24.15 in rat brain. Brain Res. 1992, 571, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Rioli, V.; Kato, A.; Portaro, F.C.; Cury, G.K.; Te Kaat, K.; Vincent, B.; Checler, F.; Camargo, A.C.M.; Glucksman, M.J.; Roberts, J.L.; et al. Neuropeptide specificity and inhibition of recombinant isoforms of the endopeptidase 3.4.24.16 family: Comparison with the related recombinant endopeptidase 3.4.24.15. Biochem. Biophys. Res. Commun. 1998, 250, 5–11. [Google Scholar] [CrossRef]
- Acker, G.R.; Molineaux, C.; Orlowski, M. Synaptosomal Membrane-Bound Form of Endopeptidase-24.15 Generates Leu-Enkephalin from Dynorphin 1-8, α- and β-Neoendorphin, and Met-Enkephalin from Met-Enkephalin-Arg6-Gly7-Leu. J. Neurochem. 1987, 48, 284–292. [Google Scholar] [CrossRef]
- Molineaux, C.J.; Lasdun, A.; Michaud, C.; Orlowski, M. Endopeptidase-24.15 Is the Primary Enzyme that Degrades Luteinizing Hormone Releasing Hormone Both In Vitro and In Vivo. J. Neurochem. 1988, 51, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Visniauskas, B.; Simões, P.S.; Dalio, F.M.; Naffah-Mazzacoratti, M.D.; Oliveira, V.; Tufik, S.; Chagas, J.R. Sleep deprivation changes thimet oligopeptidase (THOP1) expression and activity in rat brain. Heliyon 2019, 5, e02896. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Grueninger-Leitch, F.; Huber, G.; Malherbe, P. Expression and characterization of human β-secretase candidates metalloendopeptidase MP78 and cathepsin D in βAPP-overexpressing cells. Mol. Brain Res. 1997, 48, 206–214. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.R.; Biggins, J.A.; Gibson, A.M. Human brain peptidase activity with the specificity to generate the N-terminus of the Alzheimer β-amyloid protein from its precursor. Biochem. Biophys. Res. Commun. 1992, 185, 746–752. [Google Scholar] [CrossRef]
- Papastoitsis, G.; Abraham, C.R.; Siman, R.; Scott, R. Identification of a Metalloprotease from Alzheimer’s Disease Brain Able to Degrade the β-Amyloid Precursor Protein and Generate Amyloidogenic Fragments. Biochemistry 1994, 33, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Yamin, R.; Malgeri, E.G.; Sloane, J.A.; McGraw, W.T.; Abraham, C.R. Metalloendopeptidase EC 3.4.24.15 is necessary for Alzheimer’s amyloid- β peptide degradation. J. Biol. Chem. 1999, 274, 18777–18784. [Google Scholar] [CrossRef] [PubMed]
- Meckelein, B.; De Silva, H.R.; Roses, A.D.; Rao, P.N.; Pettenati, M.J.; Xu, P.T.; Hodge, R.; Glucksman, M.J.; Abraham, C.R. Human endopeptidase (THOP1) is localized on chromosome 19 within the linkage region for the late-onset Alzheimer disease AD2 locus. Genomics 1996, 31, 246–249. [Google Scholar] [CrossRef]
- Torres, M.P.; Prange, C.; Lennon, G. Human endopeptidase 24.15 (THOP1) is localized on chromosome 19p13.3 and is excluded from the linkage region for late-onset Alzheimer disease. Genomics 1998, 53, 239–240. [Google Scholar] [CrossRef] [PubMed]
- Pollio, G.; Hoozemans, J.J.; Andersen, C.A.; Roncarati, R.; Rosi, M.C.; van Haastert, E.S.; Seredenina, T.; Diamanti, D.; Gotta, S.; Fiorentini, A.; et al. Increased expression of the oligopeptidase THOP1 is a neuroprotective response to Aβ toxicity. Neurobiol. Dis. 2008, 31, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, H.; Yang, C.; Xu, K.; Cai, Y.; Wang, Z.; Zhao, Z.; Shao, T.; Li, Y. Transcriptomic Analyses for Identification and Prioritization of Genes Associated with Alzheimer’s Disease in Humans. Front. Bioeng. Biotechnol. 2020, 8, 504172. [Google Scholar] [CrossRef]
- Del Campo, M.; Peeters, C.F.; Johnson, E.C.; Vermunt, L.; Hok-A-Hin, Y.S.; van Nee, M.; Chen-Plotkin, A.; Irwin, D.J.; Hu, W.T.; Lah, J.J.; et al. CSF proteome profiling across the Alzheimer’s disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels. Nat. Aging 2022, 2, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- del Campo, M.; Vermunt, L.; Peeters, C.F.; Sieben, A.; Hok-A-Hin, Y.S.; Lleó, A.; Alcolea, D.; van Nee, M.; Engelborghs, S.; van Alphen, J.L.; et al. CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer’s disease. Nat. Commun. 2023, 14, 5635. [Google Scholar] [CrossRef] [PubMed]
- Hok-A-Hin, Y.S.; Bolsewig, K.; Ruiters, D.N.; Lleó, A.; Alcolea, D.; Lemstra, A.W.; van der Filer, W.M.; Teunissen, C.E.; del Campo, M. Thimet oligopeptidase as a potential CSF biomarker for Alzheimer’s disease: A cross-platform validation study. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 2023, 15, e12456. [Google Scholar] [CrossRef] [PubMed]
- Hok-A-Hin, Y.S.; Bolsewig, K.; Ruiters, D.N.; Lleó, A.; Alcolea, D.; Lemstra, A.W.; van der Filer, W.M.; del Campo, M.; Teunissen, C.E. Thimet Oligopeptidase is a potential CSF biomarker for Alzheimer’s Disease. Alzheimer’s Dement. 2022, 18, e065528. [Google Scholar] [CrossRef]
- Climer, S.; Templeton ARA, R.; Zhang, W. Allele-specific network reveals combinatorial interaction that transcends small effects in psoriasis GWAS. PLoS Comput. Biol. 2014, 10, e1003766. [Google Scholar] [CrossRef]
- Climer, S.; Yang, W.; de las Fuentes, L.; Dávila-Román VGV, G.; Gu, C.C.C. A custom correlation coefficient (CCC) approach for fast identification of multi-SNP association patterns in genome-wide SNPs data. Genet. Epidemiol. 2014, 38, 610–621. [Google Scholar] [CrossRef]
- Climer, S. Connecting the dots: The boons and banes of network modeling. Patterns 2021, 2, 100374. [Google Scholar] [CrossRef]
- International HapMap 3 Consortium; Altshuler, D.M.; Gibbs, R.A.; Peltonen, L.; Dermitzakis, E.; Schaffner, S.F.; Yu, F.; Bonnen, P.E.; de Bakker, P.I.W.; Deloukas, P.; et al. Integrating common and rare genetic variation in diverse human populations. Nature 2010, 467, 52–58. [Google Scholar] [PubMed]
- Climer, S.; Templeton ARA, R.; Zhang, W. Human gephyrin is encompassed within giant functional noncoding yin-yang sequences. Nat. Commun. 2015, 6, 6534. [Google Scholar] [CrossRef] [PubMed]
- Bogdanovic, M.; Asraf, H.; Gottesman, N.; Sekler, I.; Aizenman, E.; Hershfinkel, M. The ZIP3 Zinc Transporter Is Localized to Mossy Fiber Terminals and Is Required for Kainate-Induced Degeneration of CA3 Neurons. J. Neurosci. 2022, 42, 2824–2834. [Google Scholar] [CrossRef]
- Qian, J.; Xu, K.; Yoo, J.; Chen, T.T.; Andrews, G.; Noebels, J.L. Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration. J. Neurosci. 2011, 31, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Philp, L.K.; Butler, M.S.; Hickey, T.E.; Butler, L.M.; Tilley, W.D.; Day, T.K. SGTA: A New Player in the Molecular Co-Chaperone Game. Hormones and Cancer 2013, 4, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, R.; Austin, J.M.; Ahmed, F.; Isaacson, R.L. The roles of cytosolic quality control proteins, SGTA and the BAG6 complex, in disease. Adv. Protein Chem. Struct. Biol. 2019, 114, 265–313. [Google Scholar] [PubMed]
- Kubota, S.; Doi, H.; Koyano, S.; Tanaka, K.; Komiya, H.; Katsumoto, A.; Ikeda, S.; Hashiguchi, S.; Nakamura, H.; Fukai, R.; et al. SGTA associates with intracellular aggregates in neurodegenerative diseases. Mol. Brain 2021, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Winnefeld, M.; Rommelaere, J.; Cziepluch, C. The human small glutamine-rich TPR-containing protein is required for progress through cell division. Exp. Cell Res. 2004, 293, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Rothhammer-Hampl, T.; Liesenberg, F.; Hansen, N.; Hoja, S.; Delic, S.; Reifenberger, G.; Riemenschneider, M.J. Frequent Epigenetic Inactivation of DIRAS-1 and DIRAS-2 Contributes to Chemo-Resistance in Gliomas. Cancers 2021, 13, 5113. [Google Scholar] [CrossRef]
- Sommerer, Y.; Dobricic, V.; Schilling, M.; Ohlei, O.; Sabet, S.S.; Wesse, T.; Fuß, J.; Franzenburg, S.; Franke, A.; Parkkinen, L.; et al. Entorhinal cortex epigenome-wide association study highlights four novel loci showing differential methylation in Alzheimer’s disease. Alzheimer’s Res. Ther. 2023, 15, 92. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.; Garrido, P.A.; Rodrigues, C.C.; Colquhoun, A.; Castro, L.M.; Almeida, P.C.; Shida, C.S.; Juliano, M.A.; Juliano, L.; Camargo, A.C.M.; et al. Calcium modulates endopeptidase 24.15 (EC 3.4.24.15) membrane association, secondary structure and substrate specificity. FEBS J. 2005, 272, 2978–2992. [Google Scholar] [CrossRef]
AD Cases | Normal Controls | Odds Ratio | 95% CI | |
---|---|---|---|---|
Discovery | 35 (83.33%) | 57 (65.52%) | 2.632 | [1.044, 6.631] |
Validation | 17 (94.44%) | 23 (62.16%) | 10.348 | [1.238, 86.506] |
Replication | 32 (84.21%) | 42 (66.67%) | 2.667 | [0.964, 7.375] |
SNP ID | Allele | SNP ID | Allele |
---|---|---|---|
rs10409851 | A | kgp8397108 | A |
kgp1758027 | C | rs2110118 | T |
rs4806874 | A | rs4807330 | G |
rs10415622 | A | rs1640262 | T |
kgp553088 | C | kgp5523730 | A |
rs12608998 | G | rs1736192 | G |
rs8105402 | C | kgp7878898 | G |
kgp4303224 | G | kgp726867 | T |
kgp5034493 | C | rs2260416 | G |
rs7008 | A | rs1736181 | C |
rs2238614 | G | rs1640271 | C |
rs1860938 | A |
Population | # SNPs | Carriers Freq |
---|---|---|
ASW | 12 | 0.356 |
CEU | 15 | 0.879 |
CHB | 14 | 0.504 |
CHD | 13 | 0.468 |
GIH | 13 | 0.752 |
JPT | 14 | 0.566 |
LWK | 13 | 0.136 |
MEX | 13 | 0.826 |
MKK | 13 | 0.402 |
TSI | 13 | 0.775 |
YRI | 14 | 0.201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Climer, S. THOP1 Is Entailed in a Genetic Fingerprint Associated with Late-Onset Alzheimer’s Disease. Biomolecules 2025, 15, 337. https://doi.org/10.3390/biom15030337
Climer S. THOP1 Is Entailed in a Genetic Fingerprint Associated with Late-Onset Alzheimer’s Disease. Biomolecules. 2025; 15(3):337. https://doi.org/10.3390/biom15030337
Chicago/Turabian StyleClimer, Sharlee. 2025. "THOP1 Is Entailed in a Genetic Fingerprint Associated with Late-Onset Alzheimer’s Disease" Biomolecules 15, no. 3: 337. https://doi.org/10.3390/biom15030337
APA StyleClimer, S. (2025). THOP1 Is Entailed in a Genetic Fingerprint Associated with Late-Onset Alzheimer’s Disease. Biomolecules, 15(3), 337. https://doi.org/10.3390/biom15030337