Testosterone and Obesity in an Aging Society
Abstract
1. Introduction
2. Obesity and Testosterone
2.1. Obesity Caused by Low Testosterone
2.1.1. Increased Fat Mass
2.1.2. Loss of Skeletal Muscle Mass and Decrease in Basal Metabolic Rate
2.1.3. Metabolic Inflammation Caused by Low Testosterone
2.1.4. The Relationship Between Testosterone and Gut Microbiota
2.2. Testosterone Decline Caused by Obesity
2.2.1. Leptin Resistance
2.2.2. Metabolic Inflammation Associated with Obesity
2.2.3. Increased Estradiol Production
2.2.4. Reduction in Sex Hormone-Binding Globulin (SHBG)
3. Aging and Testosterone
3.1. Age-Related Testosterone Decline and Its Mechanisms
3.1.1. Testicular Dysfunction
3.1.2. Dysfunction of the HPG Axis
3.2. “Primary Hypogonadism” and “Secondary Hypogonadism”
3.3. Differences Between TRT for Obesity and TRT for Age-Related Testosterone Decline
4. Testosterone Replacement Therapy (TRT)
4.1. Current Formulations for TRT
4.2. Short-Acting and Long-Acting TRT Drugs
4.3. Recent Perspectives on the Side Effects of TRT
4.3.1. Cardiovascular Disease
4.3.2. Prostate Disease
4.3.3. Other Adverse Effects
4.4. Comparison of the Guidelines for Testosterone Replacement Therapy (TRT)
4.5. Racial Differences in Response to TRT
5. Discussion and Future Research Topics
5.1. Elucidation of the Causal Relationship Between Obesity and Low Testosterone
5.2. Search for TRT Protocols That Maintain Reproductive Function
5.3. The Need for Revalidation of Guidelines for TRT in Aging Men
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HPG | Hypothalamic-Pituitary-Gonadal |
| TRT | Testosterone Replacement Therapy |
| LPL | Lipoprotein lipase |
| AR | Androgen receptor |
| GnRH | Gonadotropin-releasing hormone |
| LEPR | Leptin receptors |
| Kiss1R | KiSS-1 receptor |
| StAR | Steroidogenic acute regulatory protein |
| LH | Luteinizing hormone |
| ROS | Reactive oxygen species |
| FSH | Follicle-stimulating hormone |
| SHBG | Sex hormone-binding globulin |
| TSPO | Translocation protein |
| ERα | Estrogen receptor-α |
| 5α-DHT | 5α-dihydrotestosterone |
| cAMP | cyclic AMP |
| SFA | Saturated fatty acids |
| LPS | Lipopolysaccharide |
| IκB | Inhibitor of κB |
| TNFR | TNF receptor |
| IL-1RI | Interleukin-1 receptor type I |
| TG | Triglycerides |
| LDL | Low-density lipoprotein |
| HDL | High-density lipoprotein |
| ES | Endocrine Society |
| AUA | American Urological Association |
| ISSAM | International Society for the Study of the Aging Male |
| EMAS | European Menopause and Andropause Society |
| TT | Total Testosterone |
| Free T | Free Testosterone |
| PSA | Prostate-Specific Antigen |
| Ht | Hematocrit |
| SERMs | Selective Estrogen Receptor Modulators |
| hCG | Human Chorionic Gonadotropin |
References
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Apovian, C.M. Obesity: Definition, Comorbidities, Causes, and Burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar] [PubMed]
- Bonsignore, M.R. Obesity and Obstructive Sleep Apnea. Handb. Exp. Pharmacol. 2022, 274, 181–201. [Google Scholar] [CrossRef]
- Wei, S.; Nguyen, T.T.; Zhang, Y.; Ryu, D.; Gariani, K. Sarcopenic Obesity: Epidemiology, Pathophysiology, Cardiovascular Disease, Mortality, and Management. Front. Endocrinol. 2023, 14, 1185221. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Varra, F.-N.; Varras, M.; Varra, V.-K.; Theodosis-Nobelos, P. Molecular and Pathophysiological Relationship between Obesity and Chronic Inflammation in the Manifestation of Metabolic Dysfunctions and Their Inflammation-mediating Treatment Options (Review). Mol. Med. Rep. 2024, 29, 95. [Google Scholar] [CrossRef]
- Hamilton, K.J.; Hewitt, S.C.; Arao, Y.; Korach, K.S. Estrogen Hormone Biology. Curr. Top. Dev. Biol. 2017, 125, 109–146. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, W.; Liao, W.; Yan, H.; Ai, W.; Pan, Q.; Brashear, W.A.; Xu, Y.; He, L.; Guo, S. An Estrogen Receptor α-Derived Peptide Improves Glucose Homeostasis during Obesity. Nat. Commun. 2024, 15, 3410. [Google Scholar] [CrossRef]
- Achari, A.E.; Jain, S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef]
- Engin, A. Adiponectin Resistance in Obesity: Adiponectin Leptin/Insulin Interaction. Adv. Exp. Med. Biol. 2024, 1460, 431–462. [Google Scholar] [CrossRef] [PubMed]
- Genchi, V.A.; D’Oria, R.; Palma, G.; Caccioppoli, C.; Cignarelli, A.; Natalicchio, A.; Laviola, L.; Giorgino, F.; Perrini, S. Impaired Leptin Signalling in Obesity: Is Leptin a New Thermolipokine? Int. J. Mol. Sci. 2021, 22, 6445. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; López, M.; Rahmouni, K. The Cellular and Molecular Bases of Leptin and Ghrelin Resistance in Obesity. Nat. Rev. Endocrinol. 2017, 13, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Anawalt, B.D.; Matsumoto, A.M. Aging and androgens: Physiology and clinical implications. Rev. Endocr. Metab. Disord. 2022, 23, 1123–1137. [Google Scholar] [CrossRef]
- Kelly, D.M.; Jones, T.H. Testosterone and Obesity. Obes. Rev. 2015, 16, 581–606. [Google Scholar] [CrossRef]
- Genchi, V.A.; Rossi, E.; Lauriola, C.; D’Oria, R.; Palma, G.; Borrelli, A.; Caccioppoli, C.; Giorgino, F.; Cignarelli, A. Adipose Tissue Dysfunction and Obesity-Related Male Hypogonadism. Int. J. Mol. Sci. 2022, 23, 8194. [Google Scholar] [CrossRef]
- Wu, F.C.W.; Tajar, A.; Pye, S.R.; Silman, A.J.; Finn, J.D.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.; Forti, G.; Giwercman, A.; et al. Hypothalamic-Pituitary-Testicular Axis Disruptions in Older Men Are Differentially Linked to Age and Modifiable Risk Factors: The European Male Aging Study. J. Clin. Endocrinol. Metab. 2008, 93, 2737–2745. [Google Scholar] [CrossRef]
- Eriksson, J.; Haring, R.; Grarup, N.; Vandenput, L.; Wallaschofski, H.; Lorentzen, E.; Hansen, T.; Mellström, D.; Pedersen, O.; Nauck, M.; et al. Causal Relationship between Obesity and Serum Testosterone Status in Men: A Bi-Directional Mendelian Randomization Analysis. PLoS ONE 2017, 12, e0176277. [Google Scholar] [CrossRef]
- Wu, F.C.W.; Tajar, A.; Beynon, J.M.; Pye, S.R.; Silman, A.J.; Finn, J.D.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.F.; Forti, G.; et al. Identification of Late-Onset Hypogonadism in Middle-Aged and Elderly Men. New Engl. J. Med. 2010, 363, 123–135. [Google Scholar] [CrossRef]
- Barone, B.; Napolitano, L.; Abate, M.; Cirillo, L.; Reccia, P.; Passaro, F.; Turco, C.; Morra, S.; Mastrangelo, F.; Scarpato, A.; et al. The Role of Testosterone in the Elderly: What Do We Know? Int. J. Mol. Sci. 2022, 23, 3535. [Google Scholar] [CrossRef] [PubMed]
- Orwoll, E. Safety of Testosterone-Replacement Therapy in Older Men. N. Engl. J. Med. 2023, 389, 177–178. [Google Scholar] [CrossRef] [PubMed]
- Gagliano-Jucá, T.; Basaria, S. Testosterone Replacement Therapy and Cardiovascular Risk. Nat. Rev. Cardiol. 2019, 16, 555–574. [Google Scholar] [CrossRef] [PubMed]
- Heidelbaugh, J.J.; Belakovskiy, A. Testosterone Replacement Therapy for Male Hypogonadism. Am. Fam. Physician 2024, 109, 543–549. [Google Scholar]
- Lincoff, A.M.; Bhasin, S.; Flevaris, P.; Mitchell, L.M.; Basaria, S.; Boden, W.E.; Cunningham, G.R.; Granger, C.B.; Khera, M.; Thompson, I.M.; et al. Cardiovascular Safety of Testosterone-Replacement Therapy. N. Engl. J. Med. 2023, 389, 107–117. [Google Scholar] [CrossRef]
- Santosa, S.; Bush, N.C.; Jensen, M.D. Acute Testosterone Deficiency Alters Adipose Tissue Fatty Acid Storage. J. Clin. Endocrinol. Metab. 2017, 102, 3056–3064. [Google Scholar] [CrossRef]
- Xu, X.; De Pergola, G.; Eriksson, P.S.; Fu, L.; Carlsson, B.; Yang, S.; Edén, S.; Björntorp, P. Postreceptor Events Involved in the Up-Regulation of Beta-Adrenergic Receptor Mediated Lipolysis by Testosterone in Rat White Adipocytes. Endocrinology 1993, 132, 1651–1657. [Google Scholar] [CrossRef]
- Xu, X.F.; De Pergola, G.; Björntorp, P. Testosterone Increases Lipolysis and the Number of Beta-Adrenoceptors in Male Rat Adipocytes. Endocrinology 1991, 128, 379–382. [Google Scholar] [CrossRef]
- Xie, F.; Wang, Y.; Chan, S.; Zheng, M.; Xue, M.; Yang, X.; Luo, Y.; Fang, M. Testosterone Inhibits Lipid Accumulation in Porcine Preadipocytes by Regulating ELOVL3. Animals 2024, 14, 2143. [Google Scholar] [CrossRef]
- McInnes, K.J.; Smith, L.B.; Hunger, N.I.; Saunders, P.T.K.; Andrew, R.; Walker, B.R. Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis. Diabetes 2012, 61, 1072–1081. [Google Scholar] [CrossRef]
- Singh, R.; Artaza, J.N.; Taylor, W.E.; Braga, M.; Yuan, X.; Gonzalez-Cadavid, N.F.; Bhasin, S. Testosterone Inhibits Adipogenic Differentiation in 3T3-L1 Cells: Nuclear Translocation of Androgen Receptor Complex with Beta-Catenin and T-Cell Factor 4 May Bypass Canonical Wnt Signaling to down-Regulate Adipogenic Transcription Factors. Endocrinology 2006, 147, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Jardí, F.; Laurent, M.R.; Kim, N.; Khalil, R.; De Bundel, D.; Van Eeckhaut, A.; Van Helleputte, L.; Deboel, L.; Dubois, V.; Schollaert, D.; et al. Testosterone Boosts Physical Activity in Male Mice via Dopaminergic Pathways. Sci. Rep. 2018, 8, 957. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.R.; David, K.; Corbeels, K.; Khalil, R.; Antonio, L.; Schollaert, D.; Deboel, L.; Ohlsson, C.; Gustafsson, J.-Å.; Vangoitsenhoven, R.; et al. Testosterone Reduces Body Fat in Male Mice by Stimulation of Physical Activity Via Extrahypothalamic ERα Signaling. Endocrinology 2021, 162, bqab045. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Fu, X.; Zhang, X.; Chen, S.; Huang, S.; Yao, L.; Liu, G. Testosterone Regulates 3T3-L1 Pre-Adipocyte Differentiation and Epididymal Fat Accumulation in Mice through Modulating Macrophage Polarization. Biochem. Pharmacol. 2017, 140, 73–88. [Google Scholar] [CrossRef]
- Bolduc, C.; Yoshioka, M.; St-Amand, J. Transcriptomic Characterization of the Long-Term Dihydrotestosterone Effects in Adipose Tissue. Obesity (Silver Spring) 2007, 15, 1107–1132. [Google Scholar] [CrossRef]
- Santosa, S.; Jensen, M.D. Effects of Male Hypogonadism on Regional Adipose Tissue Fatty Acid Storage and Lipogenic Proteins. PLoS ONE 2012, 7, e31473. [Google Scholar] [CrossRef]
- Tchernof, A.; Brochu, D.; Maltais-Payette, I.; Mansour, M.F.; Marchand, G.B.; Carreau, A.-M.; Kapeluto, J. Androgens and the Regulation of Adiposity and Body Fat Distribution in Humans. Compr. Physiol. 2018, 8, 1253–1290. [Google Scholar] [CrossRef]
- Caesar, R.; Manieri, M.; Kelder, T.; Boekschoten, M.; Evelo, C.; Müller, M.; Kooistra, T.; Cinti, S.; Kleemann, R.; Drevon, C.A. A Combined Transcriptomics and Lipidomics Analysis of Subcutaneous, Epididymal and Mesenteric Adipose Tissue Reveals Marked Functional Differences. PLoS ONE 2010, 5, e11525. [Google Scholar] [CrossRef]
- Muir, C.A.; Wittert, G.A.; Handelsman, D.J. Approach to the Patient: Low Testosterone Concentrations in Men with Obesity. J. Clin. Endocrinol. Metab. 2025, 110, e3125–e3130. [Google Scholar] [CrossRef]
- Fui, M.N.T.; Dupuis, P.; Grossmann, M. Lowered Testosterone in Male Obesity: Mechanisms, Morbidity and Management. Asian J. Androl. 2014, 16, 223–231. [Google Scholar] [CrossRef]
- Herbst, K.L.; Bhasin, S. Testosterone Action on Skeletal Muscle. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Serra, C.; Tangherlini, F.; Rudy, S.; Lee, D.; Toraldo, G.; Sandor, N.L.; Zhang, A.; Jasuja, R.; Bhasin, S. Testosterone Improves the Regeneration of Old and Young Mouse Skeletal Muscle. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.L.; Florini, J.R. A Direct Effect of Testosterone on Muscle Cells in Tissue Culture. Endocrinology 1975, 97, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Urban, R.J.; Bodenburg, Y.H.; Gilkison, C.; Foxworth, J.; Coggan, A.R.; Wolfe, R.R.; Ferrando, A. Testosterone Administration to Elderly Men Increases Skeletal Muscle Strength and Protein Synthesis. Am. J. Physiol. 1995, 269, E820–E826. [Google Scholar] [CrossRef]
- Florini, J.R. Effects of Testosterone on Qualitative Pattern of Protein Synthesis in Skeletal Muscle. Biochemistry 1970, 9, 909–912. [Google Scholar] [CrossRef]
- Grigsby, J.S.; Bergen, W.G.; Merkel, R.A. The Effect of Testosterone on Skeletal Muscle Development and Protein Synthesis in Rabbits. Growth 1976, 40, 303–316. [Google Scholar]
- Skinner, J.W.; Otzel, D.M.; Bowser, A.; Nargi, D.; Agarwal, S.; Peterson, M.D.; Zou, B.; Borst, S.E.; Yarrow, J.F. Muscular Responses to Testosterone Replacement Vary by Administration Route: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2018, 9, 465–481. [Google Scholar] [CrossRef]
- Lee, T.-W.; Kao, P.-Y.; Chen, Y.-C.; Wang, S.-T. Effects of Testosterone Replacement Therapy on Muscle Strength in Older Men with Low to Low-Normal Testosterone Levels: A Systematic Review and Meta-Analysis. Gerontology 2023, 69, 1157–1166. [Google Scholar] [CrossRef]
- Yang, Z.; Ping, Y.-Q.; Wang, M.-W.; Zhang, C.; Zhou, S.-H.; Xi, Y.-T.; Zhu, K.-K.; Ding, W.; Zhang, Q.-Y.; Song, Z.-C.; et al. Identification, Structure, and Agonist Design of an Androgen Membrane Receptor. Cell 2025, 188, 1589–1604.e24. [Google Scholar] [CrossRef]
- Sinha-Hikim, I.; Cornford, M.; Gaytan, H.; Lee, M.L.; Bhasin, S. Effects of Testosterone Supplementation on Skeletal Muscle Fiber Hypertrophy and Satellite Cells in Community-Dwelling Older Men. J. Clin. Endocrinol. Metab. 2006, 91, 3024–3033. [Google Scholar] [CrossRef]
- Sinha-Hikim, I.; Roth, S.M.; Lee, M.I.; Bhasin, S. Testosterone-Induced Muscle Hypertrophy Is Associated with an Increase in Satellite Cell Number in Healthy, Young Men. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E197–E205. [Google Scholar] [CrossRef]
- Srinivas-Shankar, U.; Wu, F. Frailty and Muscle Function: Role for Testosterone? Front. Horm. Res. 2009, 37, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.S.; Gray, H.; Schache, A.G.; Hoermann, R.; Lim Joon, D.; Zajac, J.D.; Pandy, M.G.; Grossmann, M. Androgen Deprivation Causes Selective Deficits in the Biomechanical Leg Muscle Function of Men during Walking: A Prospective Case-Control Study. J. Cachexia Sarcopenia Muscle 2017, 8, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.M.; Jones, T.H. Testosterone: A Metabolic Hormone in Health and Disease. J. Endocrinol. 2013, 217, R25–R45. [Google Scholar] [CrossRef] [PubMed]
- Deepika, F.N.U.; Ballato, E.; Colleluori, G.; Aguirre, L.; Chen, R.; Qualls, C.; Villareal, D.T.; Armamento-Villareal, R. Baseline Testosterone Predicts Body Composition and Metabolic Response to Testosterone Therapy. Front. Endocrinol. 2022, 13, 915309. [Google Scholar] [CrossRef]
- Welle, S.; Jozefowicz, R.; Forbes, G.; Griggs, R.C. Effect of Testosterone on Metabolic Rate and Body Composition in Normal Men and Men with Muscular Dystrophy. J. Clin. Endocrinol. Metab. 1992, 74, 332–335. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, L.; Meng, H.; Zhang, A.; Liang, Y.; Lu, J. Obesity Alters Immunopathology in Cancers and Inflammatory Diseases. Obes. Rev. 2023, 24, e13638. [Google Scholar] [CrossRef]
- Ruppert, Z.; Neuperger, P.; Rákóczi, B.; Gémes, N.; Dukay, B.; Hajdu, P.; Péter, M.; Balogh, G.; Tiszlavicz, L.; Vígh, L.; et al. Characterization of Obesity-Related Diseases and Inflammation Using Single Cell Immunophenotyping in Two Different Diet-Induced Obesity Models. Int. J. Obes. 2024, 48, 1568–1576. [Google Scholar] [CrossRef]
- Schleh, M.W.; Caslin, H.L.; Garcia, J.N.; Mashayekhi, M.; Srivastava, G.; Bradley, A.B.; Hasty, A.H. Metaflammation in Obesity and Its Therapeutic Targeting. Sci. Transl. Med. 2023, 15, eadf9382. [Google Scholar] [CrossRef]
- Kolb, H. Obese Visceral Fat Tissue Inflammation: From Protective to Detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef]
- Lopes, H.F.; Corrêa-Giannella, M.L.; Consolim-Colombo, F.M.; Egan, B.M. Visceral Adiposity Syndrome. Diabetol. Metab. Syndr. 2016, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Khafagy, R.; Dash, S. Obesity and Cardiovascular Disease: The Emerging Role of Inflammation. Front. Cardiovasc. Med. 2021, 8, 768119. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Sagaro, G.G.; Chintalapudi, N.; Amenta, F.; Tomassoni, D.; Tayebati, S.K. Impact of Obesity-Induced Inflammation on Cardiovascular Diseases (Cvd). Int. J. Mol. Sci. 2021, 22, 4798. [Google Scholar] [CrossRef] [PubMed]
- Oussaada, S.M.; Kilicarslan, M.; de Weijer, B.A.; Gilijamse, P.W.; Şekercan, A.; Virtue, S.; Janssen, I.M.C.; van de Laar, A.; Demirkiran, A.; van Wagensveld, B.A.; et al. Tissue-Specific Inflammation and Insulin Sensitivity in Subjects with Obesity. Diabetes Res. Clin. Pract. 2024, 211, 111663. [Google Scholar] [CrossRef]
- Dhindsa, S.; Ghanim, H.; Batra, M.; Kuhadiya, N.D.; Abuaysheh, S.; Sandhu, S.; Green, K.; Makdissi, A.; Hejna, J.; Chaudhuri, A.; et al. Insulin Resistance and Inflammation in Hypogonadotropic Hypogonadism and Their Reduction after Testosterone Replacement in Men with Type 2 Diabetes. Diabetes Care 2016, 39, 82–91. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, R.; Tong, Y.; Chen, P.; Shen, Y.; Miao, S.; Liu, X. Neuroprotection by Dihydrotestosterone in LPS-Induced Neuroinflammation. Neurobiol. Dis. 2020, 140, 104814. [Google Scholar] [CrossRef]
- Pelegrin, Á.F.; de Paiva Gonçalves, V.; Carvalho, J.d.S.; Spolidorio, D.M.P.; Spolidorio, L.C. Testosterone Replacement Relieves Ligature-Induced Periodontitis by Mitigating Inflammation, Increasing pro-Resolving Markers and Promoting Angiogenesis in Rats: A Preclinical Study. Arch. Oral Biol. 2023, 146, 105605. [Google Scholar] [CrossRef]
- Yeap, B.B.; Alfonso, H.; Paul Chubb, S.A.; Handelsman, D.J.; Hankey, G.J.; Almeida, O.P.; Golledge, J.; Norman, P.E.; Flicker, L. In Older Men an Optimal Plasma Testosterone Is Associated with Reduced All-Cause Mortality and Higher Dihydrotestosterone with Reduced Ischemic Heart Disease Mortality, While Estradiol Levels Do Not Predict Mortality. J. Clin. Endocrinol. Metab. 2014, 99, E9–E18. [Google Scholar] [CrossRef]
- Yeap, B.B.; Marriott, R.J.; Antonio, L.; Chan, Y.X.; Raj, S.; Dwivedi, G.; Reid, C.M.; Anawalt, B.D.; Bhasin, S.; Dobs, A.S.; et al. Serum Testosterone Is Inversely and Sex Hormone-Binding Globulin Is Directly Associated with All-Cause Mortality in Men. J. Clin. Endocrinol. Metab. 2021, 106, E625–E637. [Google Scholar] [CrossRef]
- Yeap, B.B.; Marriott, R.J.; Dwivedi, G.; Adams, R.J.; Antonio, L.; Ballantyne, C.M.; Bauer, D.C.; Bhasin, S.; Biggs, M.L.; Cawthon, P.M.; et al. Associations of Testosterone and Related Hormones With All-Cause and Cardiovascular Mortality and Incident Cardiovascular Disease in Men: Individual Participant Data Meta-Analyses. Ann. Intern. Med. 2024, 177, 768–781. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-ΚB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Poma, P. Nf-Κb and Disease. Int. J. Mol. Sci. 2020, 21, 9181. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB System. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Vancolen, S.; Sébire, G.; Robaire, B. Influence of Androgens on the Innate Immune System. Andrology 2023, 11, 1237–1244. [Google Scholar] [CrossRef]
- Rettew, J.A.; Huet-Hudson, Y.M.; Marriott, I. Testosterone Reduces Macrophage Expression in the Mouse of Toll-like Receptor 4, a Trigger for Inflammation and Innate Immunity. Biol. Reprod. 2008, 78, 432–437. [Google Scholar] [CrossRef]
- Yang, L.; Tong, Y.; Chen, P.-F.; Miao, S.; Zhou, R.-Y. Neuroprotection of Dihydrotestosterone via Suppression of the Toll-like Receptor 4/Nuclear Factor-Kappa B Signaling Pathway in High Glucose-Induced BV-2 Microglia Inflammatory Responses. Neuroreport 2020, 31, 139–147. [Google Scholar] [CrossRef]
- Li, X.; Cheng, W.; Shang, H.; Wei, H.; Deng, C. The Interplay between Androgen and Gut Microbiota: Is There a Microbiota-Gut-Testis Axis. Reprod. Sci. 2022, 29, 1674–1684. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z. Exploring the Role of Gut Microbiome in Male Reproduction. Andrology 2022, 10, 441–450. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, N. Roles of Sex Hormones and Gender in the Gut Microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314–325. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, X.; Zhang, X.D.; Jing, J.; Liu, S.S.; Mu, Y.P.; Peng, L.L.; Yan, Y.J.; Xiao, G.M.; Bi, X.Y.; et al. Impairment of Spermatogenesis and Sperm Motility by the High-Fat Diet-Induced Dysbiosis of Gut Microbes. Gut 2020, 69, 1608–1619. [Google Scholar] [CrossRef]
- Harada, N.; Hanaoka, R.; Hanada, K.; Izawa, T.; Inui, H.; Yamaji, R. Hypogonadism Alters Cecal and Fecal Microbiota in Male Mice. Gut Microbes 2016, 7, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Moadi, L.; Turjeman, S.; Asulin, N.; Koren, O. The Effect of Testosterone on the Gut Microbiome in Mice. Commun. Biol. 2024, 7, 880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xie, J.; Wang, Z.; Zhong, Y.; Liu, L.; Liu, J.; Zhang, W.; Pi, Y.; Tang, F.; Liu, Z.; et al. Androgen Deficiency-Induced Loss of Lactobacillus Salivarius Extracellular Vesicles Is Associated with the Pathogenesis of Osteoporosis. Microbiol. Res. 2025, 293, 128047. [Google Scholar] [CrossRef] [PubMed]
- d’Afflitto, M.; Upadhyaya, A.; Green, A.; Peiris, M. Association Between Sex Hormone Levels and Gut Microbiota Composition and Diversity-A Systematic Review. J. Clin. Gastroenterol. 2022, 56, 384–392. [Google Scholar] [CrossRef]
- Matsushita, M.; Fujita, K.; Motooka, D.; Hatano, K.; Hata, J.; Nishimoto, M.; Banno, E.; Takezawa, K.; Fukuhara, S.; Kiuchi, H.; et al. Firmicutes in Gut Microbiota Correlate with Blood Testosterone Levels in Elderly Men. World J. Men’s Health 2022, 40, 517–525. [Google Scholar] [CrossRef]
- Kaltsas, A.; Giannakodimos, I.; Markou, E.; Stavropoulos, M.; Deligiannis, D.; Kratiras, Z.; Chrisofos, M. The Androbactome and the Gut Microbiota-Testis Axis: A Narrative Review of Emerging Insights into Male Fertility. Int. J. Mol. Sci. 2025, 26, 6211. [Google Scholar] [CrossRef]
- Yan, X.; Feng, Y.; Hao, Y.; Zhong, R.; Jiang, Y.; Tang, X.; Lu, D.; Fang, H.; Agarwal, M.; Chen, L.; et al. Gut-Testis Axis: Microbiota Prime Metabolome To Increase Sperm Quality in Young Type 2 Diabetes. Microbiol. Spectr. 2022, 10, e0142322. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Z.; Tan, J.; Sun, H.; Jiang, H.; Gao, Y.; Zhang, H.; Schroyen, M. Alginate Oligosaccharide Extends the Service Lifespan by Improving the Sperm Metabolome and Gut Microbiota in an Aging Duroc Boars Model. Front. Cell Infect. Microbiol. 2023, 13, 1308484. [Google Scholar] [CrossRef]
- Qi, J.; Sun, Y.; Chen, Z.; Gao, R.; Song, M.; Zou, T.; Gong, X.; Wang, S.; Zhang, Q.; Liu, C.; et al. Sodium Butyrate Promotes Synthesis of Testosterone and Meiosis of Hyperuricemic Male Mice. Sci. Rep. 2025, 15, 14757. [Google Scholar] [CrossRef]
- Devendran, S.; Mythen, S.M.; Ridlon, J.M. The DesA and DesB Genes from Clostridium Scindens ATCC 35704 Encode Steroid-17,20-Desmolase. J. Lipid Res. 2018, 59, 1005–1014. [Google Scholar] [CrossRef]
- Devendran, S.; Méndez-García, C.; Ridlon, J.M. Identification and Characterization of a 20β-HSDH from the Anaerobic Gut Bacterium Butyricicoccus Desmolans ATCC 43058. J. Lipid Res. 2017, 58, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Dai, W.; Lyu, Y.; Liu, H.; Le, J.; Sun, T.; Yao, Q.; Zhao, Z.; Jiang, X.; Li, Y. Role of Intestinal Testosterone-Degrading Bacteria and 3/17β-HSD in the Pathogenesis of Testosterone Deficiency-Induced Hyperlipidemia in Males. NPJ Biofilms Microbiomes 2024, 10, 123. [Google Scholar] [CrossRef]
- Feng, R.; Cheng, D.; Zhang, W.; Zhang, J.; Chen, S.; Xia, Y. Immune Microenvironment Dysregulation: A Contributing Factor to Obesity-Associated Male Infertility. Biomedicines 2025, 13, 1314. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, L.; Yang, L.; Chu, H. The Critical Role of Gut Microbiota in Obesity. Front. Endocrinol. 2022, 13, 1025706. [Google Scholar] [CrossRef]
- Chakaroun, R.M.; Massier, L.; Kovacs, P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Bergheim, I.; Moreno-Navarrete, J.M. The Relevance of Intestinal Barrier Dysfunction, Antimicrobial Proteins and Bacterial Endotoxin in Metabolic Dysfunction-Associated Steatotic Liver Disease. Eur. J. Clin. Investig. 2024, 54, e14224. [Google Scholar] [CrossRef] [PubMed]
- Kelton Tremellen, X.; Mcphee, N.; Pearce, K.; Benson, S.; Schedlowski, M.; Engler, H. Endotoxin-Initiated Inflammation Reduces Testosterone Production in Men of Reproductive Age. Am. J. Physiol. Endocrinol. Metab. 2018, 314, 206–213. [Google Scholar] [CrossRef]
- Mohamad, N.V.; Wong, S.K.; Wan Hasan, W.N.; Jolly, J.J.; Nur-Farhana, M.F.; Ima-Nirwana, S.; Chin, K.Y. The Relationship between Circulating Testosterone and Inflammatory Cytokines in Men. Aging Male 2019, 22, 129–140. [Google Scholar] [CrossRef]
- Sarchielli, E.; Comeglio, P.; Squecco, R.; Ballerini, L.; Mello, T.; Guarnieri, G.; Idrizaj, E.; Mazzanti, B.; Vignozzi, L.; Gallina, P.; et al. Tumor Necrosis Factor-α Impairs Kisspeptin Signaling in Human Gonadotropin-Releasing Hormone Primary Neurons. J. Clin. Endocrinol. Metab. 2017, 102, 46–56. [Google Scholar] [CrossRef]
- Herman, A.P.; Misztal, T.; Romanowicz, K.; Tomaszewska-Zaremba, D. Central Injection of Exogenous IL-1β in the Control Activities of Hypothalamic-Pituitary-Gonadal Axis in Anestrous Ewes. Reprod. Domest. Anim. 2012, 47, 44–52. [Google Scholar] [CrossRef]
- Harris, R.M.; Pace, F.; Kuntz, T.M.; Morgan, X.C.; Hyland, P.; Summers, K.; McDermott, E.; Blumen, K.; Watnick, P.I. Testosterone Treatment Impacts the Intestinal Microbiome of Transgender Individuals. mSphere 2024, 9, e0055724. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Zhao, J.; Zhu, Y.; Liu, Q.; Niu, W.; Liu, C.; Wang, Y. Downregulation of Leptin Receptor and Kisspeptin/GPR54 in the Murine Hypothalamus Contributes to Male Hypogonadism Caused by High-Fat Diet-Induced Obesity. Endocrine 2018, 62, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Song, C.; Gao, H.; Ma, T.; Li, T.; Ma, Q.; Yao, T.; Wang, M.; Li, J.; Yi, X.; et al. Leptin and Inflammatory Factors Play a Synergistic Role in the Regulation of Reproduction in Male Mice through Hypothalamic Kisspeptin-Mediated Energy Balance. Reprod. Biol. Endocrinol. 2021, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Li, W.; Li, M.; Zhang, X.; Zhang, H. Leptin/LeptinR-Kisspeptin/Kiss1r-GnRH Pathway Reacting to Regulate Puberty Onset during Negative Energy Balance. Life Sci. 2016, 153, 207–212. [Google Scholar] [CrossRef]
- Rønnekleiv, O.K.; Qiu, J.; Kelly, M.J. Hypothalamic Kisspeptin Neurons and the Control of Homeostasis. Endocrinology 2022, 163, bqab253. [Google Scholar] [CrossRef]
- Ghaderpour, S.; Ghiasi, R.; Heydari, H.; Keyhanmanesh, R. The Relation between Obesity, Kisspeptin, Leptin, and Male Fertility. Horm. Mol. Biol. Clin. Investig. 2021, 43, 235–247. [Google Scholar] [CrossRef]
- Perakakis, N.; Mantzoros, C.S. Evidence from Clinical Studies of Leptin: Current and Future Clinical Applications in Humans. Metabolism 2024, 161, 156053. [Google Scholar] [CrossRef]
- Perakakis, N.; Farr, O.M.; Mantzoros, C.S. Leptin in Leanness and Obesity: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 745–760. [Google Scholar] [CrossRef]
- Landry, D.A.; Sormany, F.; Haché, J.; Roumaud, P.; Martin, L.J. Steroidogenic Genes Expressions Are Repressed by High Levels of Leptin and the JAK/STAT Signaling Pathway in MA-10 Leydig Cells. Mol. Cell Biochem. 2017, 433, 79–95. [Google Scholar] [CrossRef]
- O’bryan, M.K.; Schlatt, S.; Phillips, D.J.; De Kretser, D.M.; Hedger, M.P. Bacterial Lipopolysaccharide-Induced Inflammation Compromises Testicular Function at Multiple Levels in Vivo. Endocrinology 2000, 141, 238–246. [Google Scholar] [CrossRef]
- Hasan, H.; Bhushan, S.; Fijak, M.; Meinhardt, A. Mechanism of Inflammatory Associated Impairment of Sperm Function, Spermatogenesis and Steroidogenesis. Front. Endocrinol. 2022, 13, 897029. [Google Scholar] [CrossRef] [PubMed]
- Leisegang, K.; Henkel, R. The in Vitro Modulation of Steroidogenesis by Inflammatory Cytokines and Insulin in TM3 Leydig Cells. Reprod. Biol. Endocrinol. 2018, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- de Mello, A.H.; Costa, A.B.; Engel, J.D.G.; Rezin, G.T. Mitochondrial Dysfunction in Obesity. Life Sci. 2018, 192, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Tang, Y.; Chen, B.; Zhao, Y.; Aguilar, Z.P.; Tao, X.; Xu, H. Inhibition of Testosterone Synthesis Induced by Oral TiO2NPs Is Associated with ROS-MAPK(ERK1/2)-StAR Signaling Pathway in SD Rat. Toxicol. Res. 2021, 10, 937–946. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Miao, C.; Ying, H.; Zhang, X.; Song, M.; Cui, Y.; Wang, X.; Li, Y.; Cheng, P. Aflatoxin B1-Induced Testosterone Biosynthesis Disorder via the ROS/AMPK Signaling Pathway in Male Mice. J. Agric. Food Chem. 2024, 72, 5955–5965. [Google Scholar] [CrossRef]
- Sam, A.D.; Sharma, A.C.; Lee, L.Y.; Hales, D.B.; Law, W.R.; Ferguson, J.L.; Bosmann, H.B. Sepsis Produces Depression of Testosterone and Steroidogenic Acute Regulatory (StAR) Protein. Shock 1999, 11, 298–301. [Google Scholar] [CrossRef]
- Schneider, G.; Kirschner, M.A.; Berkowitz, R.; Ertel, N.H. Increased estrogen production in obese men. J. Clin. Endocrinol. Metab. 1979, 48, 633–638. [Google Scholar] [CrossRef]
- Dhindsa, S.; Batra, M.; Kuhadiya, N.; Dandona, P. Oestradiol Concentrations Are Not Elevated in Obesity-Associated Hypogonadotrophic Hypogonadism. Clin. Endocrinol. 2014, 80, 464. [Google Scholar] [CrossRef]
- Strain, G.W.; Zumoff, B.; Miller, L.K.; Rosner, W.; Levit, C.; Kalin, M.; Hershcopf, R.J.; Rosenfeld, R.S. Effect of Massive Weight Loss on Hypothalamic-Pituitary-Gonadal Function in Obese Men. J. Clin. Endocrinol. Metab. 1988, 66, 1019–1023. [Google Scholar] [CrossRef]
- Mulhall, J.P.; Trost, L.W.; Brannigan, R.E.; Kurtz, E.G.; Redmon, J.B.; Chiles, K.A.; Lightner, D.J.; Miner, M.M.; Murad, M.H.; Nelson, C.J.; et al. Evaluation and Management of Testosterone Deficiency: AUA Guideline. J. Urol. 2018, 200, 423–432. [Google Scholar] [CrossRef]
- Simó, R.; Sáez-López, C.; Barbosa-Desongles, A.; Hernández, C.; Selva, D.M. Novel Insights in SHBG Regulation and Clinical Implications. Trends Endocrinol. Metab. 2015, 26, 376–383. [Google Scholar] [CrossRef]
- Hautanen, A. Synthesis and Regulation of Sex Hormone-Binding Globulin in Obesity. Int. J. Obes. Relat. Metab. Disord. 2000, 24 (Suppl. S2), S64–S70. [Google Scholar] [CrossRef]
- Wan, B.; Ma, N.; Zhou, Z.; Lv, C. Putative Causal Inference for the Relationship between Obesity and Sex Hormones in Males: A Bidirectional Mendelian Randomization Study. PeerJ 2023, 11, e15760. [Google Scholar] [CrossRef]
- Cooper, L.A.; Page, S.T.; Amory, J.K.; Anawalt, B.D.; Matsumoto, A.M. The Association of Obesity with Sex Hormone-Binding Globulin Is Stronger than the Association with Ageing--Implications for the Interpretation of Total Testosterone Measurements. Clin. Endocrinol. 2015, 83, 828–833. [Google Scholar] [CrossRef]
- Souteiro, P.; Belo, S.; Oliveira, S.C.; Neves, J.S.; Magalhães, D.; Pedro, J.; Bettencourt-Silva, R.; Costa, M.M.; Varela, A.; Queirós, J.; et al. Insulin Resistance and Sex Hormone-Binding Globulin Are Independently Correlated with Low Free Testosterone Levels in Obese Males. Andrologia 2018, 50, e13035. [Google Scholar] [CrossRef]
- Shao, J.; Wang, J.; Wen, X.; Xie, J.; Huang, F.; Guan, X.; Hao, X.; Duan, P.; Chen, C.; Chen, H. Effects of Aging and Macrophages on Mice Stem Leydig Cell Proliferation and Differentiation in Vitro. Front. Endocrinol. 2023, 14, 1139281. [Google Scholar] [CrossRef]
- Xia, K.; Yu, J.; Liu, G.; Chen, H.; Ge, R.; Deng, C. Editorial: Aging and Male Hypogonadism. Front. Endocrinol. 2023, 14, 1207907. [Google Scholar] [CrossRef] [PubMed]
- Beattie, M.C.; Adekola, L.; Papadopoulos, V.; Chen, H.; Zirkin, B.R. Leydig Cell Aging and Hypogonadism. Exp. Gerontol. 2015, 68, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Peng, H.; Yu, J.; Luo, P.; Xiong, C.; Chen, H.; Fan, H.; Ma, Y.; Ou, W.; Zhang, S.; et al. Impaired Ketogenesis in Leydig Cells Drives Testicular Aging. Nat. Commun. 2025, 16, 4224. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.; Silva, J.V.; Alves, M.G.; Oliveira, P.F.; Fardilha, M. Testicular Aging: An Overview of Ultrastructural, Cellular, and Molecular Alterations. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 860–871. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Luo, L.; Zirkin, B.R. Dibutyryl Cyclic Adenosine Monophosphate Restores the Ability of Aged Leydig Cells to Produce Testosterone at the High Levels Characteristic of Young Cells. Endocrinology 2004, 145, 4441–4446. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Chen, H.; Zirkin, B.R. Temporal Relationships among Testosterone Production, Steroidogenic Acute Regulatory Protein (StAR), and P450 Side-Chain Cleavage Enzyme (P450scc) during Leydig Cell Aging. J. Androl. 2005, 26, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wei, W.; Xie, F.; Zhu, X.; Zheng, L.; Lv, Z. Steroidogenesis Decline Accompanied with Reduced Antioxidation and Endoplasmic Reticulum Stress in Mice Testes during Ageing. Andrologia 2018, 50, e12816. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, H.; Fan, Y.; Wu, L.; Fang, Y.; Wei, Z.; Zhang, Z.; Cao, Y. Integrated Stress Response Mediates HSP70 to Inhibit Testosterone Synthesis in Aging Testicular Leydig Cells. Reprod. Biol. 2024, 24, 100954. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, F.; Ye, L.; Zirkin, B.; Chen, H. Steroidogenesis in Leydig Cells: Effects of Aging and Environmental Factors. Reproduction 2017, 154, R111–R122. [Google Scholar] [CrossRef]
- Luo, L.; Chen, H.; Zirkin, B.R. Leydig Cell Aging: Steroidogenic Acute Regulatory Protein (StAR) and Cholesterol Side-Chain Cleavage Enzyme. J. Androl. 2001, 22, 149–156. [Google Scholar] [CrossRef]
- Zirkin, B.R.; Chen, H. Regulation of Leydig Cell Steroidogenic Function during Aging. Biol. Reprod. 2000, 63, 977–981. [Google Scholar] [CrossRef]
- Chung, J.Y.; Chen, H.; Midzak, A.; Burnett, A.L.; Papadopoulos, V.; Zirkin, B.R. Drug Ligand-Induced Activation of Translocator Protein (TSPO) Stimulates Steroid Production by Aged Brown Norway Rat Leydig Cells. Endocrinology 2013, 154, 2156–2165. [Google Scholar] [CrossRef]
- Garza, S.; Chen, L.; Galano, M.; Cheung, G.; Sottas, C.; Li, L.; Li, Y.; Zirkin, B.R.; Papadopoulos, V. Mitochondrial Dynamics, Leydig Cell Function, and Age-Related Testosterone Deficiency. FASEB J. 2022, 36, e22637. [Google Scholar] [CrossRef]
- Mularoni, V.; Esposito, V.; Di Persio, S.; Vicini, E.; Spadetta, G.; Berloco, P.; Fanelli, F.; Mezzullo, M.; Pagotto, U.; Pelusi, C.; et al. Age-Related Changes in Human Leydig Cell Status. Hum. Reprod. 2020, 35, 2663–2676. [Google Scholar] [CrossRef]
- Veldhuis, J.D.; Zwart, A.; Mulligan, T.; Iranmanesh, A. Muting of Androgen Negative Feedback Unveils Impoverished Gonadotropin-Releasing Hormone/Luteinizing Hormone Secretory Reactivity in Healthy Older Men. J. Clin. Endocrinol. Metab. 2001, 86, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Gruenewald, D.A.; Naai, M.A.; Marck, B.T.; Matsumoto, A.M. Age-Related Decrease in Hypothalamic Gonadotropin-Releasing Hormone (GnRH) Gene Expression, but Not Pituitary Responsiveness to GnRH, in the Male Brown Norway Rat. J. Androl. 2000, 21, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, A.; Mulligan, T.; Veldhuis, J.D. Age in Men Does Not Determine Gonadotropin-Releasing Hormone’s Dose-Dependent Stimulation of Luteinizing Hormone Secretion under an Exogenous Testosterone Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 2877–2884. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.-M.; Lapauw, B.; Mahmoud, A.; T’Sjoen, G.; Huhtaniemi, I.T. Aging and the Male Reproductive System. Endocr. Rev. 2019, 40, 906–972. [Google Scholar] [CrossRef]
- Lapauw, B.; Goemaere, S.; Zmierczak, H.; Van Pottelbergh, I.; Mahmoud, A.; Taes, Y.; De Bacquer, D.; Vansteelandt, S.; Kaufman, J.M. The Decline of Serum Testosterone Levels in Community-Dwelling Men over 70 Years of Age: Descriptive Data and Predictors of Longitudinal Changes. Eur. J. Endocrinol. 2008, 159, 459–468. [Google Scholar] [CrossRef]
- Morley, J.E.; Kaiser, F.E.; Perry, H.M.; Patrick, P.; Morley, P.M.; Stauber, P.M.; Vellas, B.; Baumgartner, R.N.; Garry, P.J. Longitudinal Changes in Testosterone, Luteinizing Hormone, and Follicle-Stimulating Hormone in Healthy Older Men. Metabolism 1997, 46, 410–413. [Google Scholar] [CrossRef]
- Oride, A.; Kanasaki, H. The Role of KNDy Neurons in Human Reproductive Health. Endocr. J. 2024, 71, 733–743. [Google Scholar] [CrossRef]
- Ryan, G.E.; Bohaczuk, S.C.; Cassin, J.; Witham, E.A.; Shojaei, S.; Ho, E.V.; Thackray, V.G.; Mellon, P.L. Androgen Receptor Positively Regulates Gonadotropin-Releasing Hormone Receptor in Pituitary Gonadotropes. Mol. Cell Endocrinol. 2021, 530, 111286. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Y.; Fajobi, T.; DiVall, S.A.; Chang, C.; Yeh, S.; Wolfe, A. Conditional Knockout of the Androgen Receptor in Gonadotropes Reveals Crucial Roles for Androgen in Gonadotropin Synthesis and Surge in Female Mice. Mol. Endocrinol. 2014, 28, 1670–1681. [Google Scholar] [CrossRef]
- Molnár, C.S.; Vida, B.; Sipos, M.T.; Ciofi, P.; Borsay, B.Á.; Rácz, K.; Herczeg, L.; Bloom, S.R.; Ghatei, M.A.; Dhillo, W.S.; et al. Morphological Evidence for Enhanced Kisspeptin and Neurokinin B Signaling in the Infundibular Nucleus of the Aging Man. Endocrinology 2012, 153, 5428–5439. [Google Scholar] [CrossRef]
- Hrabovszky, E.; Takács, S.; Göcz, B.; Skrapits, K. New Perspectives for Anatomical and Molecular Studies of Kisspeptin Neurons in the Aging Human Brain. Neuroendocrinology 2019, 109, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Rastrelli, G.; Carter, E.L.; Ahern, T.; Finn, J.D.; Antonio, L.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.F.; Forti, G.; Keevil, B.; et al. Development of and Recovery from Secondary Hypogonadism in Aging Men: Prospective Results from the EMAS. J. Clin. Endocrinol. Metab. 2015, 100, 3172–3182. [Google Scholar] [CrossRef] [PubMed]
- Yeap, B.B.; Almeida, O.P.; Hyde, Z.; Norman, P.E.; Chubb, S.A.P.; Jamrozik, K.; Hankey, G.J.; Flicker, L. Healthier Lifestyle Predicts Higher Circulating Testosterone in Older Men: The Health in Men Study. Clin. Endocrinol. 2009, 70, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Banica, T.; Verroken, C.; Reyns, T.; Mahmoud, A.; T’Sjoen, G.; Fiers, T.; Kaufman, J.-M.; Lapauw, B. Early Decline of Androgen Levels in Healthy Adult Men: An Effect of Aging Per Se? A Prospective Cohort Study. J. Clin. Endocrinol. Metab. 2021, 106, 1074–1083. [Google Scholar] [CrossRef]
- Yeap, B.B.; Manning, L.; Chubb, S.A.P.; Handelsman, D.J.; Almeida, O.P.; Hankey, G.J.; Flicker, L. Progressive Impairment of Testicular Endocrine Function in Ageing Men: Testosterone and Dihydrotestosterone Decrease, and Luteinizing Hormone Increases, in Men Transitioning from the 8th to 9th Decades of Life. Clin. Endocrinol. 2018, 88, 88–95. [Google Scholar] [CrossRef]
- Tajar, A.; Forti, G.; O’Neill, T.W.; Lee, D.M.; Silman, A.J.; Finn, J.D.; Bartfai, G.; Boonen, S.; Casanueva, F.F.; Giwercman, A.; et al. Characteristics of Secondary, Primary, and Compensated Hypogonadism in Aging Men: Evidence from the European Male Ageing Study. J. Clin. Endocrinol. Metab. 2010, 95, 1810–1818. [Google Scholar] [CrossRef]
- Barbonetti, A.; D’Andrea, S.; Francavilla, S. Testosterone Replacement Therapy. Andrology 2020, 8, 1551–1566. [Google Scholar] [CrossRef]
- Lapauw, B.; Kaufman, J.-M. MANAGEMENT OF ENDOCRINE DISEASE: Rationale and Current Evidence for Testosterone Therapy in the Management of Obesity and Its Complications. Eur. J. Endocrinol. 2020, 183, R167–R183. [Google Scholar] [CrossRef]
- Kanakis, G.A.; Pofi, R.; Goulis, D.G.; Isidori, A.M.; Armeni, E.; Erel, C.T.; Fistonić, I.; Hillard, T.; Hirschberg, A.L.; Meczekalski, B.; et al. EMAS Position Statement: Testosterone Replacement Therapy in Older Men. Maturitas 2023, 178, 107854. [Google Scholar] [CrossRef]
- Mongioì, L.M.; Cimino, L.; Condorelli, R.A.; Magagnini, M.C.; Barbagallo, F.; Cannarella, R.; La Vignera, S.; Calogero, A.E. Effectiveness of a Very Low Calorie Ketogenic Diet on Testicular Function in Overweight/Obese Men. Nutrients 2020, 12, 2967. [Google Scholar] [CrossRef]
- Schulte, D.M.; Hahn, M.; Oberhäuser, F.; Malchau, G.; Schubert, M.; Heppner, C.; Müller, N.; Güdelhöfer, H.; Faust, M.; Krone, W.; et al. Caloric Restriction Increases Serum Testosterone Concentrations in Obese Male Subjects by Two Distinct Mechanisms. Horm. Metab. Res. 2014, 46, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Rastrelli, G.; Monami, M.; Saad, F.; Luconi, M.; Lucchese, M.; Facchiano, E.; Sforza, A.; Forti, G.; Mannucci, E.; et al. Body Weight Loss Reverts Obesity-Associated Hypogonadotropic Hypogonadism: A Systematic Review and Meta-Analysis. Eur. J. Endocrinol. 2013, 168, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Chasland, L.C.; Yeap, B.B.; Naylor, L.H. Comparing the Impacts of Testosterone and Exercise on Lean Body Mass, Strength and Aerobic Fitness in Aging Men. Sports Med. Open 2024, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Chasland, L.C.; Yeap, B.B.; Maiorana, A.J.; Chan, Y.X.; Maslen, B.A.; Cooke, B.R.; Dembo, L.; Naylor, L.H.; Green, D.J. Testosterone and Exercise: Effects on Fitness, Body Composition, and Strength in Middle-to-Older Aged Men with Low-Normal Serum Testosterone Levels. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H1985–H1998. [Google Scholar] [CrossRef]
- Grossmann, M.; Ng Tang Fui, M.; Cheung, A.S. Late-Onset Hypogonadism: Metabolic Impact. Andrology 2020, 8, 1519–1529. [Google Scholar] [CrossRef]
- Corona, G.; Vignozzi, L.; Sforza, A.; Mannucci, E.; Maggi, M. Obesity and Late-Onset Hypogonadism. Mol. Cell. Endocrinol. 2015, 418 Pt 2, 120–133. [Google Scholar] [CrossRef]
- Mangolim, A.S.; Brito, L.d.A.R.; Nunes-Nogueira, V.D.S. Effectiveness of Testosterone Replacement in Men with Obesity: A Systematic Review and Meta-Analysis. Eur. J. Endocrinol. 2021, 186, 123–135. [Google Scholar] [CrossRef]
- Bhattacharya, R.K.; Bhattacharya, S.B. Late-Onset Hypogonadism and Testosterone Replacement in Older Men. Clin. Geriatr. Med. 2015, 31, 631–644. [Google Scholar] [CrossRef]
- Shoskes, J.J.; Wilson, M.K.; Spinner, M.L. Pharmacology of Testosterone Replacement Therapy Preparations. Transl. Androl. Urol. 2016, 5, 834–843. [Google Scholar] [CrossRef]
- Rogol, A.D.; Tkachenko, N.; Bryson, N. NatestoTM, a Novel Testosterone Nasal Gel, Normalizes Androgen Levels in Hypogonadal Men. Andrology 2016, 4, 46–54. [Google Scholar] [CrossRef]
- Reddy, R.; Diaz, P.; Blachman-Braun, R.; Loloi, J.; Rahman, F.; Ory, J.; Dullea, A.; Zucker, I.; Gonzalez, D.C.; Kresch, E.; et al. Prevalence of Secondary Erythrocytosis in Men Receiving Testosterone Therapy A Matched-Cohort Analysis of Intranasal Gel, Injections, and Pellets. Can. Urol. Assoc. J. 2023, 17, E202–E207. [Google Scholar] [CrossRef]
- Masterson, T.A.; Turner, D.; Vo, D.; Blachman-Braun, R.; Best, J.C.; Westfield, G.; Bryson, N.; Ramasamy, R. The Effect of Longer-Acting vs Shorter-Acting Testosterone Therapy on Follicle Stimulating Hormone and Luteinizing Hormone. Sex Med. Rev. 2021, 9, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Kalhan, A.; Hackett, G. New Testosterone 2% Gel Using Ferring Advanced Skin Technology (FAST), for the Treatment of Testosterone Deficiency in Men, with a Novel Applicator. Expert. Rev. Endocrinol. Metab. 2020, 15, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Iannone, M.; Palermo, A.; de la Torre, X.; Romanelli, F.; Sansone, A.; Sansone, M.; Lenzi, A.; Botrè, F. Effects of Transdermal Administration of Testosterone Gel on the Urinary Steroid Profile in Hypogonadal Men: Implications in Antidoping Analysis. Steroids 2019, 152, 108491. [Google Scholar] [CrossRef] [PubMed]
- Sansone, A.; Sansone, M.; Selleri, R.; Schiavo, A.; Gianfrilli, D.; Pozza, C.; Zitzmann, M.; Lenzi, A.; Romanelli, F. Monitoring Testosterone Replacement Therapy with Transdermal Gel: When and How? J. Endocrinol. Investig. 2019, 42, 1491–1496. [Google Scholar] [CrossRef]
- Amano, T.; Iwamoto, T.; Sato, Y.; Imao, T.; Earle, C. The Efficacy and Safety of Short-Acting Testosterone Ointment (Glowmin) for Late-Onset Hypogonadism in Accordance with Testosterone Circadian Rhythm. Aging Male 2018, 21, 170–175. [Google Scholar] [CrossRef]
- Narukawa, T.; Soh, J.; Kanemitsu, N.; Harikai, S.; Ukimura, O. Efficacy of Combined Treatment of Intramuscular Testosterone Injection and Testosterone Ointment Application for Late-Onset Hypogonadism: An Open-Labeled, Randomized, Crossover Study. Aging Male 2021, 23, 1059–1065. [Google Scholar] [CrossRef]
- Ahmad, S.W.; Molfetto, G.; Montoya, D.; Camero, A. Is Oral Testosterone the New Frontier of Testosterone Replacement Therapy? Cureus 2022, 14, e27796. [Google Scholar] [CrossRef]
- Bhasin, S.; Brito, J.P.; Cunningham, G.R.; Hayes, F.J.; Hodis, H.N.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Wu, F.C.; Yialamas, M.A. Testosterone Therapy in Men with Hypogonadism: An Endocrine Society. J. Clin. Endocrinol. Metab. 2018, 103, 1715–1744. [Google Scholar] [CrossRef]
- Figueiredo, M.G.; Gagliano-Jucá, T.; Basaria, S. Testosterone Therapy with Subcutaneous Injections: A Safe, Practical, and Reasonable Option. J. Clin. Endocrinol. Metab. 2022, 107, 614–626. [Google Scholar] [CrossRef]
- Anawalt, B.D.; Bremner, W.J. Reproductive Endocrinology: Are Intramuscular Testosterone Injections Harmful? Nat. Rev. Endocrinol. 2015, 11, 510–511. [Google Scholar] [CrossRef] [PubMed]
- McFarland, J.; Craig, W.; Clarke, N.J.; Spratt, D.I. Serum Testosterone Concentrations Remain Stable between Injections in Patients Receiving Subcutaneous Testosterone. J. Endocr. Soc. 2017, 1, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Xu, P.; Barham, D.; El-Khatib, F.M.; Yafi, F.A.; Kavoussi, P.K. Comparison of Outcomes for Hypogonadal Men Treated with Intramuscular Testosterone Cypionate versus Subcutaneous Testosterone Enanthate. J. Urol. 2022, 207, 677–683. [Google Scholar] [CrossRef] [PubMed]
- McCullough, A. A Review of Testosterone Pellets in the Treatment of Hypogonadism. Curr. Sex. Health Rep. 2014, 6, 265–269. [Google Scholar] [CrossRef]
- McCullough, A.R.; Khera, M.; Goldstein, I.; Hellstrom, W.J.G.; Morgentaler, A.; Levine, L.A. A Multi-Institutional Observational Study of Testosterone Levels after Testosterone Pellet (Testopel(®)) Insertion. J. Sex. Med. 2012, 9, 594–601. [Google Scholar] [CrossRef]
- Cavender, R.K.; Fairall, M. Subcutaneous Testosterone Pellet Implant (Testopel) Therapy for Men with Testosterone Deficiency Syndrome: A Single-Site Retrospective Safety Analysis. J. Sex. Med. 2009, 6, 3177–3192. [Google Scholar] [CrossRef]
- Kresch, E.; Lima, T.F.N.; Molina, M.; Deebel, N.A.; Reddy, R.; Patel, M.; Loloi, J.; Carto, C.; Nackeeran, S.; Gonzalez, D.C.; et al. Efficacy and Safety Outcomes of a Compounded Testosterone Pellet versus a Branded Testosterone Pellet in Men with Testosterone Deficiency: A Single-Center, Open-Label, Randomized Trial. Sex. Med. 2023, 11, qfad007. [Google Scholar] [CrossRef]
- Chu, K.Y.; Kulandavelu, S.; Masterson, T.A.; Ibrahim, E.; Arora, H.; Ramasamy, R. Short-Acting Testosterone Appears to Have Lesser Effect on Male Reproductive Potential Compared to Long-Acting Testosterone in Mice. F&S Sci. 2020, 1, 46–52. [Google Scholar] [CrossRef]
- Kavoussi, P.K.; Machen, G.L.; Chen, S.H.; Gilkey, M.S.; Chen, J.; Hamzeh, Y.; Aston, K.I.; Kavoussi, S.K. Direct Conversion from Long-Acting Testosterone Replacement Therapy to Natesto Allows for Spermatogenesis Resumption: Proof of Concept. Andrologia 2022, 54, e14453. [Google Scholar] [CrossRef]
- Gurayah, A.A.; Dullea, A.; Weber, A.; Masterson, J.M.; Khodamoradi, K.; Mohamed, A.I.; Ramasamy, R. Long vs Short Acting Testosterone Treatments: A Look at the Risks. Urology 2023, 172, 5–12. [Google Scholar] [CrossRef]
- Lockie, A.W.C.; Grice, P.; Mathur, R.; Pearce, I.; Modgil, V. Diagnosis and Treatment of Hypogonadism in Men Seeking to Preserve Fertility—What Are the Options? Int. J. Impot. Res. 2025, 37, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.Y.; Achua, J.K.; Ramasamy, R. Strategies to Increase Testosterone in Men Seeking Fertility. Urol. Res. Pract. 2023, 49, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, J.M.; Khera, M. Testosterone Replacement Therapy and Cardiovascular Disease. Int. J. Impot. Res. 2022, 34, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Rastrelli, G.; Sparano, C.; Carinci, V.; Casella, G.; Vignozzi, L.; Sforza, A.; Maggi, M. Cardiovascular Safety of Testosterone Replacement Therapy in Men: An Updated Systematic Review and Meta-Analysis. Expert. Opin. Drug Saf. 2024, 23, 565–579. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhao, Y.L.; Yang, Y.F.; Wang, X.; Nie, M.; Wu, X.Y.; Mao, J.F. Metabolic Effects of Testosterone Replacement Therapy in Patients with Type 2 Diabetes Mellitus or Metabolic Syndrome: A Meta-Analysis. Int. J. Endocrinol. 2020, 2020, 4732021. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, J.J.; Kim, K.H.; Yang, H.J.; Kim, D.S.; Lee, C.H.; Jeon, Y.S.; Shim, S.R.; Kim, J.H. Efficacy of Testosterone Replacement Therapy for Treating Metabolic Disturbances in Late-Onset Hypogonadism: A Systematic Review and Meta-Analysis. Int. Urol. Nephrol. 2021, 53, 1733–1746. [Google Scholar] [CrossRef]
- Mlynarz, N.; Miedziaszczyk, M.; Wieckowska, B.; Szalek, E.; Lacka, K. Effects of Testosterone Replacement Therapy on Metabolic Syndrome in Male Patients-Systematic Review. Int. J. Mol. Sci. 2024, 25, 12221. [Google Scholar] [CrossRef]
- Kumar, S.; Khatri, M.; Memon, R.A.; Velastegui, J.L.; Podaneva, K.Z.; Gutierrez, D.B.; Nadeem, B.; Anumolu, A.R.; Azhar, M.; Zain, A. Effects of Testosterone Therapy in Adult Males with Hypogonadism and T2DM: A Meta-Analysis and Systematic Review. Diabetes Metab. Syndr. 2022, 16, 102588. [Google Scholar] [CrossRef]
- Kumari, K.; Kumar, R.; Memon, A.; Kumari, B.; Tehrim, M.; Kumari, P.; Shehryar, M.; Islam, H.; Islam, R.; Khatri, M.; et al. Treatment with Testosterone Therapy in Type 2 Diabetic Hypogonadal Adult Males: A Systematic Review and Meta-Analysis. Clin. Pract. 2023, 13, 454–469. [Google Scholar] [CrossRef]
- Biernikiewicz, M.; Sobieszczańska, M.; Szuster, E.; Pawlikowska-Gorzelańczyk, A.; Janocha, A.; Rożek-Piechura, K.; Rusiecka, A.; Gebala, J.; Okrzymowska, P.; Kałka, D. Erectile Dysfunction as an Obesity-Related Condition in Elderly Men with Coronary Artery Disease. J. Clin. Med. 2024, 13, 2087. [Google Scholar] [CrossRef]
- Bhasin, S.; Thompson, I.M. Prostate Risk and Monitoring during Testosterone Replacement Therapy. J. Clin. Endocrinol. Metab. 2024, 109, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Qiu, S.; Xiong, X.; Su, X.; Zhang, Z.; Wei, Q.; Yang, L. The Effect of Different Administrations of Testosterone Therapy on Adverse Prostate Events: A Bayesian Network Meta-Analysis. Front. Endocrinol. 2022, 13, 1009900. [Google Scholar] [CrossRef]
- Bhasin, S.; Travison, T.G.; Pencina, K.M.; O’Leary, M.; Cunningham, G.R.; Lincoff, A.M.; Nissen, S.E.; Lucia, M.S.; Preston, M.A.; Khera, M.; et al. Prostate Safety Events during Testosterone Replacement Therapy in Men with Hypogonadism: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, E2348692. [Google Scholar] [CrossRef]
- Daza, J.; Ahmad, A.; Shabir, U.; Jing, Z.; Shiekh, M.; Kauffman, E.; Guru, K.A.; Hussein, A.A. Does Testosterone Replacement Therapy Increase the Risk of Conversion to Treatment in Patients with Prostate Cancer on Active Surveillance? Urol. Oncol. 2023, 41, 429.e1–429.e7. [Google Scholar] [CrossRef]
- Rastrelli, G.; Vignozzi, L.; Corona, G.; Maggi, M. Testosterone and Benign Prostatic Hyperplasia. Sex. Med. Rev. 2019, 7, 259–271. [Google Scholar] [CrossRef]
- Fendereski, K.; Horns, J.J.; Dehghanbanadaki, H.; Watkins, C.M.; Hotaling, J.M. The Impact of Testosterone Therapy on Benign Prostatic Hyperplasia in Hypogonadal Males. Urology 2024, 196, 325–332. [Google Scholar] [CrossRef]
- Abdel-Naim, A.B.; Neamatallah, T.; Eid, B.G.; Esmat, A.; Alamoudi, A.J.; Abd El-Aziz, G.S.; Ashour, O.M. 2-Methoxyestradiol Attenuates Testosterone-Induced Benign Prostate Hyperplasia in Rats through Inhibition of HIF-1 α /TGF-β/Smad2 Axis. Oxid. Med. Cell Longev. 2018, 2018, 4389484. [Google Scholar] [CrossRef]
- Blackwell, K.; Blackwell, M.; Blackwell, T. Testosterone Replacement Therapy and Cardiovascular Disease: Balancing Safety and Risks in Hypogonadal Men. Curr. Cardiol. Rep. 2023, 25, 1157–1163. [Google Scholar] [CrossRef]
- Krishnan, S.; Aldana-Bitar, J.; Golub, I.; Ichikawa, K.; Shabir, A.; Bagheri, M.; Hamidi, H.; Benzing, T.; Kianoush, S.; Budoff, M.J. Testosterone Therapy and the Risk of Cardiovascular Disease in Older, Hypogonadal Men. Prog. Cardiovasc. Dis. 2024, 84, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.J.; Bauer, D.C.; Ellenberg, S.S.; Cauley, J.A.; Buhr, K.A.; Bhasin, S.; Miller, M.G.; Khan, N.S.; Li, X.; Nissen, S.E. Testosterone Treatment and Fractures in Men with Hypogonadism. N. Engl. J. Med. 2024, 390, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, D.J.; Wittert, G.A. Testosterone and Depression Symptoms in Aging Men. J. Clin. Endocrinol. Metab. 2024, 109, e1798–e1799. [Google Scholar] [CrossRef] [PubMed]
- Pope, H.G.; Kouri, E.M.; Hudson, J.I. Effects of Supraphysiologic Doses of Testosterone on Mood and Aggression in Normal Men: A Randomized Controlled Trial. Arch. Gen. Psychiatry 2000, 57, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Daher, M.; Diebo, B.G.; Daniels, A.H.; Arcand, M.A. Testosterone Replacement Therapy Is Associated with Increased Incidence Rate of Vertebral Fractures: A Matched Retrospective Analysis. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2025, 9, e24.00248. [Google Scholar] [CrossRef] [PubMed]
- Al Mukaddam, M.; Rajapakse, C.S.; Bhagat, Y.A.; Wehrli, F.W.; Guo, W.; Peachey, H.; LeBeau, S.O.; Zemel, B.S.; Wang, C.; Swerdloff, R.S.; et al. Effects of Testosterone and Growth Hormone on the Structural and Mechanical Properties of Bone by Micro-MRI in the Distal Tibia of Men with Hypopituitarism. J. Clin. Endocrinol. Metab. 2014, 99, 1236–1244. [Google Scholar] [CrossRef]
- Tenuta, M.; Hasenmajer, V.; Gianfrilli, D.; Isidori, A.M. Testosterone and Male Bone Health: A Puzzle of Interactions. J. Clin. Endocrinol. Metab. 2025, 110, e2121–e2135. [Google Scholar] [CrossRef]
- Wang, C.; Swerdloff, R.S. Testosterone Replacement Therapy in Hypogonadal Men. Endocrinol. Metab. Clin. N. Am. 2022, 51, 77–98. [Google Scholar] [CrossRef]
- Lunenfeld, B.; Mskhalaya, G.; Zitzmann, M.; Corona, G.; Arver, S.; Kalinchenko, S.; Tishova, Y.; Morgentaler, A. Recommendations on the Diagnosis, Treatment and Monitoring of Testosterone Deficiency in Men. Aging Male 2021, 24, 119–138. [Google Scholar] [CrossRef]
- Lee, C.; Joseph Auchus, R.; McDonald, J.; Rege, J.; Rainey, W.E.; Turcu, A.F. 7212 Racial/Ethnical Differences in Classic and 11-Oxygenated Androgens. J. Endocr. Soc. 2024, 8, bvae163.277. [Google Scholar] [CrossRef]
- Xu, L.; Au Yeung, S.L.; Kavikondala, S.; Leung, G.M.; Schooling, C.M. Testosterone Concentrations in Young Healthy US versus Chinese Men. Am. J. Hum. Biol. 2014, 26, 99–102. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Heydari, K.; Rasouli, K.; Azari, S.; Afshari, M.; Barzegari, S.; Nikaeen, R.; Kardan-Souraki, M.; Khani, S.; Motafeghi, F.; et al. Association of the Effect of Alcohol Consumption on Luteinizing Hormone (LH), Follicle-Stimulating Hormone (FSH), and Testosterone Hormones in Men: A Systematic Review and Meta-Analysis. Int. J. Prev. Med. 2024, 15, 75. [Google Scholar] [CrossRef]
- Patel, P.; Shiff, B.; Kohn, T.P.; Ramasamy, R. Impaired Sleep Is Associated with Low Testosterone in US Adult Males: Results from the National Health and Nutrition Examination Survey. World J. Urol. 2019, 37, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Genchi, V.A.; Cignarelli, A.; Sansone, A.; Yannas, D.; Dalla Valentina, L.; Renda Livraghi, D.; Spaggiari, G.; Santi, D. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites 2024, 14, 626. [Google Scholar] [CrossRef] [PubMed]
- Riachy, R.; McKinney, K.; Tuvdendorj, D.R. Various Factors May Modulate the Effect of Exercise on Testosterone Levels in Men. J. Funct. Morphol. Kinesiol. 2020, 5, 81. [Google Scholar] [CrossRef] [PubMed]
- Steeves, J.A.; Fitzhugh, E.C.; Bradwin, G.; McGlynn, K.A.; Platz, E.A.; Joshu, C.E. Cross-Sectional Association between Physical Activity and Serum Testosterone Levels in US Men: Results from NHANES 1999–2004. Andrology 2016, 4, 465–472. [Google Scholar] [CrossRef]
- Kurniawan, A.L.; Hsu, C.-Y.; Chao, J.C.-J.; Lin, L.-Y.; Paramastri, R.; Lee, H.-A.; Hsieh, N.-C.; Wu, S.-F.V. Interactive Effects of Unhealthy Lifestyle Behaviors on Testicular Function among Healthy Adult Men: A Cross-Sectional Study in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 4925. [Google Scholar] [CrossRef]
- Dehghanbanadaki, H.; Kim, B.; Fendereski, K.; Horns, J.J.; Ramsay, J.M.; Jimbo, M.; Gross, K.X.; Pastuszak, A.W.; Hotaling, J.M. Racial/Ethnic Differences in Male Reproductive Health: A Systematic Review and Meta-Analysis of Semen Parameters and Hormonal Profiles in the United States. Int. J. Impot. Res. 2025, 21, 1–15. [Google Scholar] [CrossRef]
- Nelson, K.A.; Witte, J.S. Androgen Receptor CAG Repeats and Prostate Cancer. Am. J. Epidemiol. 2002, 155, 883–890. [Google Scholar] [CrossRef]
- Milatiner, D.; Halle, D.; Huerta, M.; Margalioth, E.J.; Cohen, Y.; Ben-Chetrit, A.; Gal, M.; Mimoni, T.; Eldar-Geva, T. Associations between Androgen Receptor CAG Repeat Length and Sperm Morphology. Hum. Reprod. 2004, 19, 1426–1430. [Google Scholar] [CrossRef]
- Zitzmann, M. The Role of the CAG Repeat Androgen Receptor Polymorphism in Andrology. Front. Horm. Res. 2009, 37, 52–61. [Google Scholar] [CrossRef]
- Ferro, P.; Catalano, M.G.; Dell’Eva, R.; Fortunati, N.; Pfeffer, U. The Androgen Receptor CAG Repeat: A Modifier of Carcinogenesis? Mol. Cell Endocrinol. 2002, 193, 109–120. [Google Scholar] [CrossRef]
- Rajpert-De Meyts, E.; Leffers, H.; Daugaard, G.; Andersen, C.B.; Petersen, P.M.; Hinrichsen, J.; Pedersen, L.G.; Skakkebaek, N.E. Analysis of the Polymorphic CAG Repeat Length in the Androgen Receptor Gene in Patients with Testicular Germ Cell Cancer. Int. J. Cancer 2002, 102, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Malavige, L.S.; Jayawickrama, S.; Ranasinghe, P.; Levy, J.C. Androgen Receptor CAG Repeat Polymorphism Is Not Associated with Insulin Resistance and Diabetes among South Asian Males. BMC Res. Notes 2017, 10, 685. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.C.; Leach, D.A.; Bevan, C.L. Epigenetic Coregulation of Androgen Receptor Signaling. Adv. Exp. Med. Biol. 2022, 1390, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Biswas, M.; Massah, S.; Lee, J.; Lingadahalli, S.; Wong, S.; Wells, C.; Foo, J.; Khan, N.; Morin, H.; et al. Dynamic Phase Separation of the Androgen Receptor and Its Coactivators Key to Regulate Gene Expression. Nucleic Acids Res. 2023, 51, 99–116. [Google Scholar] [CrossRef]
- Yu, I.-C.; Lin, H.-Y.; Liu, N.-C.; Wang, R.-S.; Sparks, J.D.; Yeh, S.; Chang, C. Hyperleptinemia without Obesity in Male Mice Lacking Androgen Receptor in Adipose Tissue. Endocrinology 2008, 149, 2361–2368. [Google Scholar] [CrossRef]
- Rubinow, K.B.; Wang, S.; den Hartigh, L.J.; Subramanian, S.; Morton, G.J.; Buaas, F.W.; Lamont, D.; Gray, N.; Braun, R.E.; Page, S.T. Hematopoietic Androgen Receptor Deficiency Promotes Visceral Fat Deposition in Male Mice without Impairing Glucose Homeostasis. Andrology 2015, 3, 787–796. [Google Scholar] [CrossRef]
- Huang, C.-K.; Lai, K.-P.; Luo, J.; Tsai, M.-Y.; Kang, H.-Y.; Chen, Y.; Lee, S.O.; Chang, C. Loss of Androgen Receptor Promotes Adipogenesis but Suppresses Osteogenesis in Bone Marrow Stromal Cells. Stem Cell Res. 2013, 11, 938–950. [Google Scholar] [CrossRef]
- Bhasin, S. Biologic Significance of the Short Tandem Trinucleotide Repeats in the Androgen Receptor Gene. J. Clin. Endocrinol. Metab. 2025, 110, e1276–e1277. [Google Scholar] [CrossRef]
- Giovannucci, E.; Stampfer, M.J.; Krithivas, K.; Brown, M.; Dahl, D.; Brufsky, A.; Talcott, J.; Hennekens, C.H.; Kantoff, P.W. The CAG Repeat within the Androgen Receptor Gene and Its Relationship to Prostate Cancer. Proc. Natl. Acad. Sci. USA 1997, 94, 3320–3323. [Google Scholar] [CrossRef]
- Al Hashimi, M.; Pinggera, G.-M.; Shah, R.; Agarwal, A. Clinician’s Guide to the Management of Azoospermia Induced by Exogenous Testosterone or Anabolic-Androgenic Steroids. Asian J. Androl. 2025, 27, 330–341. [Google Scholar] [CrossRef]
- Fink, J.; Ide, H.; Horie, S. Management of Male Fertility in Hypogonadal Patients on Testosterone Replacement Therapy. Medicina 2024, 60, 275. [Google Scholar] [CrossRef] [PubMed]
- Decaroli, M.C.; Rochira, V. Aging and Sex Hormones in Males. Virulence 2017, 8, 545–570. [Google Scholar] [CrossRef] [PubMed]
- Krakowsky, Y.; Conners, W.; Morgentaler, A. Serum Concentrations of Sex Hormone-Binding Globulin Vary Widely in Younger and Older Men: Clinical Data from a Men’s Health Practice. Eur. Urol. Focus. 2019, 5, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Rastrelli, G.; Corona, G.; Cipriani, S.; Mannucci, E.; Maggi, M. Sex Hormone-Binding Globulin Is Associated with Androgen Deficiency Features Independently of Total Testosterone. Clin. Endocrinol. 2018, 88, 556–564. [Google Scholar] [CrossRef]
- King, B.; Natale, C.; Hellstrom, W.J.G. Testosterone Assays. Urol. Clin. N. Am. 2022, 49, 665–677. [Google Scholar] [CrossRef]
- Keevil, B.G.; Adaway, J. Assessment of Free Testosterone Concentration. J. Steroid Biochem. Mol. Biol. 2019, 190, 207–211. [Google Scholar] [CrossRef]
- Farber, N.J.; Vij, S.C.; Shoskes, D.A. Failure of Testosterone Replacement Therapy to Improve Symptoms Correlates with Burden of Systemic Conditions. Transl. Androl. Urol. 2020, 9, 1108–1112. [Google Scholar] [CrossRef]
- Deng, L.; Shi, Q. Testosterone Treatment: Who Will Benefit the Most? Lancet Healthy Longev. 2023, 4, e524–e525. [Google Scholar] [CrossRef]
- Ahmed, A.; Aziz, S.; Abd-Alrazaq, A.; Farooq, F.; Househ, M.; Sheikh, J. The Effectiveness of Wearable Devices Using Artificial Intelligence for Blood Glucose Level Forecasting or Prediction: Systematic Review. J. Med. Internet. Res. 2023, 25, e40259. [Google Scholar] [CrossRef]
- Haring, R. Perspectives for Metabolomics in Testosterone Replacement Therapy. J. Endocrinol. 2012, 215, 3–16. [Google Scholar] [CrossRef]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-Omics Integration in Biomedical Research—A Metabolomics-Centric Review. Anal. Chim. Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef]



| The TRT Formulations | Advantages | Disadvantages |
|---|---|---|
| Intranasal gels |
|
|
| Transdermal testosterone gels |
|
|
| Transdermal testosterone ointments |
|
|
| Oral testosterone tablets |
|
|
| Intramuscular injections |
|
|
| Subcutaneous injections |
|
|
| Testosterone pellets |
|
|
| Organization | Diagnostic Thresholds | Monitoring Protocols | Special Populations/Distinctive Features |
|---|---|---|---|
| Endocrine Society | No universally accepted threshold; diagnosis based on clinical symptoms and consistently low morning TT (<264 ng/dL/9.2 nmol/L) | TT, Ht, PSA before and during TRT |
|
| AUA | TT < 300 ng/dL (10.4 nmol/L) | TT, Ht, PSA before and during TRT |
|
| ISSAM | TT < 350 ng/dL (12.1 nmol/L) Free T < 220–347 pmol/L (63.5–100 pg/mL) | TT, Ht, PSA before and during TRT |
|
| EMAS | TT < 8 nmol/L (231 ng/dL): high probability TT 8–12 nmol/L (231–345 ng/dL): borderline Free T < 225 pmol/L (65 pg/mL) supports diagnosis | TT, Ht, PSA Bone density assessment included |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsutsumi, T.; Tsuchiya, K. Testosterone and Obesity in an Aging Society. Biomolecules 2025, 15, 1521. https://doi.org/10.3390/biom15111521
Tsutsumi T, Tsuchiya K. Testosterone and Obesity in an Aging Society. Biomolecules. 2025; 15(11):1521. https://doi.org/10.3390/biom15111521
Chicago/Turabian StyleTsutsumi, Takahiro, and Kyoichiro Tsuchiya. 2025. "Testosterone and Obesity in an Aging Society" Biomolecules 15, no. 11: 1521. https://doi.org/10.3390/biom15111521
APA StyleTsutsumi, T., & Tsuchiya, K. (2025). Testosterone and Obesity in an Aging Society. Biomolecules, 15(11), 1521. https://doi.org/10.3390/biom15111521
